DIFFERENTIAL EQUATIONS AND COMPLEX ANALYSIS

(Common to all Branches)

OBJECTIVES:

To enable the students to

- make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.
- acquaint the student with the concepts of vector calculus, needed for problems in all engineering disciplines.
- develop an understanding of the standard techniques of complex variable theory so as
- enable the student to apply them with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow of the electric current.
- make the student appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

UNIT I ORDINARY DIFFERENTIAL EQUATIONS

9+6

Higher order linear differential equations with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

UNIT II VECTOR CALCULUS

9+6

Gradient, Divergence and Curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem in a plane, Gauss divergence theorem and stokes' theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelpipeds.

UNIT III ANALYTIC FUNCTIONS

9+6

Functions of a complex variable – Analytic functions – Necessary conditions, Cauchy – Riemann equation and Sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping : w= z+c, cz, 1/z, and bilinear transformation.

UNIT IV COMPLEX INTEGRATION

9+6

Complex integration – Statement and applications of Cauchy's integral theorem and Cauchy's integral formula – Taylor and Laurent expansions – Singular points – Residues – Residue theorem – Application of residue theorem to evaluate real integrals – Unit circle and semicircular contour (excluding poles on boundaries).

UNIT V LAPLACE TRANSFORM

9+6

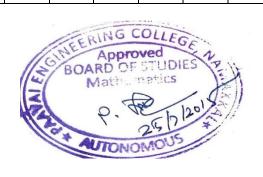
Laplace transform – Conditions for existence – Transform of elementary functions – Basic properties – Transform of derivatives and integrals – Transform of unit step function and impulse functions – Transform of periodic functions. Definition of Inverse Laplace transform as contour integral – Convolution theorem (excluding proof) – Initial and Final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.

TOTAL: 75 PERIODS

OUTCOMES:

At the end of the course the students will be able to

- Have learnt the method of solving differential equations of certain types, including systems of differential equations that they might encounter in their studies of other subjects in the same or higher semesters.
- Have studied the basics of vector calculus comprising of gradient, divergence and curl and line, surface and volume integrals and the classical theorems involving them, which would be encountered by them in their engineering subjects in the same or higher semesters.
- Have a good grasp of analytic functions and their interesting properties which could be exploited in a few engineering areas and be introduced to the host of conformal mappings with a few standard examples that have direct application.
- Have grasped the basis of complex integration and the concept of contour integration which is an important tool for evaluation of certain integrals encountered in practice.
- Have a sound knowledge of Laplace transform and its properties and sufficient exposure to solution of certain linear differential equations using the Laplace transform technique which have applications in other subjects of the current and higher semesters.


TEXT BOOKS:

- 1. Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publications, Delhi, (2011).
- 2. P.Jayakumar, B.Kishokkumar and M.Vimala, "Mathematics -II", Global Publishers, Chennai., (2014).

REFERENCES:

- 1. Erwin Kreyszig., "Advanced Engineering Mathematics" 10th Edition, Wiley Publications.
- 2. Dass, H.K., and Er. RajnishVerma, "Higher Engineering Mathematics", S. Chand Private Ltd., (2011).
- 3. T. Veerarajan., "Engineering Mathematics", 3rd Edition, Tata McGraw Hill, 2011.
- 4. Peter V. O'Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage learning, (2012).
- 5. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, (2008).

Mapping of Course Outcomes with Programme Outcomes (1/2/3 indicates strength of correlation) 3-strong, 2-Medium, 1-Weak **Programme Outcomes(POs)** COs PSO₂ PSO1 PO2 PO3 PO4 **PO7** PO8 **PO12** PO1 **PO5 PO6** PO9 **PO10 PO11** 3 3 3 3 2 **CO1** 2 3 3 2 CO₂ 3 2 3 3 3 3 3 3 2 2 3 CO₃ 3 3 2 3 3 3 3 3 **CO4** 3 3 3 3 2 CO₅ 3

COURSE OBJECTIVES:

To enable the students to

- Instillthebasiccommunicationconceptstoenhance students' communication skillsthroughvariouslabsessions.
- HelpstudentsdeveloptheabilitytocommunicateeffectivelyinspokenEnglish.
- Helpstudentsdeveloptheirsoft skillsandinterpersonal skills.
- Increaseemployabilitybydeveloping students' communication skillsinEnglish.

UNITI FORMAL& INFORMALCONVERSATIONPRACTICE

9

Role Play conversations - with family members, neighbors, friends, relatives etc. Simple expressions - agreeing/disagreeing,persuading,wishing,consoling,advising,arguing,expressingopinionsetc.-Professional dialogues withsuperiors - Conversation with different professionals in - Government andCorporate Offices, Official Meetings, Educational Institutions, (At the railway junction, malls, post office,bank) etc-everydayusage ofEnglish

UNITIIORALREVIEW, RADIO SHOW&NARRATIVETECHNIQUES

9

Oral review of books - Presentation of various radio programs like news, announcements, advertisements, entertainment programs etc. as a team activity. Understanding the basic narrative techniques - Narratingshort stories, Narratingreallife experiences, Oralinterpretation of charts, tables, graphs.

UNITIII RESUME /LETTERWRITING

9

Preparation of resume- structure – Types of resume – writing the vision statement – Objectives – Types of Letter – Job Application–accepting/decliningaJoboffer.

UNITIVPRESENTATIONSKILLS & GROUPDISCUSSION

9

Elements of effective presentation – Structure of a presentation – Speech acts - effective use to presentationtools - Audience analysis – Preparing the PPT slides - Video samples- Importance of GD – in the selection process - Structure of a GD – Moderator – led and other GDs - Strategies in GD – Team work – BodyLanguage-MockGD-Video samples

UNITVINTERVIEW SKILLS

Kindsofinterviews-onetoone, group interview, telephone interview, online interview, stress interview-

RequiredSkills—Corporateculture—Mockinterviews-Videosamples.

COURSE OUTCOMES:

- listen and comprehend classroom lectures, short talks and conversations.
- read, interpret and analyze a given text effectively, and use cohesive devices in spoken and written English.
- understand English and converse effectively.
- write flawless sentences, Job application.

TEXTBOOKS:

- Kalpana.V&Co., "CommunicationSkillsLaboratoryManual", VijayNicoleImprintsPvt.Limited, Chennai.2013
- Rizvi, Ashraf. M. Effective Technical Communication. TataMcGraw-Hill, New Delhi. 2005.

REFERENCEBOOKS:

- Anderson, P.V. "Technical Communication", Thomson Edition, New Delhi, 2007.
- KumarSanjay, PushpLata, "CommunicationSkills(WithCD)", OxfordUniversityPress,

NewDelhi.2011

		Mapping of Course Outcomes with Programme Outcomes (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak												
		Programmes Outcomes (POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	2	2	3	3	1	-	-
CO2	-	-	-	2	3	-	1	2	-	3	3	1	-	-
CO3	-	-	-	-	-	-	-	-	-	3	1	1	-	-
CO4	-	-	-	-	3	1	1	-	2	3	3	1	-	-

OUTCOMES:

Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.

- Public awareness of environmental is at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions
- Development and improvement in std. of living has lead to serious environmental disasters

TEXTBOOKS:

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw Hill, New Delhi, 2006.

REFERENCES:

- 1. Trivedi R.K. 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media.
- 2. Cunningham W.P.Cooper., T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publishing House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT LTD, New Delhi, 2007.
- 4. Rajagopalan R, 'Environmental Studies From Crisis to Cure', Oxford University Press, 2005

CE6301

ENGINEERING GEOLOGY

LT PC 3 0 0 3

OBJECTIVES:

 At the end of this course the students will be able to understand the importance of geological knowledge such as earth, earthquake, volcanism and to apply this knowledge in projects such as dams, tunnels, bridges, roads, airport and harbor as well as to choose types of foundations.

UNIT I PHYSICAL GEOLOGY

9

Geology in civil engineering – branches of geology – structure of earth and its composition – weathering of rocks – scale of weathering – soils - landforms and processes associated with river, wind, groundwater and sea – relevance to civil engineering. Plate tectonics – Earth quakes – Seismic zones in India.

UNIT II MINEROLOGY

9

Physical properties of minerals – Quartz group, Feldspar group, Pyroxene - hypersthene and augite, Amphibole – hornblende, Mica – muscovite and biotite, Calcite, Gypsum and Clayminerals.

UNIT III PETROLOGY

9

Classification of rocks, distinction between Igneous, Sedimentary and Metamorphic rocks. Engineering properties of rocks. Description, occurrence, engineering properties, distribution and uses of Granite, Dolerite, Basalt, Sandstone, Limestone, Laterite, Shale, Quartzite, Marble, Slate, Gneiss and Schist.

UNIT IV STRUCTURAL GEOLOGY AND GEOPHYSICAL METHODS

9

Geological maps – attitude of beds, study of structures – folds, faults and joints – relevance to civil engineering. Geophysical methods – Seismic and electrical methods for subsurface investigations.

UNIT V APPLICATION OF GEOLOGICAL INVESTIGATIONS

9

Remote sensing for civil engineering applications; Geological conditions necessary for design and construction of Dams, Reservoirs, Tunnels, and Road cuttings - Hydrogeological

investigations and mining - Coastal protection structures. Investigation of Landslides, causes and mitigation.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing this course

- Will be able to understand the importance of geological knowledge such as earth, earthquake, volcanism and the action of various geological agencies.
- Will realize the importance of this knowledge in projects such as dams, tunnels, bridges, roads, airport and harbor
- Can choose the types of foundations and other related aspects.

TEXT BOOKS:

- 1. Varghese, P.C., Engineering Geology for Civil Engineering Prentice Hall of India Learning Private Limited, New Delhi, 2012.
- 2. Venkat Reddy. D. Engineering Geology, Vikas Publishing House Pvt. Lt, 2010.
- 3. Gokhale KVGK, "Principles of Engineering Geology", B.S. Publications, Hyderabad 2011.
- 4. Chenna Kesavulu N. "Textbook of Engineering Geology", Macmillan India Ltd., 2009.
- 5. Parbin Singh. A "Text book of Engineering and General Geology", Katson publishing house, Ludhiana 2009.

REFERENCES:

- 1. Muthiayya, V.D. "A Text of Geology", Oxford IBH Publications, Calcutta, 1969
- 2. Blyth F.G.H. and de Freitas M.H., Geology for Engineers, Edward Arnold, London, 2010.
- 3. Bell F.G. "Fundamentals of Engineering Geology", B.S. Publications. Hyderabad 2011.
- 4. Dobrin, M.B "An introduction to geophysical prospecting", McGraw Hill, New Delhi, 1988.

CE6302

MECHANICS OF SOLIDS

LTPC

3 1 0 4

OBJECTIVES:

- To learn fundamental concepts of Stress, Strain and deformation of solids with applications to bars, beams and thin cylinders.
- To know the mechanism of load transfer in beams, the induced stress resultants and deformations.
- To understand the effect of torsion on shafts and springs.
- To analyse a complex two dimensional state of stress and plane trusses

UNIT I STRESS AND STRAIN

(

Stress and strain at a point – Tension, Compression, Shear Stress – Hooke's Law – Relationship among elastic constants – Stress Strain Diagram for Mild Steel, TOR steel, Concrete – Ultimate Stress – Yield Stress – Factor of Safety – Thermal Stresses – Thin Cylinders and Shells – Strain Energy due to Axial Force – Resilience – Stresses due to impact and Suddenly Applied Load – Compound Bars.

UNIT II SHEAR AND BENDING IN BEAMS

9

Beams and Bending-Types of loads, supports – Shear Force and Bending Moment Diagrams for statically determinate beam with concentrated load, UDL, uniformly varying load. Theory of Simple Bending – Analysis of Beams for Stresses – Stress Distribution at a cross Section due to bending moment and shear force for Cantilever, simply supported and overhanging beams with different loading conditions - **Flitched Beams**.

UNIT III DEFLECTION

9

Double integration method - Macaulay's methods - Area moment method - conjugate beam method for computation of slopes and deflections of determinant beams.

investigations and mining - Coastal protection structures. Investigation of Landslides, causes and mitigation.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing this course

- Will be able to understand the importance of geological knowledge such as earth, earthquake, volcanism and the action of various geological agencies.
- Will realize the importance of this knowledge in projects such as dams, tunnels, bridges, roads, airport and harbor
- Can choose the types of foundations and other related aspects.

TEXT BOOKS:

- 1. Varghese, P.C., Engineering Geology for Civil Engineering Prentice Hall of India Learning Private Limited, New Delhi, 2012.
- 2. Venkat Reddy. D. Engineering Geology, Vikas Publishing House Pvt. Lt, 2010.
- 3. Gokhale KVGK, "Principles of Engineering Geology", B.S. Publications, Hyderabad 2011.
- 4. Chenna Kesavulu N. "Textbook of Engineering Geology", Macmillan India Ltd., 2009.
- 5. Parbin Singh. A "Text book of Engineering and General Geology", Katson publishing house, Ludhiana 2009.

REFERENCES:

- 1. Muthiayya, V.D. "A Text of Geology", Oxford IBH Publications, Calcutta, 1969
- 2. Blyth F.G.H. and de Freitas M.H., Geology for Engineers, Edward Arnold, London, 2010.
- 3. Bell F.G. "Fundamentals of Engineering Geology", B.S. Publications. Hyderabad 2011.
- 4. Dobrin, M.B "An introduction to geophysical prospecting", McGraw Hill, New Delhi, 1988.

CE6302

MECHANICS OF SOLIDS

LTPC

3 1 0 4

OBJECTIVES:

- To learn fundamental concepts of Stress, Strain and deformation of solids with applications to bars, beams and thin cylinders.
- To know the mechanism of load transfer in beams, the induced stress resultants and deformations.
- To understand the effect of torsion on shafts and springs.
- To analyse a complex two dimensional state of stress and plane trusses

UNIT I STRESS AND STRAIN

(

Stress and strain at a point – Tension, Compression, Shear Stress – Hooke's Law – Relationship among elastic constants – Stress Strain Diagram for Mild Steel, TOR steel, Concrete – Ultimate Stress – Yield Stress – Factor of Safety – Thermal Stresses – Thin Cylinders and Shells – Strain Energy due to Axial Force – Resilience – Stresses due to impact and Suddenly Applied Load – Compound Bars.

UNIT II SHEAR AND BENDING IN BEAMS

9

Beams and Bending-Types of loads, supports – Shear Force and Bending Moment Diagrams for statically determinate beam with concentrated load, UDL, uniformly varying load. Theory of Simple Bending – Analysis of Beams for Stresses – Stress Distribution at a cross Section due to bending moment and shear force for Cantilever, simply supported and overhanging beams with different loading conditions - **Flitched Beams**.

UNIT III DEFLECTION

9

Double integration method - Macaulay's methods - Area moment method - conjugate beam method for computation of slopes and deflections of determinant beams.

UNIT IV TORSION

9

Torsion of Circular and Hollow Shafts – Elastic Theory of Torsion – Stresses and Deflection in Circular Solid and Hollow Shafts – combined bending moment and torsion of shafts - strain energy due to torsion - Modulus of Rupture – Power transmitted to shaft – Shaft in series and parallel – Closed and Open Coiled helical springs – Leaf Springs – Springs in series and parallel – Design of buffer springs.

UNIT V COMPLEX STRESSES AND PLANE TRUSSES

9

2 D State of Stress – 2 D Normal and Shear Stresses on any plane – Principal Stresses and Principal Planes – Mohr's circle - Plane trusses: Analysis of plane trusses - method of joints - method of sections.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

The students will have

- Thorough understanding of the fundamental concepts of stress and strain in mechanics of solids and structures.
- the ability to analyse determinate beams and trusses to determine shear forces, bending moments and axial forces.
- a sufficient knowledge in designing shafts to transmit required power and also springs for its maximum energy storage capacities.

TEXTBOOKS:

- 1. Rajput.R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2007.
- 2. Bhavikatti. S., "Solid Mechanics", Vikas publishing house Pvt. Ltd, New Delhi, 2010.

REFERENCES:

- 1. Gambhir. M.L., "Fundamentals of Solid Mechanics", PHI Learning Private Limited., New Delhi, 2009.
- 2. Timoshenko.S.B. and Gere.J.M, "Mechanics of Materials", Van Nos Reinbhold, New Delhi 1995.
- 3. Vazirani.V.N and Ratwani.M.M, "Analysis of Structures", Vol I Khanna Publishers, New Delhi,1995.
- 4. Junnarkar.S.B. and Shah.H.J, "Mechanics of Structures", Vol I, Charotar Publishing House, New Delhi 1997.
- 5. Ugural. A.C., "Mechanics of Materials", Wiley India Pvt. Ltd., New Delhi, 2013.

CE6303

MECHANICS OF FLUIDS

LTPC

OBJECTIVES:

• To understand the basic properties of the fluid, fluid kinematics, fluid dynamics and to analyse and appreciate the complexities involved in solving the fluid flow problems.

UNIT I FLUID PROPERTIES AND FLUID STATICS

9

Fluid – definition, distinction between solid and fluid - Units and dimensions - Properties of fluids - density, specific weight, specific volume, specific gravity, temperature, viscosity, compressibility, vapour pressure, capillarity and surface tension - Fluid statics: concept of fluid static pressure, absolute and gauge pressures - pressure measurements by manometers and pressure gauges-forces on planes – centre of pressure – bouncy and floatation.

UNIT II FLIUD KINEMATICS AND DYNAMICS

9

Fluid Kinematics - Flow visualization - lines of flow - types of flow - velocity field and acceleration - continuity equation (one and three dimensional differential forms)- Equation of streamline - stream function - velocity potential function - circulation - flow net. Fluid dynamics - equations of motion -

UNIT IV TORSION

9

Torsion of Circular and Hollow Shafts – Elastic Theory of Torsion – Stresses and Deflection in Circular Solid and Hollow Shafts – combined bending moment and torsion of shafts - strain energy due to torsion - Modulus of Rupture – Power transmitted to shaft – Shaft in series and parallel – Closed and Open Coiled helical springs – Leaf Springs – Springs in series and parallel – Design of buffer springs.

UNIT V COMPLEX STRESSES AND PLANE TRUSSES

9

2 D State of Stress – 2 D Normal and Shear Stresses on any plane – Principal Stresses and Principal Planes – Mohr's circle - Plane trusses: Analysis of plane trusses - method of joints - method of sections.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

The students will have

- Thorough understanding of the fundamental concepts of stress and strain in mechanics of solids and structures.
- the ability to analyse determinate beams and trusses to determine shear forces, bending moments and axial forces.
- a sufficient knowledge in designing shafts to transmit required power and also springs for its maximum energy storage capacities.

TEXTBOOKS:

- 1. Rajput.R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2007.
- 2. Bhavikatti. S., "Solid Mechanics", Vikas publishing house Pvt. Ltd, New Delhi, 2010.

REFERENCES:

- 1. Gambhir. M.L., "Fundamentals of Solid Mechanics", PHI Learning Private Limited., New Delhi, 2009.
- 2. Timoshenko.S.B. and Gere.J.M, "Mechanics of Materials", Van Nos Reinbhold, New Delhi 1995.
- 3. Vazirani.V.N and Ratwani.M.M, "Analysis of Structures", Vol I Khanna Publishers, New Delhi,1995.
- 4. Junnarkar.S.B. and Shah.H.J, "Mechanics of Structures", Vol I, Charotar Publishing House, New Delhi 1997.
- 5. Ugural. A.C., "Mechanics of Materials", Wiley India Pvt. Ltd., New Delhi, 2013.

CE6303

MECHANICS OF FLUIDS

LTPC

OBJECTIVES:

• To understand the basic properties of the fluid, fluid kinematics, fluid dynamics and to analyse and appreciate the complexities involved in solving the fluid flow problems.

UNIT I FLUID PROPERTIES AND FLUID STATICS

9

Fluid – definition, distinction between solid and fluid - Units and dimensions - Properties of fluids - density, specific weight, specific volume, specific gravity, temperature, viscosity, compressibility, vapour pressure, capillarity and surface tension - Fluid statics: concept of fluid static pressure, absolute and gauge pressures - pressure measurements by manometers and pressure gauges-forces on planes – centre of pressure – bouncy and floatation.

UNIT II FLIUD KINEMATICS AND DYNAMICS

9

Fluid Kinematics - Flow visualization - lines of flow - types of flow - velocity field and acceleration - continuity equation (one and three dimensional differential forms)- Equation of streamline - stream function - velocity potential function - circulation - flow net. Fluid dynamics - equations of motion -

Euler's equation along a streamline - Bernoulli's equation – applications - Venturi meter, Orifice meter and Pitot tube. Linear momentum equation and its application.

UNIT III FLOW THROUGH PIPES

9

Viscous flow - Shear stress, pressure gradient relationship - laminar flow between parallel plates - Laminar flow through circular tubes (Hagen poiseulle's) - Hydraulic and energy gradient - flow through pipes - Darcy -Weisbach's equation - pipe roughness -friction factor- Moody's diagram-Major and minor losses of flow in pipes - Pipes in series and in parallel.

UNIT IV BOUNDARY LAYER

9

Boundary layer – definition- boundary layer on a flat plate – thickness and classification – displacement, energy and momentum thickness – Boundary layer separation and control – drag in flat plate – drag and lift coefficients.

UNIT V DIMENSIONAL ANALYSIS AND MODEL STUDIES

9

Fundamental dimensions - dimensional homogeneity - Rayleigh's method and Buckingham Pi-Theorem - Dimensionless parameters - Similitude and model studies - Distorted Models.

TOTAL: 45 PERIODS

OUTCOMES:

- The students will be able to get a basic knowledge of fluids in static, kinematic and dynamic equilibrium.
- They will also gain the knowledge of the applicability of physical laws in addressing problems in hydraulics.

TEXT BOOKS:

- 1. Modi P.N and Seth "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard Book House New Delhi. 2003
- 2. Ramamirtham, S., "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai and Sons, Delhi, 2001.
- 3. Bansal, R.K., "Fluid Mechanics and Hydraulics Machines", 5th edition, Laxmi Publications Pvt. Ltd, New Delhi, 2008.

REFERENCES:

- 1. Streeter, V.L., and Wylie, E.B., "Fluid Mechanics", McGraw Hill, 2000.
- 2. Fox W.R. and McDonald A.T., Introduction to Fluid Mechanics John-Wiley and Sons, Singapore, 1995.
- 3. Jain A. K. "Fluid Mechanics", Khanna Publishers, 2010
- 4. Roberson J.A and Crowe C.T., "Engineering Fluid Mechanics", Jaico Books Mumbai, 2000.
- 5. White, F.M., "Fluid Mechanics", Tata McGraw Hill, 5th Edition, New Delhi, 2003.

CE6304 SURVEYING I

LT PC 3003

OBJECTIVES:

 To introduce the principles of various surveying methods and applications to Civil Engineering projects

UNIT I FUNDAMENTALS AND CHAIN SURVEYING

ξ

Definition- Classifications - Basic principles-Equipment and accessories for ranging and chaining - Methods of ranging - well conditioned triangles - Errors in linear measurement and their corrections - Obstacles - Traversing - Plotting - applications- enlarging the reducing the figures - Areas enclosed by straight line irregular figures- digital planimetre.

Euler's equation along a streamline - Bernoulli's equation – applications - Venturi meter, Orifice meter and Pitot tube. Linear momentum equation and its application.

UNIT III FLOW THROUGH PIPES

9

Viscous flow - Shear stress, pressure gradient relationship - laminar flow between parallel plates - Laminar flow through circular tubes (Hagen poiseulle's) - Hydraulic and energy gradient - flow through pipes - Darcy -Weisbach's equation - pipe roughness -friction factor- Moody's diagram-Major and minor losses of flow in pipes - Pipes in series and in parallel.

UNIT IV BOUNDARY LAYER

9

Boundary layer – definition- boundary layer on a flat plate – thickness and classification – displacement, energy and momentum thickness – Boundary layer separation and control – drag in flat plate – drag and lift coefficients.

UNIT V DIMENSIONAL ANALYSIS AND MODEL STUDIES

9

Fundamental dimensions - dimensional homogeneity - Rayleigh's method and Buckingham Pi-Theorem - Dimensionless parameters - Similitude and model studies - Distorted Models.

TOTAL: 45 PERIODS

OUTCOMES:

- The students will be able to get a basic knowledge of fluids in static, kinematic and dynamic equilibrium.
- They will also gain the knowledge of the applicability of physical laws in addressing problems in hydraulics.

TEXT BOOKS:

- 1. Modi P.N and Seth "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard Book House New Delhi. 2003
- 2. Ramamirtham, S., "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai and Sons, Delhi, 2001.
- 3. Bansal, R.K., "Fluid Mechanics and Hydraulics Machines", 5th edition, Laxmi Publications Pvt. Ltd, New Delhi, 2008.

REFERENCES:

- 1. Streeter, V.L., and Wylie, E.B., "Fluid Mechanics", McGraw Hill, 2000.
- 2. Fox W.R. and McDonald A.T., Introduction to Fluid Mechanics John-Wiley and Sons, Singapore, 1995.
- 3. Jain A. K. "Fluid Mechanics", Khanna Publishers, 2010
- 4. Roberson J.A and Crowe C.T., "Engineering Fluid Mechanics", Jaico Books Mumbai, 2000.
- 5. White, F.M., "Fluid Mechanics", Tata McGraw Hill, 5th Edition, New Delhi, 2003.

CE6304 SURVEYING I

LT PC 3003

OBJECTIVES:

 To introduce the principles of various surveying methods and applications to Civil Engineering projects

UNIT I FUNDAMENTALS AND CHAIN SURVEYING

ξ

Definition- Classifications - Basic principles-Equipment and accessories for ranging and chaining - Methods of ranging - well conditioned triangles - Errors in linear measurement and their corrections - Obstacles - Traversing - Plotting - applications- enlarging the reducing the figures - Areas enclosed by straight line irregular figures- digital planimetre.

UNIT II COMPASS AND PLANE TABLE SURVEYING

Compass – Basic principles - Types - Bearing - Systems and conversions- Sources of errors - Local attraction - Magnetic declination-Dip-Traversing - Plotting - Adjustment of closing error – applications - Plane table and its accessories - Merits and demerits - Radiation - Intersection - Resection – Traversing- sources of errors – applications.

UNIT III LEVELLING

9

Level line - Horizontal line - Datum - Bench marks -Levels and staves - temporary and permanent adjustments - Methods of levelling - Fly levelling - Check levelling - Procedure in levelling - Booking -Reduction - Curvature and refraction - Reciprocal levelling - Sources of Errors in levelling- Precise levelling - Types of instruments - Adjustments - Field procedure

UNIT IV LEVELLING APPLICATIONS

9

Longitudinal and Cross-section-Plotting - Contouring - Methods - Characteristics and uses of contours - Plotting - Methods of interpolating contours - Computations of cross sectional areas and volumes - Earthwork calculations - Capacity of reservoirs - Mass haul diagrams.

UNIT V THEODOLITE SURVEYING

9

Theodolite - Types - Description - Horizontal and vertical angles - Temporary and permanent adjustments — Heights and distances— Tangential and Stadia Tacheometry — Subtense method - Stadia constants - Anallactic lens.

TOTAL: 45 PERIODS

OUTCOMES:

• Students are expected to use all surveying equipments, prepare LS & CS, contour maps and carryout surveying works related to land and civil engineering projects.

TEXT BOOKS:

- 1. Chandra A.M., "Plane Surveying", New Age International Publishers, 2002.
- 2. Alak De, "Plane Surveying", S. Chand & Company Ltd., 2000.

REFERENCES:

- 1. James M. Anderson and Edward M. Mikhail, "Surveying, Theory and Practice",7th Edition, McGraw Hill, 2001.
- 2. Bannister and S. Raymond, "Surveying", 7th Edition, Longman 2004.
- 3. Roy S.K., "Fundamentals of Surveying", 2nd Edition, Prentice Hall of India, 2004.
- 4. Arora K.R., "Surveying Vol I & II", Standard Book house, 10th Edition 2008

CE6311

SURVEY PRACTICAL I

LTPC 0042

OBJECTIVES:

• At the end of the course the student will posses knowledge about Survey field techniques

LIST OF EXPERIMENTS:

- 1. Study of chains and its accessories
- 2. Aligning, Ranging and Chaining
- 3. Chain Traversing
- 4. Compass Traversing
- 5. Plane table surveying: Radiation
- 6. Plane table surveying: Intersection
- 7. Plane table surveying: Traversing
- 8. Plane table surveying: Resection Three point problem
- 9. Plane table surveying: Resection Two point problem
- 10. Study of levels and leveling staff
- 11. Fly leveling using Dumpy level
- 12. Fly leveling using tilting level

UNIT V BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS 9+3

Finite difference methods for solving two-point linear boundary value problems - Finite difference techniques for the solution of two dimensional Laplace's and Poisson's equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

 The students will have a clear perception of the power of numerical techniques, ideas and would be able to demonstrate the applications of these techniques to problems drawn from industry, management and other engineering fields.

TEXTBOOKS:

- 1. Grewal. B.S., and Grewal. J.S., "Numerical methods in Engineering and Science", Khanna Publishers, 9th Edition, New Delhi, 2007.
- 2. Gerald. C. F., and Wheatley. P. O., "Applied Numerical Analysis", Pearson Education, Asia, 6th Edition, New Delhi, 2006.

REFERENCES:

- 1. Chapra. S.C., and Canale.R.P., "Numerical Methods for Engineers, Tata McGraw Hill, 5th Edition, New Delhi, 2007.
- 2. Brian Bradie. "A friendly introduction to Numerical analysis", Pearson Education, Asia, New Delhi, 2007.
- 3. Sankara Rao. K., "Numerical methods for Scientists and Engineers", Prentice Hall of India Private, 3rd Edition, New Delhi, 2007.

CE6401

CONSTRUCTION MATERIALS

LTPC 3 0 0 3

OBJECTIVES:

 To introduce students to various materials commonly used in civil engineering construction and their properties.

UNIT I STONES – BRICKS – CONCRETE BLOCKS

9

Stone as building material – Criteria for selection – Tests on stones – Deterioration and Preservation of stone work – Bricks – Classification – Manufacturing of clay bricks – Tests on bricks – Compressive Strength – Water Absorption – Efflorescence – Bricks for special use – Refractory bricks – Cement, Concrete blocks – Light weight concrete blocks.

UNIT II LIME – CEMENT – AGGREGATES – MORTAR

9

Lime – Preparation of lime mortar – Cement – Ingredients – Manufacturing process – Types and Grades – Properties of cement and Cement mortar – Hydration – Compressive strength – Tensile strength – Fineness– Soundness and consistency – Setting time – Industrial byproducts – Fly ash – Aggregates – Natural stone aggregates – Crushing strength – Impact strength – Flakiness Index – Elongation Index – Abrasion Resistance – Grading – Sand Bulking.

UNIT III CONCRETE

9

Concrete – Ingredients – Manufacturing Process – Batching plants – RMC – Properties of fresh concrete – Slump – Flow and compaction Factor – Properties of hardened concrete – Compressive, Tensile and shear strength – Modulus of rupture – Tests – Mix specification – Mix proportioning – BIS method – High Strength Concrete and HPC – Self compacting Concrete – Other types of Concrete – Durability of Concrete.

UNIT IV TIMBER AND OTHER MATERIALS

9

Timber – Market forms – Industrial timber – Plywood – Veneer – Thermacole – Panels of Iaminates – Steel – Aluminum and Other Metallic Materials – Composition – Aluminium composite panel – Uses – Market forms – Mechanical treatment – Paints – Varnishes – Distempers – Bitumens.

UNIT V MODERN MATERIALS

9

Glass – Ceramics – Sealants for joints – Fibre glass reinforced plastic – Clay products – Refractories – Composite materials – Types – Applications of laminar composites – Fibre textiles – Geomembranes and Geotextiles for earth reinforcement.

TOTAL: 45 PERIODS

OUTCOMES:

On completion of this course the students will be able to

- compare the properties of most common and advanced building materials.
- understand the typical and potential applications of these materials
- understand the relationship between material properties and structural form
- understand the importance of experimental verification of material properties.

TEXT BOOKS:

- 1. Varghese.P.C, "Building Materials", PHI Learning Pvt. Ltd, New Delhi, 2012.
- 2. Rajput. R.K., "Engineering Materials", S. Chand and Company Ltd., 2008.
- 3. Shetty.M.S., "Concrete Technology (Theory and Practice)", S. Chand and Company Ltd., 2008.
- 4. Gambhir.M.L., "Concrete Technology", 3rd Edition, Tata McGraw Hill Education, 2004
- 5. Duggal.S.K., "Building Materials", 4th Edition, New Age International, 2008.

REFERENCES:

- 1. Jagadish.K.S, "Alternative Building Materials Technology", New Age International, 2007.
- 2. Gambhir. M.L., & Neha Jamwal., "Building Materials, products, properties and systems", Tata McGraw Hill Educations Pvt. Ltd, New Delhi, 2012.
- 3. IS456 2000: Indian Standard specification for plain and reinforced concrete, 2011
- 4. IS4926–2003: Indian Standard specification for readv-mixed concrete, 2012
- 5. IS383–1970: Indian Standard specification for coarse and fine aggregate from natural Sources for concrete, 2011
- 6. IS1542–1992: Indian standard specification for sand for plaster, 2009

CE6402

STRENGTH OF MATERIALS

LT P C 3 1 0 4

OBJECTIVES:

- To know the method of finding slope and deflection of beams and trusses using energy theorems and to know the concept of analysing indeterminate beam
- To estimate the load carrying capacity of columns, stresses due to unsymmetrical bending and various theories for failure of material.

UNIT I ENERGY PRINCIPLES

9

Strain energy and strain energy density – strain energy due to axial load, shear, flexure and torsion – Castigliano's theorems – Maxwell's reciprocal theorems - Principle of virtual work – application of energy theorems for computing deflections in beams and trusses - Williot Mohr's Diagram.

UNIT IV TIMBER AND OTHER MATERIALS

9

Timber – Market forms – Industrial timber – Plywood – Veneer – Thermacole – Panels of Iaminates – Steel – Aluminum and Other Metallic Materials – Composition – Aluminium composite panel – Uses – Market forms – Mechanical treatment – Paints – Varnishes – Distempers – Bitumens.

UNIT V MODERN MATERIALS

9

Glass – Ceramics – Sealants for joints – Fibre glass reinforced plastic – Clay products – Refractories – Composite materials – Types – Applications of laminar composites – Fibre textiles – Geomembranes and Geotextiles for earth reinforcement.

TOTAL: 45 PERIODS

OUTCOMES:

On completion of this course the students will be able to

- compare the properties of most common and advanced building materials.
- understand the typical and potential applications of these materials
- understand the relationship between material properties and structural form
- understand the importance of experimental verification of material properties.

TEXT BOOKS:

- 1. Varghese.P.C, "Building Materials", PHI Learning Pvt. Ltd, New Delhi, 2012.
- 2. Rajput. R.K., "Engineering Materials", S. Chand and Company Ltd., 2008.
- 3. Shetty.M.S., "Concrete Technology (Theory and Practice)", S. Chand and Company Ltd., 2008.
- 4. Gambhir.M.L., "Concrete Technology", 3rd Edition, Tata McGraw Hill Education, 2004
- 5. Duggal.S.K., "Building Materials", 4th Edition, New Age International, 2008.

REFERENCES:

- 1. Jagadish.K.S, "Alternative Building Materials Technology", New Age International, 2007.
- 2. Gambhir. M.L., & Neha Jamwal., "Building Materials, products, properties and systems", Tata McGraw Hill Educations Pvt. Ltd, New Delhi, 2012.
- 3. IS456 2000: Indian Standard specification for plain and reinforced concrete, 2011
- 4. IS4926–2003: Indian Standard specification for readv-mixed concrete, 2012
- 5. IS383–1970: Indian Standard specification for coarse and fine aggregate from natural Sources for concrete, 2011
- 6. IS1542–1992: Indian standard specification for sand for plaster, 2009

CE6402

STRENGTH OF MATERIALS

LT P C 3 1 0 4

OBJECTIVES:

- To know the method of finding slope and deflection of beams and trusses using energy theorems and to know the concept of analysing indeterminate beam
- To estimate the load carrying capacity of columns, stresses due to unsymmetrical bending and various theories for failure of material.

UNIT I ENERGY PRINCIPLES

9

Strain energy and strain energy density – strain energy due to axial load, shear, flexure and torsion – Castigliano's theorems – Maxwell's reciprocal theorems - Principle of virtual work – application of energy theorems for computing deflections in beams and trusses - Williot Mohr's Diagram.

UNIT II **INDETERMINATE BEAMS**

9

Concept of Analysis - Propped cantilever and fixed beams-fixed end moments and reactions -Theorem of three moments – analysis of continuous beams – shear force and bending moment diagrams.

UNIT III COLUMNS AND CYLINDER

9

Euler's theory of long columns - critical loads for prismatic columns with different end conditions; Rankine-Gordon formula for eccentrically loaded columns - Eccentrically loaded short columns middle third rule - core section - Thick cylinders - Compound cylinders.

STATE OF STRESS IN THREE DIMENSIONS UNIT IV

Determination of principal stresses and principal planes – Volumetric strain –Theories of failure – Principal stress - Principal strain - shear stress - Strain energy and distortion energy theories application in analysis of stress, load carrying capacity.

ADVANCED TOPICS IN BENDING OF BEAMS

Unsymmetrical bending of beams of symmetrical and unsymmetrical sections - Shear Centre curved beams - Winkler Bach formula.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

- students will have through knowledge in analysis of indeterminate beams and use of energy method for estimating the slope and deflections of beams and trusses.
- they will be in a position to assess the behaviour of columns, beams and failure of materials.

TEXT BOOKS:

- 1. Rajput R.K. "Strength of Materials (Mechanics of Solids)", S.Chand & company Ltd., New
- 2. Egor P Popov, "Engineering Mechanics of Solids", 2nd edition, PHI Learning Pvt. Ltd., New Delhi, 2012

REFERENCES:

- 1. Kazimi S.M.A, "Solid Mechanics", Tata McGraw-Hill Publishing Co., New Delhi, 2003
- 2. William A .Nash, "Theory and Problems of Strength of Materials", Schaum's Outline Series, Tata McGraw Hill Publishing company, 2007.
- 3. Punmia B.C. "Theory of Structures" (SMTS) Vol 1&II, Laxmi Publishing Pvt Ltd, New Delhi 2004.
- 4. Rattan.S.S., "Strength of Materials", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2011.

CE6403

APPLIED HYDRAULIC ENGINEERING

LTPC 3104

OBJECTIVES:

To introduce the students to various hydraulic engineering problems like open channel flows and hydraulic machines. At the completion of the course, the student should be able to relate the theory and practice of problems in hydraulic engineering.

UNIT I UNIFORM FLOW

9

Definition and differences between pipe flow and open channel flow - Types of Flow - Properties of open channel - Fundamental equations - Velocity distribution in open channel - Steady uniform flow: Chezy equation, Manning equation - Best hydraulic sections for uniform flow - Computation in Uniform Flow - Specific energy and specific force - Critical depth and velocity.

GRADUALLY VARIED FLOW

Dynamic equations of gradually varied and spatially varied flows - Water surface flow profile classifications: Hydraulic Slope, Hydraulic Curve - Profile determination by Numerical method: Direct step method and Standard step method, Graphical method - Applications.

UNIT II **INDETERMINATE BEAMS**

9

Concept of Analysis - Propped cantilever and fixed beams-fixed end moments and reactions -Theorem of three moments – analysis of continuous beams – shear force and bending moment diagrams.

UNIT III COLUMNS AND CYLINDER

9

Euler's theory of long columns - critical loads for prismatic columns with different end conditions; Rankine-Gordon formula for eccentrically loaded columns - Eccentrically loaded short columns middle third rule - core section - Thick cylinders - Compound cylinders.

STATE OF STRESS IN THREE DIMENSIONS UNIT IV

Determination of principal stresses and principal planes – Volumetric strain –Theories of failure – Principal stress - Principal strain - shear stress - Strain energy and distortion energy theories application in analysis of stress, load carrying capacity.

ADVANCED TOPICS IN BENDING OF BEAMS

Unsymmetrical bending of beams of symmetrical and unsymmetrical sections - Shear Centre curved beams - Winkler Bach formula.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

- students will have through knowledge in analysis of indeterminate beams and use of energy method for estimating the slope and deflections of beams and trusses.
- they will be in a position to assess the behaviour of columns, beams and failure of materials.

TEXT BOOKS:

- 1. Rajput R.K. "Strength of Materials (Mechanics of Solids)", S.Chand & company Ltd., New
- 2. Egor P Popov, "Engineering Mechanics of Solids", 2nd edition, PHI Learning Pvt. Ltd., New Delhi, 2012

REFERENCES:

- 1. Kazimi S.M.A, "Solid Mechanics", Tata McGraw-Hill Publishing Co., New Delhi, 2003
- 2. William A .Nash, "Theory and Problems of Strength of Materials", Schaum's Outline Series, Tata McGraw Hill Publishing company, 2007.
- 3. Punmia B.C. "Theory of Structures" (SMTS) Vol 1&II, Laxmi Publishing Pvt Ltd, New Delhi 2004.
- 4. Rattan.S.S., "Strength of Materials", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2011.

CE6403

APPLIED HYDRAULIC ENGINEERING

LTPC 3104

OBJECTIVES:

To introduce the students to various hydraulic engineering problems like open channel flows and hydraulic machines. At the completion of the course, the student should be able to relate the theory and practice of problems in hydraulic engineering.

UNIT I UNIFORM FLOW

9

Definition and differences between pipe flow and open channel flow - Types of Flow - Properties of open channel - Fundamental equations - Velocity distribution in open channel - Steady uniform flow: Chezy equation, Manning equation - Best hydraulic sections for uniform flow - Computation in Uniform Flow - Specific energy and specific force - Critical depth and velocity.

GRADUALLY VARIED FLOW

Dynamic equations of gradually varied and spatially varied flows - Water surface flow profile classifications: Hydraulic Slope, Hydraulic Curve - Profile determination by Numerical method: Direct step method and Standard step method, Graphical method - Applications.

UNIT III RAPIDLY VARIED FLOW

Application of the energy equation for RVF - Critical depth and velocity - Critical, Sub-critical and Super-critical flow - Application of the momentum equation for RVF - Hydraulic jumps - Types - Energy dissipation - Surges and surge through channel transitions.

UNIT IV TURBINES 9

Impact of Jet on vanes - Turbines - Classification - Reaction turbines - Francis turbine, Radial flow turbines, draft tube and cavitation - Propeller and Kaplan turbines - Impulse turbine - Performance of turbine - Specific speed - Runaway speed - Similarity laws.

UNIT V PUMPS 9

Centrifugal pumps - Minimum speed to start the pump - NPSH - Cavitations in pumps - Operating characteristics - Multistage pumps - Reciprocating pumps - Negative slip - Flow separation conditions - Air vessels, indicator diagrams and its variations - Savings in work done - Rotary pumps: Gear pump.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

- The students will be able to apply their knowledge of fluid mechanics in addressing problems in open channels.
- They will possess the skills to solve problems in uniform, gradually and rapidly varied flows in steady state conditions.
- They will have knowledge in hydraulic machineries (pumps and turbines).

TEXTBOOKS:

- 1. Jain. A.K., "Fluid Mechanics", Khanna Publishers, Delhi, 2010.
- 2. Modi P.N. and Seth S.M., "Hydraulics and Fluid Mechanics", Standard Book House, NewDelhi, 2002.
- 3. Subramanya K., "Flow in open channels", Tata McGraw Hill, New Delhi, 2000.

REFERENCES:

- 1. Ven Te Chow, "Open Channel Hydraulics", McGraw Hill, New York, 2009.
- 2. Rajesh Srivastava, "Flow through open channels", Oxford University Press, New Delhi, 2008.
- 3. Bansal, "Fluid Mechanics and Hydraulic Machines", Laxmi Publications, New Delhi, 2008.
- 4. Mays L. W., "Water Resources Engineering", John Wiley and Sons (WSE), New York, 2005

CE6404 SURVEYING II LTPC 3003

OBJECTIVES:

• This subject deals with geodetic measurements and Control Survey methodology and its adjustments. The student is also exposed to the Modern Surveying.

UNIT I CONTROL SURVEYING

9

Horizontal and vertical control – Methods – specifications – triangulation- baseline – instruments and accessories – corrections – satellite stations – reduction to centre-trigonometrical levelling – single and reciprocal observations – traversing – Gale's table.

UNIT II SURVEY ADJUSTMENT

9

Errors Sources- precautions and corrections – classification of errors – true and most probable values- weighed observations – method of equal shifts –principle of least squares -0 normal equation – correlates- level nets- adjustment of simple triangulation networks.

UNIT III TOTAL STATION SURVEYING

9

Basic Principle – Classifications -Electro-optical system: Measuring principle, Working principle, Sources of Error, Infrared and Laser Total Station instruments. Microwave system:

UNIT III RAPIDLY VARIED FLOW

Application of the energy equation for RVF - Critical depth and velocity - Critical, Sub-critical and Super-critical flow - Application of the momentum equation for RVF - Hydraulic jumps - Types - Energy dissipation - Surges and surge through channel transitions.

UNIT IV TURBINES 9

Impact of Jet on vanes - Turbines - Classification - Reaction turbines - Francis turbine, Radial flow turbines, draft tube and cavitation - Propeller and Kaplan turbines - Impulse turbine - Performance of turbine - Specific speed - Runaway speed - Similarity laws.

UNIT V PUMPS 9

Centrifugal pumps - Minimum speed to start the pump - NPSH - Cavitations in pumps - Operating characteristics - Multistage pumps - Reciprocating pumps - Negative slip - Flow separation conditions - Air vessels, indicator diagrams and its variations - Savings in work done - Rotary pumps: Gear pump.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

- The students will be able to apply their knowledge of fluid mechanics in addressing problems in open channels.
- They will possess the skills to solve problems in uniform, gradually and rapidly varied flows in steady state conditions.
- They will have knowledge in hydraulic machineries (pumps and turbines).

TEXTBOOKS:

- 1. Jain. A.K., "Fluid Mechanics", Khanna Publishers, Delhi, 2010.
- 2. Modi P.N. and Seth S.M., "Hydraulics and Fluid Mechanics", Standard Book House, NewDelhi, 2002.
- 3. Subramanya K., "Flow in open channels", Tata McGraw Hill, New Delhi, 2000.

REFERENCES:

- 1. Ven Te Chow, "Open Channel Hydraulics", McGraw Hill, New York, 2009.
- 2. Rajesh Srivastava, "Flow through open channels", Oxford University Press, New Delhi, 2008.
- 3. Bansal, "Fluid Mechanics and Hydraulic Machines", Laxmi Publications, New Delhi, 2008.
- 4. Mays L. W., "Water Resources Engineering", John Wiley and Sons (WSE), New York, 2005

CE6404 SURVEYING II LTPC 3003

OBJECTIVES:

• This subject deals with geodetic measurements and Control Survey methodology and its adjustments. The student is also exposed to the Modern Surveying.

UNIT I CONTROL SURVEYING

9

Horizontal and vertical control – Methods – specifications – triangulation- baseline – instruments and accessories – corrections – satellite stations – reduction to centre-trigonometrical levelling – single and reciprocal observations – traversing – Gale's table.

UNIT II SURVEY ADJUSTMENT

9

Errors Sources- precautions and corrections – classification of errors – true and most probable values- weighed observations – method of equal shifts –principle of least squares -0 normal equation – correlates- level nets- adjustment of simple triangulation networks.

UNIT III TOTAL STATION SURVEYING

9

Basic Principle – Classifications -Electro-optical system: Measuring principle, Working principle, Sources of Error, Infrared and Laser Total Station instruments. Microwave system:

Measuring principle, working principle, Sources of Error, Microwave Total Station instruments. Comparis on between Electro-optical and Microwave system. Care and maintenance of Total Station instruments. Modern positioning systems – Traversing and Trilateration.

UNIT IV GPS SURVEYING

9

Basic Concepts - Different segments - space, control and user segments - satellite configuration - signal structure - Orbit determination and representation - Anti Spoofing and Selective Availability - Task of control segment - Hand Held and Geodetic receivers - data processing - Traversing and triangulation.

UNIT V ADVANCED TOPICS IN SURVEYING

9

TOTAL: 45 PERIODS

Route Surveying - Reconnaissance - Route surveys for highways, railways and waterways - Simple curves - Compound and reverse curves - Setting out Methods - Transition curves - Functions and requirements - Setting out by offsets and angles - Vertical curves - Sight distances-hydrographic surveying - Tides - MSL - Sounding methods - Three-point problem - Strength of fix - Sextants and station pointer- Astronomical Surveying - field observations and determination of Azimuth by altitude and hour angle methods - fundamentals of Photogrammetry and Remote Sensing

OUTCOMES:

On completion of this course students shall be able to

- Understand the advantages of electronic surveying over conventional surveying methods
- Understand the working principle of GPS, its components, signal structure, and error sources
- Understand various GPS surveying methods and processing techniques used in GPS
- observations

TEXTBOOKS:

- 1. James M. Anderson and Edward M. Mikhail, "Surveying, Theory and Practice", 7th Edition, McGraw Hill, 2001.
- 2. Bannister and S. Raymond, "Surveying", 7th Edition, Longman 2004.
- 3. Laurila, S.H. "Electronic Surveying in Practice", John Wiley and Sons Inc, 1993

REFERENCES:

- 1. Alfred Leick, "GPS satellite surveying", John Wiley & Sons Inc., 3rd Edition, 2004.
- 2. Guocheng Xu, "GPS Theory, Algorithms and Applications", Springer Berlin, 2003.
- 3. Satheesh Gopi, rasathishkumar, N. madhu, "Advanced Surveying, Total Station GPS and Remote Sensing" Pearson education, 2007

CE6405

SOIL MECHANICS

LTPC 3 0 0 3

OBJECTIVES:

To impart knowledge on behavior and the performance of saturated soil. At the end of this
course student attains adequate knowledge in assessing both physical and engineering
behaviour of soils, mechanism of stress transfer in two-phase systems and stability
analysis of slopes.

UNIT I SOIL CLASSIFICATION AND COMPACTION

9

Nature of soil – phase relationships – Soil description and classification for engineering purposes, their significance – Index properties of soils - BIS Classification system – Soil compaction – Theory, comparison of laboratory and field compaction methods – Factors influencing compaction behaviour of soils.

UNIT II SOIL WATER AND WATER FLOW

9

Soil water – static pressure in water - Effective stress concepts in soils – capillary stress – Permeability measurement in the laboratory and field pumping in pumping out tests – factors influencing permeability of soils – Seepage – introduction to flow nets – Simple problems. (sheet pile and weir).

Measuring principle, working principle, Sources of Error, Microwave Total Station instruments. Comparis on between Electro-optical and Microwave system. Care and maintenance of Total Station instruments. Modern positioning systems – Traversing and Trilateration.

UNIT IV GPS SURVEYING

9

Basic Concepts - Different segments - space, control and user segments - satellite configuration - signal structure - Orbit determination and representation - Anti Spoofing and Selective Availability - Task of control segment - Hand Held and Geodetic receivers - data processing - Traversing and triangulation.

UNIT V ADVANCED TOPICS IN SURVEYING

9

TOTAL: 45 PERIODS

Route Surveying - Reconnaissance - Route surveys for highways, railways and waterways - Simple curves - Compound and reverse curves - Setting out Methods - Transition curves - Functions and requirements - Setting out by offsets and angles - Vertical curves - Sight distances-hydrographic surveying - Tides - MSL - Sounding methods - Three-point problem - Strength of fix - Sextants and station pointer- Astronomical Surveying - field observations and determination of Azimuth by altitude and hour angle methods - fundamentals of Photogrammetry and Remote Sensing

OUTCOMES:

On completion of this course students shall be able to

- Understand the advantages of electronic surveying over conventional surveying methods
- Understand the working principle of GPS, its components, signal structure, and error sources
- Understand various GPS surveying methods and processing techniques used in GPS
- observations

TEXTBOOKS:

- 1. James M. Anderson and Edward M. Mikhail, "Surveying, Theory and Practice", 7th Edition, McGraw Hill, 2001.
- 2. Bannister and S. Raymond, "Surveying", 7th Edition, Longman 2004.
- 3. Laurila, S.H. "Electronic Surveying in Practice", John Wiley and Sons Inc, 1993

REFERENCES:

- 1. Alfred Leick, "GPS satellite surveying", John Wiley & Sons Inc., 3rd Edition, 2004.
- 2. Guocheng Xu, "GPS Theory, Algorithms and Applications", Springer Berlin, 2003.
- 3. Satheesh Gopi, rasathishkumar, N. madhu, "Advanced Surveying, Total Station GPS and Remote Sensing" Pearson education, 2007

CE6405

SOIL MECHANICS

LTPC 3 0 0 3

OBJECTIVES:

To impart knowledge on behavior and the performance of saturated soil. At the end of this
course student attains adequate knowledge in assessing both physical and engineering
behaviour of soils, mechanism of stress transfer in two-phase systems and stability
analysis of slopes.

UNIT I SOIL CLASSIFICATION AND COMPACTION

9

Nature of soil – phase relationships – Soil description and classification for engineering purposes, their significance – Index properties of soils - BIS Classification system – Soil compaction – Theory, comparison of laboratory and field compaction methods – Factors influencing compaction behaviour of soils.

UNIT II SOIL WATER AND WATER FLOW

9

Soil water – static pressure in water - Effective stress concepts in soils – capillary stress – Permeability measurement in the laboratory and field pumping in pumping out tests – factors influencing permeability of soils – Seepage – introduction to flow nets – Simple problems. (sheet pile and weir).

UNIT III STRESS DISTRIBUTION AND SETTLEMENT

Stress distribution - soil media — Boussinesq theory - Use of Newmarks influence chart — Components of settlement — immediate and consolidation settlement — Terzaghi's onedimensional consolidation theory — computation of rate of settlement. - t and log t methods— e-log p relationship - Factors influencing compression behaviour of soils.

UNIT IV SHEAR STRENGTH

9

Shear strength of cohesive and cohesionless soils – Mohr – Coulomb failure theory – Measurement of shear strength, direct shear – Triaxial compression, UCC and Vane shear tests – Pore pressure parameters – cyclic mobility – Liquefaction.

UNIT V SLOPE STABILITY

9

Slope failure mechanisms – Types - infinite slopes – finite slopes – Total stress analysis for saturated clay – Fellenius method - Friction circle method – Use of stability number - slope protection measures.

TOTAL: 45 PERIODS

OUTCOMES:

 Students have the ability to determine Index properties and classify the soil. They can also know to determine engineering properties through standard tests and empirical correction with index properties.

TEXTBOOKS:

- 1. Murthy, V.N.S., "Soil Mechanics and Foundation Engineering", CBS Publishers Distribution Ltd., New Delhi. 2007
- 2. Gopal Ranjan and Rao A.S.R. "Basic and Applied soil mechanics", Wiley Eastern Ltd, New Delhi (India), 2000.
- 3. Arora K.R. "Soil Mechanics and Foundation Engineering", Standard Publishers and Distributors, New Delhi, 2002.

REFERENCES:

- 1. McCarthy D.F. "Essentials of Soil Mechanics and Foundations". Prentice-Hall, 2002.
- 2. Coduto, D.P. "Geotechnical Engineering Principles and Practices", Prentice Hall of IndiaPvt.Ltd, New Delhi, 2002.
- 3. Das, B.M. "Principles of Geotechnical Engineering". Thompson Brooks / Coles Learning Singapore, 5th Edition, 2002.
- 4. Punmia, B.C. "Soil Mechanics and Foundations", Laxmi Publications Pvt. Ltd., New Delhi, 2005.
- 5. Palanikumar. M, "Soil Mechanics", Prentice Hall of India Pvt. Ltd, Leaning Private Limited, Delhi, 2013.
- 6. Craig. R.F., "Soil Mechanics". E & FN Spon, London and New York, 2007
- 7. Purushothama Raj. P., "Soil Mechanics and Foundation Engineering", 2nd Edition, Pearson Education, 2013

CE6411

STRENGTH OF MATERIALS LABORATORY

LT PC 0 03 2

OBJECTIVES:

• To expose the students to the testing of different materials under the action of various forces and determination of their characteristics experimentally.

LIST OF EXPERIMENTS

- 1. Tension test on mild steel rod
- 2. Compression test on wood
- 3. Double shear test on metal
- 4. Torsion test on mild steel rod
- 5. Impact test on metal specimen (Izod and Charpy)
- 6. Hardness test on metals (Rockwell and Brinell Hardness Tests)

UNIT III STRESS DISTRIBUTION AND SETTLEMENT

Stress distribution - soil media — Boussinesq theory - Use of Newmarks influence chart — Components of settlement — immediate and consolidation settlement — Terzaghi's onedimensional consolidation theory — computation of rate of settlement. - t and log t methods— e-log p relationship - Factors influencing compression behaviour of soils.

UNIT IV SHEAR STRENGTH

9

Shear strength of cohesive and cohesionless soils – Mohr – Coulomb failure theory – Measurement of shear strength, direct shear – Triaxial compression, UCC and Vane shear tests – Pore pressure parameters – cyclic mobility – Liquefaction.

UNIT V SLOPE STABILITY

9

Slope failure mechanisms – Types - infinite slopes – finite slopes – Total stress analysis for saturated clay – Fellenius method - Friction circle method – Use of stability number - slope protection measures.

TOTAL: 45 PERIODS

OUTCOMES:

 Students have the ability to determine Index properties and classify the soil. They can also know to determine engineering properties through standard tests and empirical correction with index properties.

TEXTBOOKS:

- 1. Murthy, V.N.S., "Soil Mechanics and Foundation Engineering", CBS Publishers Distribution Ltd., New Delhi. 2007
- 2. Gopal Ranjan and Rao A.S.R. "Basic and Applied soil mechanics", Wiley Eastern Ltd, New Delhi (India), 2000.
- 3. Arora K.R. "Soil Mechanics and Foundation Engineering", Standard Publishers and Distributors, New Delhi, 2002.

REFERENCES:

- 1. McCarthy D.F. "Essentials of Soil Mechanics and Foundations". Prentice-Hall, 2002.
- 2. Coduto, D.P. "Geotechnical Engineering Principles and Practices", Prentice Hall of IndiaPvt.Ltd, New Delhi, 2002.
- 3. Das, B.M. "Principles of Geotechnical Engineering". Thompson Brooks / Coles Learning Singapore, 5th Edition, 2002.
- 4. Punmia, B.C. "Soil Mechanics and Foundations", Laxmi Publications Pvt. Ltd., New Delhi, 2005.
- 5. Palanikumar. M, "Soil Mechanics", Prentice Hall of India Pvt. Ltd, Leaning Private Limited, Delhi, 2013.
- 6. Craig. R.F., "Soil Mechanics". E & FN Spon, London and New York, 2007
- 7. Purushothama Raj. P., "Soil Mechanics and Foundation Engineering", 2nd Edition, Pearson Education, 2013

CE6411

STRENGTH OF MATERIALS LABORATORY

LT PC 0 03 2

OBJECTIVES:

• To expose the students to the testing of different materials under the action of various forces and determination of their characteristics experimentally.

LIST OF EXPERIMENTS

- 1. Tension test on mild steel rod
- 2. Compression test on wood
- 3. Double shear test on metal
- 4. Torsion test on mild steel rod
- 5. Impact test on metal specimen (Izod and Charpy)
- 6. Hardness test on metals (Rockwell and Brinell Hardness Tests)

- 7. Deflection test on metal beam
- 8. Compression test on helical spring
- 9. Deflection test on carriage spring
- 10. Test on Cement

TOTAL: 45 PERIODS

OUTCOMES:

 The students will have the required knowledge in the area of testing of materials and components of structural elements experimentally.

REFERENCES:

- 1. Strength of Materials Laboratory Manual, Anna University, Chennai 600 025.
- 2 IS1786-2008, Specification for cold worked steel high strength deformed bars for concrete reinforcement, 2008

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI. No.	Description of Equipment	Quantity
1.	UTM of minimum 400 kN capacity	1
2.	Torsion testing machine for steel rods	1
3.	Izod impact testing machine	1
4.	Hardness testing machine	
	Rockwell	1 each
	Vicker's ├ (any 2)	i eacii
	Brinnel	
5.	Beam deflection test apparatus	1
6.	Extensometer	1
7.	Compressometer	1
8.	Dial gauges	Few
9	Le Chatelier's apparatus	
10	Vicat's apparatus	
11	Mortar cube moulds	

CE6412

HYDRAULIC ENGINEERING LABORATORY

LT PC 0 03 2

OBJECTIVES:

 Students should be able to verify the principles studied in theory by performing the experiments in lab.

LIST OF EXPERIMENTS

17

- A. Flow Measurement
- 1. Calibration of Rotometer
- 2. Flow through Venturimeter Orificemeter
- 3. Flow through variable duct area Bernoulli's Experiment
- 4. Flow through Orifice, Mouthpiece and Notches
- B. Losses in Pipes

4

- 5. Determination of friction coefficient in pipes
- **6.** Determination of loss coefficients for pipe fittings
- C. Pumps

12

- 7. Characteristics of Centrifugal pumps
- 8. Characteristics of Gear pump
- **9.** Characteristics of Submersible pump
- **10.** Characteristics of Reciprocating pump

- 7. Deflection test on metal beam
- 8. Compression test on helical spring
- 9. Deflection test on carriage spring
- 10. Test on Cement

TOTAL: 45 PERIODS

OUTCOMES:

 The students will have the required knowledge in the area of testing of materials and components of structural elements experimentally.

REFERENCES:

- 1. Strength of Materials Laboratory Manual, Anna University, Chennai 600 025.
- 2 IS1786-2008, Specification for cold worked steel high strength deformed bars for concrete reinforcement, 2008

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI. No.	Description of Equipment	Quantity
1.	UTM of minimum 400 kN capacity	1
2.	Torsion testing machine for steel rods	1
3.	Izod impact testing machine	1
4.	Hardness testing machine	
	Rockwell	1 each
	Vicker's ├ (any 2)	i eacii
	Brinnel	
5.	Beam deflection test apparatus	1
6.	Extensometer	1
7.	Compressometer	1
8.	Dial gauges	Few
9	Le Chatelier's apparatus	
10	Vicat's apparatus	
11	Mortar cube moulds	

CE6412

HYDRAULIC ENGINEERING LABORATORY

LT PC 0 03 2

OBJECTIVES:

 Students should be able to verify the principles studied in theory by performing the experiments in lab.

LIST OF EXPERIMENTS

17

- A. Flow Measurement
- 1. Calibration of Rotometer
- 2. Flow through Venturimeter Orificemeter
- 3. Flow through variable duct area Bernoulli's Experiment
- 4. Flow through Orifice, Mouthpiece and Notches
- B. Losses in Pipes

4

- 5. Determination of friction coefficient in pipes
- **6.** Determination of loss coefficients for pipe fittings
- C. Pumps

12

- 7. Characteristics of Centrifugal pumps
- 8. Characteristics of Gear pump
- **9.** Characteristics of Submersible pump
- **10.** Characteristics of Reciprocating pump

Turbines	9
	Turbines

- 11. Characteristics of Pelton wheel turbine
- **12.** Characteristics of Francis turbine
- 13. Characteristics of Kaplan turbine

E. Determination of Metacentric height

14. Determination of Metacentric height (Demonstration)

TOTAL: 45 PERIODS

3

OUTCOMES:

- The students will be able to measure flow in pipes and determine frictional losses.
- The students will be able to develop characteristics of pumps and turbines.

REFERENCES:

- 1. Sarbjit Singh." Experiments in Fluid Mechanics", Prentice Hall of India Pvt. Ltd, Learning Private Limited, Delhi, 2009.
- 2. "Hydraulic Laboratory Manual", Centre for Water Resources, Anna University, 2004.
- 3. Modi P.N. and Seth S.M., "Hydraulics and Fluid Mechanics", Standard Book House, New Delhi, 2000.
- 4. Subramanya K. "Flow in open channels", Tata McGraw Hill Publishing. Company, 2001.

SI. No.	Description of Equipment	Quantity	
1.	Bernoulli's theorem – Verification Apparatus		
2.	Calculation of Metacentric height	1 No.	
	water tank Ship model with accessories		
3.	Measurement of velocity	1 No.	
	Pitot tube assembly		
4.	Flow measurement		
	 open channel flow (i) Channel with provision for fixing notches (rectangular, triangular & trapezoidal forms) 	1 Unit	
	(ii) Flume assembly with provisions for conducting experiments on Hydraulic jumps, generation of surges etc.	1 Unit	
5.	Flow measurement in pipes (i) Venturimeter,U tube manometer fixtures like Valves, collecting tank	1 Unit	
	(ii) Orifice meter, with all necessary fittings in pipe lines of different diameters	1 Unit	
	(iii) Calibration of flow through orifice tank with Provisions for fixing orifices of different shapes, collecting tank	1 Unit	
	(iv) Calibration of flow through mouth pieceTank with provisions for fixing mouth pieces Viz external mouth pieces & internal mouth piece Borda's mouth piece	1 Unit	
6.	Losses in Pipes		
	Major loss – Friction loss Pipe lengths (min. 3m) of different diameters with Valves and pressure rapping & collecting tank	1 Unit	
7.	Minor Losses Pipe line assembly with provisions for having Sudden contractions in diameter, expansions Bends, elbow fitting, etc.	1 Unit	
8.	Pumps		
	(i) Centrifugal pump assembly with accessories (single stage)	1 Unit	
	(ii) Centrifugal pump assembly with accessories (multi stage)	1 Unit	
	(iii) Reciprocating pump assembly with accessories	1 Unit	
	(iv) Deep well pump assembly set with accessories	1 Unit	

Turbines	9
	Turbines

- 11. Characteristics of Pelton wheel turbine
- **12.** Characteristics of Francis turbine
- 13. Characteristics of Kaplan turbine

E. Determination of Metacentric height

14. Determination of Metacentric height (Demonstration)

TOTAL: 45 PERIODS

3

OUTCOMES:

- The students will be able to measure flow in pipes and determine frictional losses.
- The students will be able to develop characteristics of pumps and turbines.

REFERENCES:

- 1. Sarbjit Singh." Experiments in Fluid Mechanics", Prentice Hall of India Pvt. Ltd, Learning Private Limited, Delhi, 2009.
- 2. "Hydraulic Laboratory Manual", Centre for Water Resources, Anna University, 2004.
- 3. Modi P.N. and Seth S.M., "Hydraulics and Fluid Mechanics", Standard Book House, New Delhi, 2000.
- 4. Subramanya K. "Flow in open channels", Tata McGraw Hill Publishing. Company, 2001.

SI. No.	Description of Equipment	Quantity	
1.	Bernoulli's theorem – Verification Apparatus		
2.	Calculation of Metacentric height	1 No.	
	water tank Ship model with accessories		
3.	Measurement of velocity	1 No.	
	Pitot tube assembly		
4.	Flow measurement		
	 open channel flow (i) Channel with provision for fixing notches (rectangular, triangular & trapezoidal forms) 	1 Unit	
	(ii) Flume assembly with provisions for conducting experiments on Hydraulic jumps, generation of surges etc.	1 Unit	
5.	Flow measurement in pipes (i) Venturimeter,U tube manometer fixtures like Valves, collecting tank	1 Unit	
	(ii) Orifice meter, with all necessary fittings in pipe lines of different diameters	1 Unit	
	(iii) Calibration of flow through orifice tank with Provisions for fixing orifices of different shapes, collecting tank	1 Unit	
	(iv) Calibration of flow through mouth pieceTank with provisions for fixing mouth pieces Viz external mouth pieces & internal mouth piece Borda's mouth piece	1 Unit	
6.	Losses in Pipes		
	Major loss – Friction loss Pipe lengths (min. 3m) of different diameters with Valves and pressure rapping & collecting tank	1 Unit	
7.	Minor Losses Pipe line assembly with provisions for having Sudden contractions in diameter, expansions Bends, elbow fitting, etc.	1 Unit	
8.	Pumps		
	(i) Centrifugal pump assembly with accessories (single stage)	1 Unit	
	(ii) Centrifugal pump assembly with accessories (multi stage)	1 Unit	
	(iii) Reciprocating pump assembly with accessories	1 Unit	
	(iv) Deep well pump assembly set with accessories	1 Unit	

9.	Turbine	
	(i) Impulse turbine assembly with fittings & accessories	1 Unit
	(ii) Francis turbine assembly with fittings & accessories	1 Unit
	(iii) Kaplan turbine assembly with fittings & accessories	1 Unit

SURVEY PRACTICAL II

LTPC 0 0 4 2

TOTAL: 60 PERIODS

OBJECTIVES:

• At the end of the course the student will posses knowledge about Survey field techniques.

LIST OF EXPERIMENTS:

- 1. Study of theodolite
- 2. Measurement of horizontal angles by reiteration and repetition and vertical angles
- 3. Theodolite survey traverse
- 4. Heights and distances Triangulation Single plane method.
- 5. Tacheometry Tangential system Stadia system Subtense system.
- 6. Setting out works Foundation marking Simple curve (right/left-handed) Transition curve.
- 7. Field observation for and Calculation of azimuth
- 8. Field work using Total Station.

OUTCOMES:

• Students completing this course would have acquired practical knowledge on handling survey instruments like Theodolite, Tacheometery and Total station and have adequate knowledge to carryout Triangulation and Astronomical surveying including general field marking for various engineering projects and curves setting.

REFERENCES:

- 1. James M. Anderson and Edward M. Mikhail, Surveying, Theory and Practice, 7th Edition, McGraw Hill, 2001.
- 2. Bannister and S. Raymond, "Surveying", 7th Edition, Longman, 2004.
- 3. Roy S.K., "Fundamentals of Surveying", 2nd Edition, Prentice Hall of India, 2004.
- 4. Arora K.R., Surveying Vol I & II, Standard Book house, 10th Edition, 2008

SI. No.	Description of Equipment	Quantity	
1.	Total Station	3 Nos	
2.	Theodolites	Atleast 1 for every 5 students	
3.	Dumpy level	Atleast 1 for every 5 students	
4.	Plane table	Atleast 1 for every 5 students	
5.	Pocket stereoscope	1	
6.	Ranging rods		
7.	Levelling staff		
8.	Cross staff	1 for a set of 5 students	
9.	Chains	Tion a set of 5 students	
10.	Tapes		
11.	Arrows		
12.	Hand held GPS	3 Nos	

9.	Turbine	
	(i) Impulse turbine assembly with fittings & accessories	1 Unit
	(ii) Francis turbine assembly with fittings & accessories	1 Unit
	(iii) Kaplan turbine assembly with fittings & accessories	1 Unit

SURVEY PRACTICAL II

LTPC 0 0 4 2

TOTAL: 60 PERIODS

OBJECTIVES:

• At the end of the course the student will posses knowledge about Survey field techniques.

LIST OF EXPERIMENTS:

- 1. Study of theodolite
- 2. Measurement of horizontal angles by reiteration and repetition and vertical angles
- 3. Theodolite survey traverse
- 4. Heights and distances Triangulation Single plane method.
- 5. Tacheometry Tangential system Stadia system Subtense system.
- 6. Setting out works Foundation marking Simple curve (right/left-handed) Transition curve.
- 7. Field observation for and Calculation of azimuth
- 8. Field work using Total Station.

OUTCOMES:

• Students completing this course would have acquired practical knowledge on handling survey instruments like Theodolite, Tacheometery and Total station and have adequate knowledge to carryout Triangulation and Astronomical surveying including general field marking for various engineering projects and curves setting.

REFERENCES:

- 1. James M. Anderson and Edward M. Mikhail, Surveying, Theory and Practice, 7th Edition, McGraw Hill, 2001.
- 2. Bannister and S. Raymond, "Surveying", 7th Edition, Longman, 2004.
- 3. Roy S.K., "Fundamentals of Surveying", 2nd Edition, Prentice Hall of India, 2004.
- 4. Arora K.R., Surveying Vol I & II, Standard Book house, 10th Edition, 2008

SI. No.	Description of Equipment	Quantity	
1.	Total Station	3 Nos	
2.	Theodolites	Atleast 1 for every 5 students	
3.	Dumpy level	Atleast 1 for every 5 students	
4.	Plane table	Atleast 1 for every 5 students	
5.	Pocket stereoscope	1	
6.	Ranging rods		
7.	Levelling staff		
8.	Cross staff	1 for a set of 5 students	
9.	Chains	Tion a set of 5 students	
10.	Tapes		
11.	Arrows		
12.	Hand held GPS	3 Nos	

STRUCTURAL ANALYSIS I

LTPC 3104

OBJECTIVES:

 To introduce the students to basic theory and concepts of structural analysis and the classical methods for the analysis of buildings.

UNIT I INDETERMINATE FRAMES

9

Degree of static and kinematic indeterminacies for plane frames - analysis of indeterminate pin-jointed frames - rigid frames (Degree of statical indeterminacy up to two) - Energy and consistent deformation methods.

UNIT II MOVING LOADS AND INFLUENCE LINES

C

Influence lines for reactions in statically determinate structures – influence lines for member forces in pin-jointed frames – Influence lines for shear force and bending moment in beam sections – Calculation of critical stress resultants due to concentrated and distributed moving loads.

Muller Breslau's principle – Influence lines for continuous beams and single storey rigid frames – Indirect model analysis for influence lines of indeterminate structures – Beggs deformeter

UNIT III ARCHES

9

Arches as structural forms – Examples of arch structures – Types of arches – Analysis of three hinged, two hinged and fixed arches, parabolic and circular arches – Settlement and temperature effects.

UNIT IV SLOPE DEFLECTION METHOD

9

Continuous beams and rigid frames (with and without sway) – Symmetry and antisymmetry – Simplification for hinged end – Support displacements

UNIT V MOMENT DISTRIBUTION METHOD

9

Distribution and carryover of moments – Stiffness and carry over factors – Analysis of continuous beams – Plane rigid frames with and without sway – Neylor's simplification.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Students will be able to

- analysis trusses, frames and arches
- analyse structures for moving loads and
- will be conversant with classical methods of analysis.

TEXTBOOKS:

- 1. Vaidyanadhan, R and Perumal, P, "Comprehensive Structural Analysis Vol. 1 & Vol. 2", Laxmi Publications Pvt. Ltd, New Delhi, 2003.
- 2. L.S. Negi & R.S. Jangid, "Structural Analysis", Tata McGraw Hill Publications, New Delhi, 6th Edition, 2003.
- 3. Punmia.B.C, Ashok Kumar Jain and Arun Kumar Jain, "Theory of structures", Laxmi Publications Pvt. Ltd., New Delhi, 2004
- 4. Reddy. C.S., "Basic Structural Analysis", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2013.
- 5. BhavaiKatti, S.S, "Structural Analysis Vol. 1 & Vol. 2", Vikas Publishing Pvt Ltd., New Delhi, 2008

REFERENCES:

- 1. Wang C.K., "Indeterminate Structural Analysis", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2010
- 2. Devadas Menon, "Structural Analysis", Narosa Publishing House, 2008
- 3. Ghali.A., Nebille and Brown. T.G., "Structural Analysis A unified classical and matrix approach" Sixth Edition, SPON press, New York, 2013.
- 4. Gambhir. M.L., "Fundamentals of Structural Mechanics and Analysis"., PHI Learning Pvt. Ltd., New Delhi, 2011.

STRUCTURAL ANALYSIS I

LTPC 3104

OBJECTIVES:

 To introduce the students to basic theory and concepts of structural analysis and the classical methods for the analysis of buildings.

UNIT I INDETERMINATE FRAMES

9

Degree of static and kinematic indeterminacies for plane frames - analysis of indeterminate pin-jointed frames - rigid frames (Degree of statical indeterminacy up to two) - Energy and consistent deformation methods.

UNIT II MOVING LOADS AND INFLUENCE LINES

C

Influence lines for reactions in statically determinate structures – influence lines for member forces in pin-jointed frames – Influence lines for shear force and bending moment in beam sections – Calculation of critical stress resultants due to concentrated and distributed moving loads.

Muller Breslau's principle – Influence lines for continuous beams and single storey rigid frames – Indirect model analysis for influence lines of indeterminate structures – Beggs deformeter

UNIT III ARCHES

9

Arches as structural forms – Examples of arch structures – Types of arches – Analysis of three hinged, two hinged and fixed arches, parabolic and circular arches – Settlement and temperature effects.

UNIT IV SLOPE DEFLECTION METHOD

9

Continuous beams and rigid frames (with and without sway) – Symmetry and antisymmetry – Simplification for hinged end – Support displacements

UNIT V MOMENT DISTRIBUTION METHOD

9

Distribution and carryover of moments – Stiffness and carry over factors – Analysis of continuous beams – Plane rigid frames with and without sway – Neylor's simplification.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Students will be able to

- analysis trusses, frames and arches
- analyse structures for moving loads and
- will be conversant with classical methods of analysis.

TEXTBOOKS:

- 1. Vaidyanadhan, R and Perumal, P, "Comprehensive Structural Analysis Vol. 1 & Vol. 2", Laxmi Publications Pvt. Ltd, New Delhi, 2003.
- 2. L.S. Negi & R.S. Jangid, "Structural Analysis", Tata McGraw Hill Publications, New Delhi, 6th Edition, 2003.
- 3. Punmia.B.C, Ashok Kumar Jain and Arun Kumar Jain, "Theory of structures", Laxmi Publications Pvt. Ltd., New Delhi, 2004
- 4. Reddy. C.S., "Basic Structural Analysis", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2013.
- 5. BhavaiKatti, S.S, "Structural Analysis Vol. 1 & Vol. 2", Vikas Publishing Pvt Ltd., New Delhi, 2008

REFERENCES:

- 1. Wang C.K., "Indeterminate Structural Analysis", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2010
- 2. Devadas Menon, "Structural Analysis", Narosa Publishing House, 2008
- 3. Ghali.A., Nebille and Brown. T.G., "Structural Analysis A unified classical and matrix approach" Sixth Edition, SPON press, New York, 2013.
- 4. Gambhir. M.L., "Fundamentals of Structural Mechanics and Analysis"., PHI Learning Pvt. Ltd., New Delhi, 2011.

FOUNDATION ENGINEERING

LTPC 3003

OBJECTIVES:

• To impart knowledge on common method of sub soil investigation and design of foundation. At the end of this course student acquires the capacity to investigate the soil condition and to select and design a suitable foundation.

UNIT I SITE INVESTIGATION AND SELECTION OF FOUNDATION

9

Scope and objectives - Methods of exploration - auguring and boring - Wash boring and rotary drilling - Depth of boring - Spacing of bore hole - Sampling techniques - Representative and undisturbed sampling - methods - Split spoon sampler, Thin wall sampler, Stationery piston sampler - Penetration tests (SPT and SCPT) - Bore log report - Data interpretation - strength parameters and Liquefaction potential - Selection of foundation based on soil condition.

UNIT II SHALLOW FOUNDATION

9

Introduction – Location and depth of foundation – Codal provisions – bearing capacity of shallow foundation on homogeneous deposits – Terzaghi's formula and BIS formula – factors affecting bearing capacity – problems – Bearing capacity from in-situ tests (SPT, SCPT and plate load)Allowable bearing pressure – Seismic considerations in bearing capacity evaluation. Determination of Settlement of foundations on granular and clay deposits – Total and differential settlement – Allowable settlements – Codal provision – Methods of minimizing total and differential settlements.

UNIT III FOOTINGS AND RAFTS

9

Types of footings – Contact pressure distribution: Isolated footing – Combined footings – Types and proportioning – Mat foundation – Types and applications – Proportioning – Floating foundation – Seismic force consideration – Codal Provision.

UNIT IV PILE FOUNDATION

9

Types of piles and their function – Factors influencing the selection of pile – Carrying capacity of single pile in granular and cohesive soil – static formula – dynamic formulae (Engineering news and Hileys) – Capacity from insitu tests (SPT and SCPT) – Negative skin friction – uplift capacity-Group capacity by different methods (Feld's rule, Converse – Labarra formula and block failure criterion) – Settlement of pile groups – Interpretation of pile load test (routine test only) – Under reamed piles – Capacity under compression and uplift.

UNIT V RETAINING WALLS

9

Plastic equilibrium in soils – active and passive states – Rankine's theory – cohesionless and cohesive soil – Coulomb's wedge theory – Condition for critical failure plane – Earth pressure on retaining walls of simple configurations – Culmann Graphical method – pressure on the wall due to line load – Stability analysis of retaining walls.

TOTAL: 45 PERIODS

OUTCOMES:

• Students will have the ability to select type of foundation required for the soil at a place and able to design shallow, foundation, deep foundation and retaining structures.

TEXTBOOKS:

- 1. Murthy, V.N.S., "Soil Mechanics and Foundation Engineering", CBS Publishers and Distributers Ltd., New Delhi, 2007.
- 2. Gopal Ranjan and Rao A.S.R. "Basic and Applied soil mechanics", New Age InternationalPvt. Ltd. New Delhi, 2005.
- 3. Purushothama Raj. P., "Soil Mechanics and Foundation Engineering", 2nd Edition, Pearson Education, 2013
- 4. Varghese, P.C., "Foundation Engineering", Prentice Hall of India Private Limited, New Delhi, 2005.

REFERENCES:

- 1. Das, B.M. "Principles of Foundation Engineering" 5th edition, Thompson Asia Pvt. Ltd., Singapore, 2003.
- 2. Kaniraj, S.R. "Design aids in Soil Mechanics and Foundation Engineering", Tata McGrawHill Publishing company Ltd., New Delhi, 2002.
- 3. Punmia, B.C. "Soil Mechanics and Foundations", Laxmi Publications Pvt.Ltd., New Delhi,2005
- 4. Venkatramaiah, C. "Geotechnical Engineering", New Age International Publishers, New Delhi, 2007 (Reprint)
- 5. Arora K.R. "Soil Mechanics and Foundation Engineering", Standard Publishers and Distributors, New Delhi, 2005.
- 6. IS 6403 : 1981 (Reaffirmed 1997) "Breaking capacity of shallow foundation", Bureau of Indian Standards, New Delhi, 1998
- 7. IS8009 (Part1):1976 (Reaffirmed 1998) "Shallow foundations subjected to symmetrical static vertical loads", Bureau of Indian Standards, New Delhi, 1999
- 8. IS8009 (Part2):1980 (Reaffirmed 1995) "Deep foundations subjected to symmetrical static vertical loading", Bureau of Indian Standards, New Delhi, 1992
- 9. IS2911(Part1):1979 (Reaffirmed 1997) "Concrete Piles" Bureau of Indian Standards, New Delhi, 1994
- 10. IS2911(Part2):1979 (Reaffirmed 1997) "Timber Piles", Bureau of Indian Standards, New Delhi, 2007
- 11. IS2911(Part 3):1979 (Reaffirmed 1997) "Under Reamed Piles", Bureau of Indian Standards, New Delhi, 1998
- 12. IS2911 (Part 4):1979 (Reaffirmed 1997) "Load Test on Piles", Bureau of Indian Standards, New Delhi, 1997

CE6503

ENVIRONMENTAL ENGINEERING I

LTPC 3003

OBJECTIVES:

 To make the students conversant with principles of water supply, treatment and distribution

UNIT I PLANNING FOR WATER SUPPLY SYSTEM

8

Public water supply system -Planning - Objectives -Design period - Population forecasting -Water demand -Sources of water and their characteristics -Surface and Groundwater- Impounding Reservoir Well hydraulics -Development and selection of source - Water quality - Characterization and standards- Impact of climate change.

UNIT II CONVEYANCE SYSTEM

1

Water supply -intake structures -Functions and drawings -Pipes and conduits for water- Pipe materials - Hydraulics of flow in pipes -Transmission main design -Laying, jointing and testing of pipes - Drawings appurtenances - Types and capacity of pumps -Selection of pumps and pipe materials.

UNIT III WATER TREATMENT

12

Objectives - Unit operations and processes - Principles, functions design and drawing of Chemical feeding, Flash mixers, flocculators, sedimentation tanks and sand filters - Disinfection- Residue Management - Construction and Operation & Maintenance aspects of Water Treatment Plants.

UNIT IV ADVANCED WATER TREATMENT

9

Principles and functions of Aeration - Iron and manganese removal, Defluoridation and demineralization - Water softening - Desalination - Membrane Systems - Recent advances.

UNITY WATER DISTRIBUTION AND SUPPLY TO BUILDINGS

9

Requirements of water distribution -Components -Service reservoirs -Functions and drawings - Network design -Economics -Computer applications -Analysis of distribution networks - Appurtenances -operation and maintenance -Leak detection, Methods. Principles of design of water supply in buildings -House service connection -Fixtures and fittings -Systems of plumbing and drawings of types of plumbing.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will have

- an insight into the structure of drinking water supply systems, including water transport, treatment and distribution
- an understanding of water quality criteria and standards, and their relation to public health,
- the ability to design and evaluate water supply project alternatives on basis of chosen selection criteria

TEXTBOOKS:

- 1. Garg, S.K., "Environmental Engineering", Vol.1 Khanna Publishers, New Delhi, 2005.
- 2. Modi, P.N. "Water Supply Engineering", Vol. I Standard Book House, New Delhi, 2005.
- 3. Punmia, B.C., Ashok K Jain and Arun K Jain, "Water Supply Engineering", Laxmi Publications Pvt. Ltd., New Delhi, 2005

REFERENCES:

- 1. Government of India, "Manual on Water Supply and Treatment", CPHEEO, Ministry of Urban Development, New Delhi, 2003
- 2. Syed R. Qasim and Edward M. Motley Guang Zhu, "Water Works Engineering Planning", Design and Operation, Prentice Hall of India Private Limited, New Delhi, 2006.

CE6504

HIGHWAY ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

 To give an overview about the highway engineering with respect to, planning, design, construction and maintenance of highways as per IRC standards, specifications and methods.

UNIT I HIGHWAY PLANNING AND ALIGNMENT

8

Significance of highway planning – Modal limitations towards sustainability - History of road development in India – Classification of highways – Locations and functions – Factors influencing highway alignment – Soil suitability analysis - Road ecology - Engineering surveys for alignment, objectives, conventional and modern methods.

UNIT II GEOMETRIC DESIGN OF HIGHWAYS

12

Typical cross sections of Urban and Rural roads — Cross sectional elements - Sight distances – Horizontal curves, Super elevation, transition curves, widening at curves — Vertical curves - Gradients, Special consideration for hill roads - Hairpin bends — Lateral and vertical clearance at underpasses.

UNIT III DESIGN OF FLEXIBLE AND RIGID PAVEMENTS

9

Design principles – pavement components and their role - Design practice for flexible and rigid Pavements (IRC methods only) - Embankments .

UNIT IV HIGHWAY CONSTRUCTION MATERIALS AND PRACTICE

8

Highway construction materials, properties, testing methods – CBR Test for subgrade - tests on aggregate & bitumen – Construction practice including modern materials and methods, Bituminous and Concrete road construction, Polymer modified bitumen, Recycling, Different materials – Glass, Fiber, Plastic, Geo-Textiles, Geo-Membrane (problem not included) - Quality control measures - Highway drainage — Construction machineries.

UNITY WATER DISTRIBUTION AND SUPPLY TO BUILDINGS

9

Requirements of water distribution -Components -Service reservoirs -Functions and drawings - Network design -Economics -Computer applications -Analysis of distribution networks - Appurtenances -operation and maintenance -Leak detection, Methods. Principles of design of water supply in buildings -House service connection -Fixtures and fittings -Systems of plumbing and drawings of types of plumbing.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will have

- an insight into the structure of drinking water supply systems, including water transport, treatment and distribution
- an understanding of water quality criteria and standards, and their relation to public health,
- the ability to design and evaluate water supply project alternatives on basis of chosen selection criteria

TEXTBOOKS:

- 1. Garg, S.K., "Environmental Engineering", Vol.1 Khanna Publishers, New Delhi, 2005.
- 2. Modi, P.N. "Water Supply Engineering", Vol. I Standard Book House, New Delhi, 2005.
- 3. Punmia, B.C., Ashok K Jain and Arun K Jain, "Water Supply Engineering", Laxmi Publications Pvt. Ltd., New Delhi, 2005

REFERENCES:

- 1. Government of India, "Manual on Water Supply and Treatment", CPHEEO, Ministry of Urban Development, New Delhi, 2003
- 2. Syed R. Qasim and Edward M. Motley Guang Zhu, "Water Works Engineering Planning", Design and Operation, Prentice Hall of India Private Limited, New Delhi, 2006.

CE6504

HIGHWAY ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

 To give an overview about the highway engineering with respect to, planning, design, construction and maintenance of highways as per IRC standards, specifications and methods.

UNIT I HIGHWAY PLANNING AND ALIGNMENT

8

Significance of highway planning – Modal limitations towards sustainability - History of road development in India – Classification of highways – Locations and functions – Factors influencing highway alignment – Soil suitability analysis - Road ecology - Engineering surveys for alignment, objectives, conventional and modern methods.

UNIT II GEOMETRIC DESIGN OF HIGHWAYS

12

Typical cross sections of Urban and Rural roads — Cross sectional elements - Sight distances – Horizontal curves, Super elevation, transition curves, widening at curves — Vertical curves - Gradients, Special consideration for hill roads - Hairpin bends — Lateral and vertical clearance at underpasses.

UNIT III DESIGN OF FLEXIBLE AND RIGID PAVEMENTS

9

Design principles – pavement components and their role - Design practice for flexible and rigid Pavements (IRC methods only) - Embankments .

UNIT IV HIGHWAY CONSTRUCTION MATERIALS AND PRACTICE

8

Highway construction materials, properties, testing methods – CBR Test for subgrade - tests on aggregate & bitumen – Construction practice including modern materials and methods, Bituminous and Concrete road construction, Polymer modified bitumen, Recycling, Different materials – Glass, Fiber, Plastic, Geo-Textiles, Geo-Membrane (problem not included) - Quality control measures - Highway drainage — Construction machineries.

UNIT V **EVALUATION AND MAINTENANCE OF PAVEMENTS**

Pavement distress in flexible and rigid pavements - Pavement Management Systems -

Pavement evaluation, roughness, present serviceability index, skid resistance, structural evaluation, evaluation by deflection measurements - Strengthening of pavements - Types of maintenance – Highway Project formulation.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing this course would have acquired knowledge on planning, design, construction and maintenance of highways as per IRC standards and other methods.

TEXTBOOKS:

- 1. Khanna.S. K., Justo.C.E.G and Veeraragavan A. "Highway Engineering", Nemchand Publishers, 2014.
- 2. Subramanian K.P., "Highways, Railways, Airport and Harbour Engineering", Scitech Publications (India), Chennai, 2010
- 3. Indian Road Congress (IRC), Guidelines and Special Publications of Planning and Design.

REFERENCES:

- 1. Kadiyali.L.R. "Principles and Practice of Highway Engineering", Khanna Technical Publications, 8th edition Delhi, 2013.
- 2. Yang H. Huang, "Pavement Analysis and Design", Pearson Education Inc, Nineth Impression, South Asia, 2012
- 3. Ian D. Walsh, "ICE manual of highway design and management", ICE Publishers, Ist Edition, USA, 2011
- 4. Fred L. Mannering, Scott S. Washburn and Walter P.Kilareski, "Principles of Highway Engineering and Traffic Analysis", Wiley India Pvt. Ltd., New Delhi, 2011
- 5. Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning, New Delhi, 2010
- 6. O'Flaherty.C.A "Highways, Butterworth Heinemann, Oxford, 2006

DESIGN OF REINFORCED CONCRETE ELEMENTS CE6505

LTPC 3 0 0 3

OBJECTIVES:

To introduce the different types of philosophies related to design of basic structural elements such as slab, beam, column and footing which form part of any structural system with reference to Indian standard code of practice.

METHODS OF DESIGN OF CONCRETE STRUCTURES

Concept of Elastic method, ultimate load method and limit state method - Advantages of Limit State Method over other methods - Design codes and specification - Limit State philosophy as detailed in IS code – Design of beams and slabs by working stress method.

LIMIT STATE DESIGN FOR FLEXURE

9

Analysis and design of singly and doubly reinforced rectangular and flanged beams - Analysis and design of one way, two way and continuous slabs subjected to uniformly distributed load for various boundary conditions.

UNIT III LIMIT STATE DESIGN FOR BOND, ANCHORAGE SHEAR & TORSION Behaviour of RC members in bond and Anchorage - Design requirements as per current code -Behaviour of RC beams in shear and torsion - Design of RC members for combined bending shear and torsion.

UNIT V **EVALUATION AND MAINTENANCE OF PAVEMENTS**

Pavement distress in flexible and rigid pavements - Pavement Management Systems -

Pavement evaluation, roughness, present serviceability index, skid resistance, structural evaluation, evaluation by deflection measurements - Strengthening of pavements - Types of maintenance – Highway Project formulation.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing this course would have acquired knowledge on planning, design, construction and maintenance of highways as per IRC standards and other methods.

TEXTBOOKS:

- 1. Khanna.S. K., Justo.C.E.G and Veeraragavan A. "Highway Engineering", Nemchand Publishers, 2014.
- 2. Subramanian K.P., "Highways, Railways, Airport and Harbour Engineering", Scitech Publications (India), Chennai, 2010
- 3. Indian Road Congress (IRC), Guidelines and Special Publications of Planning and Design.

REFERENCES:

- 1. Kadiyali.L.R. "Principles and Practice of Highway Engineering", Khanna Technical Publications, 8th edition Delhi, 2013.
- 2. Yang H. Huang, "Pavement Analysis and Design", Pearson Education Inc, Nineth Impression, South Asia, 2012
- 3. Ian D. Walsh, "ICE manual of highway design and management", ICE Publishers, Ist Edition, USA, 2011
- 4. Fred L. Mannering, Scott S. Washburn and Walter P.Kilareski, "Principles of Highway Engineering and Traffic Analysis", Wiley India Pvt. Ltd., New Delhi, 2011
- 5. Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning, New Delhi, 2010
- 6. O'Flaherty.C.A "Highways, Butterworth Heinemann, Oxford, 2006

DESIGN OF REINFORCED CONCRETE ELEMENTS CE6505

LTPC 3 0 0 3

OBJECTIVES:

To introduce the different types of philosophies related to design of basic structural elements such as slab, beam, column and footing which form part of any structural system with reference to Indian standard code of practice.

METHODS OF DESIGN OF CONCRETE STRUCTURES

Concept of Elastic method, ultimate load method and limit state method - Advantages of Limit State Method over other methods - Design codes and specification - Limit State philosophy as detailed in IS code – Design of beams and slabs by working stress method.

LIMIT STATE DESIGN FOR FLEXURE

9

Analysis and design of singly and doubly reinforced rectangular and flanged beams - Analysis and design of one way, two way and continuous slabs subjected to uniformly distributed load for various boundary conditions.

UNIT III LIMIT STATE DESIGN FOR BOND, ANCHORAGE SHEAR & TORSION Behaviour of RC members in bond and Anchorage - Design requirements as per current code -Behaviour of RC beams in shear and torsion - Design of RC members for combined bending shear and torsion.

UNIT IV LIMIT STATE DESIGN OF COLUMNS

9

Types of columns – Braced and unbraced columns – Design of short Rectangular and circular columns for axial, uniaxial and biaxial bending.

UNIT V LIMIT STATE DESIGN OF FOOTING

9

Design of wall footing – Design of axially and eccentrically loaded rectangular pad and sloped footings – Design of combined rectangular footing for two columns only.

TOTAL: 45 PERIODS

OUTCOMES:

• The student shall be in a position to design the basic elements of reinforced concrete structures.

TEXTBOOKS:

- 1. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, Pvt. Ltd., New Delhi, 2002.
- 2. Gambhir.M.L., "Fundamentals of Reinforced Concrete Design", Prentice Hall of India Private Limited, New Delhi, 2006.
- 3. Subramanian, N., "Design of Reinforced Concrete Structures", Oxford University Press, New Delhi, 2013.

REFERENCES:

- 1. Jain, A.K., "Limit State Design of RC Structures", Nemchand Publications, Roorkee, 1998
- 2. Sinha, S.N., "Reinforced Concrete Design", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2002
- 3. Unnikrishna Pillai, S., Devdas Menon, "Reinforced Concrete Design", Tata McGraw Hill Publishing Company Ltd., 2009
- 4. Punmia.B.C., Ashok Kumar Jain, Arun Kumar Jain, "Limit State Design of Reinforced Concrete", Laxmi Publication Pvt. Ltd., New Delhi, 2007.
- 5. Bandyopadhyay. J.N., "Design of Concrete Structures"., Prentice Hall of India Pvt. Ltd., New Delhi, 2008.
- 6. IS456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2000
- 7. SP16, IS456:1978 "Design Aids for Reinforced Concrete to Bureau of Indian Standards, New Delhi, 1999
- 8. Shah V L Karve S R., "Limit State Theory and Design of Reinforced Concrete", Structures Publications, Pune, 2013

CE6506 CONSTRUCTION TECHNIQUES, EQUIPMENT AND PRACTICE

LTPC 3003

OBJECTIVES:

• The main objective of this course is to make the student aware of the various construction techniques, practices and the equipment needed for different types of construction activities. At the end of this course the student shall have a reasonable knowledge about the various construction procedures for sub to super structure and also the equipment needed for construction of various types of structures from foundation to super structure.

UNIT I CONCRETE TECHNOLOGY

9

Cements – Grade of cements - concrete chemicals and Applications – Grade of concrete - manufacturing of concrete – Batching – mixing – transporting – placing – compaction of concrete – curing and finishing - Testing of fresh and hardened concrete – quality of concrete – Extreme Weather Concreting - Ready Mix Concrete – Non-destructive testing.

UNIT IV LIMIT STATE DESIGN OF COLUMNS

9

Types of columns – Braced and unbraced columns – Design of short Rectangular and circular columns for axial, uniaxial and biaxial bending.

UNIT V LIMIT STATE DESIGN OF FOOTING

9

Design of wall footing – Design of axially and eccentrically loaded rectangular pad and sloped footings – Design of combined rectangular footing for two columns only.

TOTAL: 45 PERIODS

OUTCOMES:

• The student shall be in a position to design the basic elements of reinforced concrete structures.

TEXTBOOKS:

- 1. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, Pvt. Ltd., New Delhi, 2002.
- 2. Gambhir.M.L., "Fundamentals of Reinforced Concrete Design", Prentice Hall of India Private Limited, New Delhi, 2006.
- 3. Subramanian, N., "Design of Reinforced Concrete Structures", Oxford University Press, New Delhi, 2013.

REFERENCES:

- 1. Jain, A.K., "Limit State Design of RC Structures", Nemchand Publications, Roorkee, 1998
- 2. Sinha, S.N., "Reinforced Concrete Design", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2002
- 3. Unnikrishna Pillai, S., Devdas Menon, "Reinforced Concrete Design", Tata McGraw Hill Publishing Company Ltd., 2009
- 4. Punmia.B.C., Ashok Kumar Jain, Arun Kumar Jain, "Limit State Design of Reinforced Concrete", Laxmi Publication Pvt. Ltd., New Delhi, 2007.
- 5. Bandyopadhyay. J.N., "Design of Concrete Structures"., Prentice Hall of India Pvt. Ltd., New Delhi, 2008.
- 6. IS456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2000
- 7. SP16, IS456:1978 "Design Aids for Reinforced Concrete to Bureau of Indian Standards, New Delhi, 1999
- 8. Shah V L Karve S R., "Limit State Theory and Design of Reinforced Concrete", Structures Publications, Pune, 2013

CE6506 CONSTRUCTION TECHNIQUES, EQUIPMENT AND PRACTICE

LTPC 3003

OBJECTIVES:

• The main objective of this course is to make the student aware of the various construction techniques, practices and the equipment needed for different types of construction activities. At the end of this course the student shall have a reasonable knowledge about the various construction procedures for sub to super structure and also the equipment needed for construction of various types of structures from foundation to super structure.

UNIT I CONCRETE TECHNOLOGY

9

Cements – Grade of cements - concrete chemicals and Applications – Grade of concrete - manufacturing of concrete – Batching – mixing – transporting – placing – compaction of concrete – curing and finishing - Testing of fresh and hardened concrete – quality of concrete – Extreme Weather Concreting - Ready Mix Concrete – Non-destructive testing.

UNIT II CONSTRUCTION PRACTICES

9

Specifications, details and sequence of activities and construction co-ordination – Site Clearance – Marking – Earthwork - masonry – stone masonry – Bond in masonry - concrete hollow block masonry – flooring – damp proof courses – construction joints – movement and expansion joints – pre cast pavements – Building foundations – basements – temporary shed – centering and shuttering – slip forms – scaffoldings – de-shuttering forms – Fabrication and erection of steel trusses – frames – braced domes – laying brick — weather and water proof – roof finishes – acoustic and fire protection.

UNIT III SUB STRUCTURE CONSTRUCTION

9

Techniques of Box jacking – Pipe Jacking -under water construction of diaphragm walls and basement-Tunneling techniques – Piling techniques - well and caisson - sinking cofferdam - cable anchoring and grouting-driving diaphragm walls, sheet piles - shoring for deep cutting - well points +Dewatering and stand by Plant equipment for underground open excavation.

UNIT IV SUPER STRUCTURE CONSTRUCTION

g

Launching girders, bridge decks, off shore platforms – special forms for shells - techniques for heavy decks – in-situ pre-stressing in high rise structures, Material handling - erecting light weight components on tall structures - Support structure for heavy Equipment and conveyors - Erection of articulated structures, braced domes and space decks.

UNIT V CONSTRUCTION EQUIPMENT

9

Selection of equipment for earth work - earth moving operations - types of earthwork equipment - tractors, motor graders, scrapers, front end waders, earth movers - Equipment for foundation and pile driving. Equipment for compaction, batching and mixing and concreting - Equipment for material handling and erection of structures - Equipment for dredging, trenching, tunneling,

TOTAL: 45 PERIODS

OUTCOMES:

 Students completing the course will have understanding of different construction techniques, practices and equipments. They will be able to plan the requirements for substructure and superstructure a construction.

TEXTBOOKS:

- 1. Peurifoy, R.L., Ledbetter, W.B. and Schexnayder, C., "Construction Planning, Equipment and Methods", 5th Edition, McGraw Hill, Singapore, 1995.
- 2. Arora S.P. and Bindra S.P., "Building Construction, Planning Techniques and Method of Construction", Dhanpat Rai and Sons, 1997.
- 3. Varghese, P.C. "Building construction", Prentice Hall of India Pvt. Ltd, New Delhi, 2007.
- 4. Shetty, M.S, "Concrete Technology, Theory and Practice", S. Chand and Company Ltd, New Delhi, 2008.

- 1. Jha J and Sinha S.K., "Construction and Foundation Engineering", Khanna Publishers, 1999.
- 2. Sharma S.C. "Construction Equipment and Management", Khanna Publishers New Delhi, 2002
- 3. Deodhar, S.V. "Construction Equipment and Job Planning", Khanna Publishers, New Delhi, 2012.
- 4. Dr. Mahesh Varma, "Construction Equipment and its Planning and Application", Metropolitan Book Company, New Delhi, 1983.
- 5. Gambhir, M.L, "Concrete Technology", Tata McGraw Hill Publishing Company Ltd, New Delhi, 2004

OUTCOMES:

At the end of the course, learners should be able to

- Take international examination such as IELTS and TOEFL
- Make presentations and Participate in Group Discussions.
- Successfully answer questions in interviews.

REFERENCES:

- 1. Business English Certificate Materials, Cambridge University Press.
- 2. **Graded Examinations in Spoken English and Spoken English for Work** downloadable materials from Trinity College, London.
- 3. International English Language Testing System Practice Tests, Cambridge University Press.
- 4. Interactive Multimedia Programs on Managing Time and Stress.
- 5. Personality Development (CD-ROM), Times Multimedia, Mumbai.
- 6. Robert M Sherfield and et al. "**Developing Soft Skills**" 4th edition, New Delhi: Pearson Education, 2009.

Web Sources:

http://www.slideshare.net/rohitjsh/presentation-on-group-discussion

http://www.washington.edu/doit/TeamN/present_tips.html

http://www.oxforddictionaries.com/words/writing-job-applications

http://www.kent.ac.uk/careers/cv/coveringletters.htm

http://www.mindtools.com/pages/article/newCDV_34.htm

CE6511

SOIL MECHANICS LABORATORY

LT PC 0 04 2

OBJECTIVES:

 At the end of the course student attains adequate knowledge in assessing both Physical and Engineering behaviour of soils through laboratory testing procedures.

LIST OF EXPERIMENTS:

1. DETERMINATION OF INDEX PROPERTIES

22

8

- a. Special gravity of soil solids
- b. Grain size distribution Sieve analysis
- c. Grain size distribution Hydrometer analysis
- d. Liquid limit and Plastic limit tests
- e. Shrinkage limit and Differential free swell tests

2. DETERMINATION OF INSITU DENSITY AND COMPACTION CHARACTERISTICS

- a. Field density Test (Sand replacement method)
- b. Determination of moisture density relationship using standard Proctor compaction test.

3. DETERMINATION OF ENGINEERING PROPERTIES

30

TOTAL: 60 PERIODS

- a. Permeability determination (constant head and falling head methods)
- b. One dimensional consolidation test (Determination of co-efficient of consolidation only)
- c. Direct shear test in cohesion-less soil
- d. Unconfined compression test in cohesive soil
- e. Laboratory vane Shear test in cohesive soil
- f. Tri-axial compression test in cohesion-less soil (Demonstration only)
- g. California Bearing Ratio Test

OUTCOMES:

• Students know the techniques to determine index properties and engineering properties such as shear strength, compressibility and permeability by conducting appropriate tests.

REFERENCES:

- 1. "Soil Engineering Laboratory Instruction Manual" published by Engineering College Cooperative Society, Anna University, Chennai, 1996.
- 2. Saibaba Reddy, E. Ramasastri, K. "Measurement of Engineering Properties of Soils", New age International (P) Limited Publishers, New Delhi, 2002.
- 3. Lambe T.W., "Soil Testing for Engineers", John Wiley and Sons, New York, 1990.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No.	Description of Equipment	Quantity
1.	Sieves	2 sets
2.	Hydrometer	2 sets
3.	Liquid and plastic limit apparatus	2 sets
4.	Shinkage limit apparatus	3 sets
5.	Proctor compaction apparatus	2 sets
6.	UTM of minimum of 20KN capacity	1
7.	Direct shear apparatus	1
8.	Thermeometer	2
9.	Field density measuring device	2
10.	Triaxial shear apparatus	1
11.	Three gang consolidation test device	1

CE6512 SURVEY CAMP L T P C (During IV Semester Summer Vacation) (2 Weeks) - - - 1

Two weeks Survey Camp will be conducted during summer vacation in the following activities:

- 1. Triangulation
- 2. Trilateration and
- 3. Rectangulation

CE6601

DESIGN OF REINFORCED CONCRETE & BRICK MASONRY STRUCTURES

LT P C 3 0 0 3

OBJECTIVES:

• To give an exposure to the design of continuous beams, slabs, staircases, walls and brick masonry structures and to introduce yield line theory.

3. DETERMINATION OF ENGINEERING PROPERTIES

30

TOTAL: 60 PERIODS

- a. Permeability determination (constant head and falling head methods)
- b. One dimensional consolidation test (Determination of co-efficient of consolidation only)
- c. Direct shear test in cohesion-less soil
- d. Unconfined compression test in cohesive soil
- e. Laboratory vane Shear test in cohesive soil
- f. Tri-axial compression test in cohesion-less soil (Demonstration only)
- g. California Bearing Ratio Test

OUTCOMES:

• Students know the techniques to determine index properties and engineering properties such as shear strength, compressibility and permeability by conducting appropriate tests.

REFERENCES:

- 1. "Soil Engineering Laboratory Instruction Manual" published by Engineering College Cooperative Society, Anna University, Chennai, 1996.
- 2. Saibaba Reddy, E. Ramasastri, K. "Measurement of Engineering Properties of Soils", New age International (P) Limited Publishers, New Delhi, 2002.
- 3. Lambe T.W., "Soil Testing for Engineers", John Wiley and Sons, New York, 1990.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No.	Description of Equipment	Quantity
1.	Sieves	2 sets
2.	Hydrometer	2 sets
3.	Liquid and plastic limit apparatus	2 sets
4.	Shinkage limit apparatus	3 sets
5.	Proctor compaction apparatus	2 sets
6.	UTM of minimum of 20KN capacity	1
7.	Direct shear apparatus	1
8.	Thermeometer	2
9.	Field density measuring device	2
10.	Triaxial shear apparatus	1
11.	Three gang consolidation test device	1

CE6512 SURVEY CAMP L T P C (During IV Semester Summer Vacation) (2 Weeks) - - - 1

Two weeks Survey Camp will be conducted during summer vacation in the following activities:

- 1. Triangulation
- 2. Trilateration and
- 3. Rectangulation

CE6601

DESIGN OF REINFORCED CONCRETE & BRICK MASONRY STRUCTURES

LT P C 3 0 0 3

OBJECTIVES:

• To give an exposure to the design of continuous beams, slabs, staircases, walls and brick masonry structures and to introduce yield line theory.

UNIT I RETAINING WALLS

Design of Cantilever and Counterfort Retaining walls

UNIT II WATER TANKS

9

9

Design of rectangular and circular water tanks both below and above ground level - Design of circular slab.

UNIT III SELECTED TOPICS

9

Design of staircases (ordinary and doglegged) – Design of flat slabs – Principles of design of mat foundation, box culvert and road bridges

UNIT IV YIELD LINE THEORY

9

Assumptions - Characteristics of yield line - Determination of collapse load / plastic moment - Application of virtual work method - square, rectangular, circular and triangular slabs - Design problems

UNIT V BRICK MASONRY

9

Introduction, Classification of walls, Lateral supports and stability, effective height of wall and columns, effective length of walls, design loads, load dispersion, permissible stresses, design of axially and eccentrically loaded brick walls

OUTCOMES:

TOTAL: 45 PERIODS

 The student shall have a comprehensive design knowledge related to various structural systems.

TEXTBOOKS:

- 1. Gambhir.M.L., "Design of Reinforced Concrete Structures", Prentice Hall of India Private Limited, 2012.
- 2. Dayaratnam, P., "Brick and Reinforced Brick Structures", Oxford & IBH Publishing House, 1997
- 3. Punmia B.C, Ashok Kumar Jain, Arun K.Jain, "R.C.C. Designs Reinforced Concrete Structures", Laxmi Publications Pvt. Ltd., New Delhi, 2006.
- 4. Varghese.P.C., "Advanced Reinforced Concrete Design", Prentice Hall of India Pvt. Ltd., New Delhi, 2012.

REFERENCES:

- 1. Mallick, D.K. and Gupta A.P., "Reinforced Concrete", Oxford and IBH Publishing Company,1997
- 2. Syal, I.C. and Goel, A.K., "Reinforced Concrete Structures", A.H. Wheelers & Co. Pvt. Ltd., 1998
- 3. Ram Chandra.N. and Virendra Gehlot, "Limit State Design", Standard Book House, 2004.
- 4. Subramanian. N., "Design of Reinforced Concrete Structures", Oxford University, New Delhi, 2013.
- 5. IS456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2007
- 6. IS1905:1987, Code of Practice for Structural use of Unreinforced Masonry Bureau of Indian Standards, New Delhi, 2002

CE6602

STRUCTURAL ANALYSIS II

LTPC 3 1 0 4

OBJECTIVES:

 To introduce the students to advanced methods of analysis like matrix methods, Plastic analysis and FE method and also analysis of space structures.

3. DETERMINATION OF ENGINEERING PROPERTIES

30

TOTAL: 60 PERIODS

- a. Permeability determination (constant head and falling head methods)
- b. One dimensional consolidation test (Determination of co-efficient of consolidation only)
- c. Direct shear test in cohesion-less soil
- d. Unconfined compression test in cohesive soil
- e. Laboratory vane Shear test in cohesive soil
- f. Tri-axial compression test in cohesion-less soil (Demonstration only)
- g. California Bearing Ratio Test

OUTCOMES:

• Students know the techniques to determine index properties and engineering properties such as shear strength, compressibility and permeability by conducting appropriate tests.

REFERENCES:

- 1. "Soil Engineering Laboratory Instruction Manual" published by Engineering College Cooperative Society, Anna University, Chennai, 1996.
- 2. Saibaba Reddy, E. Ramasastri, K. "Measurement of Engineering Properties of Soils", New age International (P) Limited Publishers, New Delhi, 2002.
- 3. Lambe T.W., "Soil Testing for Engineers", John Wiley and Sons, New York, 1990.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No.	Description of Equipment	Quantity
1.	Sieves	2 sets
2.	Hydrometer	2 sets
3.	Liquid and plastic limit apparatus	2 sets
4.	Shinkage limit apparatus	3 sets
5.	Proctor compaction apparatus	2 sets
6.	UTM of minimum of 20KN capacity	1
7.	Direct shear apparatus	1
8.	Thermeometer	2
9.	Field density measuring device	2
10.	Triaxial shear apparatus	1
11.	Three gang consolidation test device	1

CE6512 SURVEY CAMP L T P C (During IV Semester Summer Vacation) (2 Weeks) - - - 1

Two weeks Survey Camp will be conducted during summer vacation in the following activities:

- 1. Triangulation
- 2. Trilateration and
- 3. Rectangulation

CE6601

DESIGN OF REINFORCED CONCRETE & BRICK MASONRY STRUCTURES

LT P C 3 0 0 3

OBJECTIVES:

• To give an exposure to the design of continuous beams, slabs, staircases, walls and brick masonry structures and to introduce yield line theory.

UNIT I RETAINING WALLS

Design of Cantilever and Counterfort Retaining walls

UNIT II WATER TANKS

9

9

Design of rectangular and circular water tanks both below and above ground level - Design of circular slab.

UNIT III SELECTED TOPICS

9

Design of staircases (ordinary and doglegged) – Design of flat slabs – Principles of design of mat foundation, box culvert and road bridges

UNIT IV YIELD LINE THEORY

9

Assumptions - Characteristics of yield line - Determination of collapse load / plastic moment - Application of virtual work method - square, rectangular, circular and triangular slabs - Design problems

UNIT V BRICK MASONRY

9

Introduction, Classification of walls, Lateral supports and stability, effective height of wall and columns, effective length of walls, design loads, load dispersion, permissible stresses, design of axially and eccentrically loaded brick walls

TOTAL: 45 PERIODS

OUTCOMES:

The student shall have a comprehensive design knowledge related to various structural systems.

TEXTBOOKS:

- 1. Gambhir.M.L., "Design of Reinforced Concrete Structures", Prentice Hall of India Private Limited, 2012.
- 2. Dayaratnam, P., "Brick and Reinforced Brick Structures", Oxford & IBH Publishing House, 1997
- 3. Punmia B.C, Ashok Kumar Jain, Arun K.Jain, "R.C.C. Designs Reinforced Concrete Structures", Laxmi Publications Pvt. Ltd., New Delhi, 2006.
- 4. Varghese.P.C., "Advanced Reinforced Concrete Design", Prentice Hall of India Pvt. Ltd., New Delhi, 2012.

REFERENCES:

- 1. Mallick, D.K. and Gupta A.P., "Reinforced Concrete", Oxford and IBH Publishing Company,1997
- 2. Syal, I.C. and Goel, A.K., "Reinforced Concrete Structures", A.H. Wheelers & Co. Pvt. Ltd., 1998
- 3. Ram Chandra.N. and Virendra Gehlot, "Limit State Design", Standard Book House, 2004.
- 4. Subramanian. N., "Design of Reinforced Concrete Structures", Oxford University, New Delhi, 2013.
- 5. IS456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2007
- 6. IS1905:1987, Code of Practice for Structural use of Unreinforced Masonry Bureau of Indian Standards, New Delhi, 2002

CE6602

STRUCTURAL ANALYSIS II

LTPC 3 1 0 4

OBJECTIVES:

 To introduce the students to advanced methods of analysis like matrix methods, Plastic analysis and FE method and also analysis of space structures.

UNIT I RETAINING WALLS

Design of Cantilever and Counterfort Retaining walls

UNIT II WATER TANKS

9

9

Design of rectangular and circular water tanks both below and above ground level - Design of circular slab.

UNIT III SELECTED TOPICS

9

Design of staircases (ordinary and doglegged) – Design of flat slabs – Principles of design of mat foundation, box culvert and road bridges

UNIT IV YIELD LINE THEORY

9

Assumptions - Characteristics of yield line - Determination of collapse load / plastic moment - Application of virtual work method - square, rectangular, circular and triangular slabs - Design problems

UNIT V BRICK MASONRY

9

Introduction, Classification of walls, Lateral supports and stability, effective height of wall and columns, effective length of walls, design loads, load dispersion, permissible stresses, design of axially and eccentrically loaded brick walls

OUTCOMES:

TOTAL: 45 PERIODS

 The student shall have a comprehensive design knowledge related to various structural systems.

TEXTBOOKS:

- 1. Gambhir.M.L., "Design of Reinforced Concrete Structures", Prentice Hall of India Private Limited, 2012.
- 2. Dayaratnam, P., "Brick and Reinforced Brick Structures", Oxford & IBH Publishing House, 1997
- 3. Punmia B.C, Ashok Kumar Jain, Arun K.Jain, "R.C.C. Designs Reinforced Concrete Structures", Laxmi Publications Pvt. Ltd., New Delhi, 2006.
- 4. Varghese.P.C., "Advanced Reinforced Concrete Design", Prentice Hall of India Pvt. Ltd., New Delhi, 2012.

REFERENCES:

- 1. Mallick, D.K. and Gupta A.P., "Reinforced Concrete", Oxford and IBH Publishing Company,1997
- 2. Syal, I.C. and Goel, A.K., "Reinforced Concrete Structures", A.H. Wheelers & Co. Pvt. Ltd., 1998
- 3. Ram Chandra.N. and Virendra Gehlot, "Limit State Design", Standard Book House, 2004.
- 4. Subramanian. N., "Design of Reinforced Concrete Structures", Oxford University, New Delhi, 2013.
- 5. IS456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2007
- 6. IS1905:1987, Code of Practice for Structural use of Unreinforced Masonry Bureau of Indian Standards, New Delhi, 2002

CE6602

STRUCTURAL ANALYSIS II

LTPC 3 1 0 4

OBJECTIVES:

 To introduce the students to advanced methods of analysis like matrix methods, Plastic analysis and FE method and also analysis of space structures.

UNIT I FLEXIBILITY METHOD

Equilibrium and compatibility – Determinate vs Indeterminate structures – Indeterminacy - Primary structure – Compatibility conditions – Analysis of indeterminate pin-jointed plane frames, continuous beams, rigid jointed plane frames (with redundancy restricted to two).

UNIT II STIFFNESS MATRIX METHOD

9

Element and global stiffness matrices – Analysis of continuous beams – Co-ordinate transformations – Rotation matrix – Transformations of stiffness matrices, load vectors and displacements vectors – Analysis of pin-jointed plane frames and rigid frames (with redundancy limited to two)

UNIT III FINITE ELEMENT METHOD

9

Introduction – Discretisation of a structure – Displacement functions – Truss element – Beam element – Plane stress and plane strain - Triangular elements

UNIT IV PLASTIC ANALYSIS OF STRUCTURES

9

Statically indeterminate axial problems – Beams in pure bending – Plastic moment of resistance – Plastic modulus – Shape factor – Load factor – Plastic hinge and mechanism – Plastic analysis of indeterminate beams and frames – Upper and lower bound theorems

UNIT V SPACE AND CABLE STRUCTURES

9

Analysis of Space trusses using method of tension coefficients — Beams curved in plan Suspension cables — suspension bridges with two and three hinged stiffening girders

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

 The student will have the knowledge on advanced methods of analysis of structures including space and cable structures.

TEXTBOOKS:

- 1. Punmia.B.C., Ashok Kumar Jain and Arun Kumar Jain, "Theory of Structures", Laxmi Publications, 2004.
- 2. Vaidyanathan, R. and Perumal, P., "Comprehensive structural Analysis Vol. I & II", Laxmi Publications, New Delhi, 2003
- 3. Negi L.S. & Jangid R.S., "Structural Analysis", Tata McGraw Hill Publications, New Delhi, 2003.
- 4. BhavaiKatti, S.S, "Structural Analysis Vol. 1 Vol. 2", Vikas Publishing House Pvt. Ltd., New Delhi, 2008

- 1. Ghali.A, Nebille,A.M. and Brown,T.G. "Structural Analysis" A unified classical and Matrix approach" 6th edition. Spon Press, London and New York, 2013.
- 2. Coates R.C, Coutie M.G. and Kong F.K., "Structural Analysis", ELBS and Nelson, 1990
- 3. Pandit G.S. & Gupta S.P. "Structural Analysis A Matrix Approach", Tata McGraw Hill
- 4. William Weaver Jr. & James M. Gere, "Matrix Analysis of Framed Structures", CBS Publishers and Distributors, Delhi, 2004
- 5. Gambhir. M.L., "Fundamentals of Structural Mechanics and Analysis"., PHI Learning Pvt. Ltd., New Delhi, 2011.

UNIT I FLEXIBILITY METHOD

Equilibrium and compatibility – Determinate vs Indeterminate structures – Indeterminacy - Primary structure – Compatibility conditions – Analysis of indeterminate pin-jointed plane frames, continuous beams, rigid jointed plane frames (with redundancy restricted to two).

UNIT II STIFFNESS MATRIX METHOD

9

Element and global stiffness matrices – Analysis of continuous beams – Co-ordinate transformations – Rotation matrix – Transformations of stiffness matrices, load vectors and displacements vectors – Analysis of pin-jointed plane frames and rigid frames (with redundancy limited to two)

UNIT III FINITE ELEMENT METHOD

9

Introduction – Discretisation of a structure – Displacement functions – Truss element – Beam element – Plane stress and plane strain - Triangular elements

UNIT IV PLASTIC ANALYSIS OF STRUCTURES

9

Statically indeterminate axial problems – Beams in pure bending – Plastic moment of resistance – Plastic modulus – Shape factor – Load factor – Plastic hinge and mechanism – Plastic analysis of indeterminate beams and frames – Upper and lower bound theorems

UNIT V SPACE AND CABLE STRUCTURES

9

Analysis of Space trusses using method of tension coefficients — Beams curved in plan Suspension cables — suspension bridges with two and three hinged stiffening girders

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

 The student will have the knowledge on advanced methods of analysis of structures including space and cable structures.

TEXTBOOKS:

- 1. Punmia.B.C., Ashok Kumar Jain and Arun Kumar Jain, "Theory of Structures", Laxmi Publications, 2004.
- 2. Vaidyanathan, R. and Perumal, P., "Comprehensive structural Analysis Vol. I & II", Laxmi Publications, New Delhi, 2003
- 3. Negi L.S. & Jangid R.S., "Structural Analysis", Tata McGraw Hill Publications, New Delhi, 2003.
- 4. BhavaiKatti, S.S, "Structural Analysis Vol. 1 Vol. 2", Vikas Publishing House Pvt. Ltd., New Delhi, 2008

- 1. Ghali.A, Nebille,A.M. and Brown,T.G. "Structural Analysis" A unified classical and Matrix approach" 6th edition. Spon Press, London and New York, 2013.
- 2. Coates R.C, Coutie M.G. and Kong F.K., "Structural Analysis", ELBS and Nelson, 1990
- 3. Pandit G.S. & Gupta S.P. "Structural Analysis A Matrix Approach", Tata McGraw Hill
- 4. William Weaver Jr. & James M. Gere, "Matrix Analysis of Framed Structures", CBS Publishers and Distributors, Delhi, 2004
- 5. Gambhir. M.L., "Fundamentals of Structural Mechanics and Analysis"., PHI Learning Pvt. Ltd., New Delhi, 2011.

DESIGN OF STEEL STRUCTURES

LT P C 3 1 0 4

OBJECTIVES:

 To introduce the students to limit state design of structural steel members subjected to compressive, tensile and bending loads, including connections. Design of structural systems such as roof trusses, gantry girders as per provisions of current code (IS 800 -2007) of practice.

UNIT I INTRODUCTION

9

Properties of steel – Structural steel sections – Limit State Design Concepts – Loads on Structures – Connections using rivets, welding, bolting – Design of bolted and welded joints – Eccentric connections - Efficiency of joints.

UNIT II TENSION MEMBERS

6

Types of sections – Net area – Net effective sections for angles and Tee in tension – Design of connections in tension members – Use of lug angles – Design of tension splice – Concept of shear lag

UNIT III COMPRESSION MEMBERS

12

Types of compression members – Theory of columns – Basis of current codal provision for compression member design – Slenderness ratio – Design of single section and compound section compression members – Design of laced and battened type columns – Design of column bases – Gusseted base

UNIT IV BEAMS

0

Design of laterally supported and unsupported beams – Built up beams – Beams subjected to uniaxial and biaxial bending – Design of plate girders - Intermediate and bearing stiffeners – Flange and web splices.

UNIT V ROOF TRUSSES AND INDUSTRIAL STRUCTURES

9

Roof trusses – Roof and side coverings – Design of purlin and elements of truss; end bearing – Design of gantry girder.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

 The students would have knowledge on the design of structural steel members subjected to compressive, tensile and bending forces, as per current code and also know to design structural systems such as roof trusses and gantry girders.

TEXTBOOKS:

- 1. Gambhir. M.L., "Fundamentals of Structural Steel Design", McGraw Hill Education India Pvt. Ltd., 2013
- 2. Shiyekar. M.R., "Limit State Design in Structural Steel", Prentice Hall of India Pvt. Ltd, Learning Pvt. Ltd., 2nd Edition, 2013.
- 3. Subramanian.N, "Design of Steel Structures", Oxford University Press, New Delhi, 2013.

- 1. Narayanan.R.et.al. "Teaching Resource on Structural Steel Design", INSDAG, Ministry of Steel Publications, 2002
- 2. Duggal. S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing Company, 2005
- 3. Bhavikatti.S.S, "Design of Steel Structures" By Limit State Method as per IS:800–2007, IK International Publishing House Pvt. Ltd., 2009
- 4. Shah.V.L. and Veena Gore, "Limit State Design of Steel Structures", IS 800–2007 Structures Publications, 2009.
- 5. IS800:2007, General Construction In Steel Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi, 2007

DESIGN OF STEEL STRUCTURES

LT P C 3 1 0 4

OBJECTIVES:

 To introduce the students to limit state design of structural steel members subjected to compressive, tensile and bending loads, including connections. Design of structural systems such as roof trusses, gantry girders as per provisions of current code (IS 800 -2007) of practice.

UNIT I INTRODUCTION

9

Properties of steel – Structural steel sections – Limit State Design Concepts – Loads on Structures – Connections using rivets, welding, bolting – Design of bolted and welded joints – Eccentric connections - Efficiency of joints.

UNIT II TENSION MEMBERS

6

Types of sections – Net area – Net effective sections for angles and Tee in tension – Design of connections in tension members – Use of lug angles – Design of tension splice – Concept of shear lag

UNIT III COMPRESSION MEMBERS

12

Types of compression members – Theory of columns – Basis of current codal provision for compression member design – Slenderness ratio – Design of single section and compound section compression members – Design of laced and battened type columns – Design of column bases – Gusseted base

UNIT IV BEAMS

0

Design of laterally supported and unsupported beams – Built up beams – Beams subjected to uniaxial and biaxial bending – Design of plate girders - Intermediate and bearing stiffeners – Flange and web splices.

UNIT V ROOF TRUSSES AND INDUSTRIAL STRUCTURES

9

Roof trusses – Roof and side coverings – Design of purlin and elements of truss; end bearing – Design of gantry girder.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

 The students would have knowledge on the design of structural steel members subjected to compressive, tensile and bending forces, as per current code and also know to design structural systems such as roof trusses and gantry girders.

TEXTBOOKS:

- 1. Gambhir. M.L., "Fundamentals of Structural Steel Design", McGraw Hill Education India Pvt. Ltd., 2013
- 2. Shiyekar. M.R., "Limit State Design in Structural Steel", Prentice Hall of India Pvt. Ltd, Learning Pvt. Ltd., 2nd Edition, 2013.
- 3. Subramanian.N, "Design of Steel Structures", Oxford University Press, New Delhi, 2013.

- 1. Narayanan.R.et.al. "Teaching Resource on Structural Steel Design", INSDAG, Ministry of Steel Publications, 2002
- 2. Duggal. S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing Company, 2005
- 3. Bhavikatti.S.S, "Design of Steel Structures" By Limit State Method as per IS:800–2007, IK International Publishing House Pvt. Ltd., 2009
- 4. Shah.V.L. and Veena Gore, "Limit State Design of Steel Structures", IS 800–2007 Structures Publications, 2009.
- 5. IS800:2007, General Construction In Steel Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi, 2007

RAILWAYS, AIRPORTS AND HARBOUR ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

• To expose the students to Railway planning, design, construction and maintenance and planning and design principles of Airports and Harbours.

UNIT I RAILWAY PLANNING

10

Significance of Road, Rail, Air and Water transports - Coordination of all modes to achieve sustainability - Elements of permanent way - Rails, Sleepers, Ballast, rail fixtures and fastenings, - Track Stress, coning of wheels, creep in rails, defects in rails - Route alignment surveys, conventional and modern methods- - Soil suitability analysis - Geometric design of railways, gradient, super elevation, widening of gauge on curves- Points and Crossings.

UNIT II RAILWAY CONSTRUCTION AND MAINTENANCE

9

Earthwork – Stabilization of track on poor soil — Tunneling Methods, drainage and ventilation — Calculation of Materials required for track laying - Construction and maintenance of tracks – Modern methods of construction & maintenance - Railway stations and yards and passenger amenities- Urban rail – Infrastructure for Metro, Mono and underground railways.

UNIT III AIRPORT PLANNING

8

Air transport characteristics-airport classification-air port planning: objectives, components, layout characteristics, socio-economic characteristics of the Catchment area, criteria for airport site selection and ICAO stipulations, Typical airport layouts, Case studies, Parking and circulation area.

UNIT IV AIRPORT DESIGN

8

Runway Design: Orientation, Wind Rose Diagram - Runway length - Problems on basic and Actual Length, Geometric design of runways, Configuration and Pavement Design Principles - Elements of Taxiway Design - Airport Zones - Passenger Facilities and Services - Runway and Taxiway Markings and lighting.

UNIT V HARBOUR ENGINEERING

10

Definition of Basic Terms: Harbor, Port, Satellite Port, Docks, Waves and Tides – Planning and Design of Harbours: Requirements, Classification, Location and Design Principles – Harbour Layout and Terminal Facilities – Coastal Structures: Piers, Break waters, Wharves, Jetties, Quays, Spring Fenders, Dolphins and Floating Landing Stage – Inland Water Transport – Wave action on Coastal Structures and Coastal Protection Works – Environmental concern of Port Operations – Coastal Regulation Zone, 2011.

OUTCOMES:

TOTAL: 45 PERIODS

• On completing the course, the students will have the ability to Plan and Design various civil Engineering aspects of Railways, Airports and Harbour.

TEXTBOOKS:

- 1. Saxena Subhash C and Satyapal Arora, "A Course in Railway Engineering", Dhanpat Rai and Sons, Delhi, 2003
- 2. Satish Chandra and Agarwal M.M, "Railway Engineering", 2nd Edition, Oxford University Press. New Delhi. 2013.
- 3. Khanna S K, Arora M G and Jain S S, "Airport Planning and Design", Nemchand and Brothers, Roorkee, 2012.
- 4. Bindra S P, "A Course in Docks and Harbour Engineering", Dhanpat Rai and Sons, New Delhi, 2013

- 1. Rangwala, "Railway Engineering", Charotar Publishing House, 2013.
- 2. Rangwala, "Airport Engineering", Charotar Publishing House, 2013.
- 3. Rangwala, "Harbor Engineering", Charotar Publishing House, 2013.

RAILWAYS, AIRPORTS AND HARBOUR ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

• To expose the students to Railway planning, design, construction and maintenance and planning and design principles of Airports and Harbours.

UNIT I RAILWAY PLANNING

10

Significance of Road, Rail, Air and Water transports - Coordination of all modes to achieve sustainability - Elements of permanent way - Rails, Sleepers, Ballast, rail fixtures and fastenings, - Track Stress, coning of wheels, creep in rails, defects in rails - Route alignment surveys, conventional and modern methods- - Soil suitability analysis - Geometric design of railways, gradient, super elevation, widening of gauge on curves- Points and Crossings.

UNIT II RAILWAY CONSTRUCTION AND MAINTENANCE

9

Earthwork – Stabilization of track on poor soil — Tunneling Methods, drainage and ventilation — Calculation of Materials required for track laying - Construction and maintenance of tracks – Modern methods of construction & maintenance - Railway stations and yards and passenger amenities- Urban rail – Infrastructure for Metro, Mono and underground railways.

UNIT III AIRPORT PLANNING

8

Air transport characteristics-airport classification-air port planning: objectives, components, layout characteristics, socio-economic characteristics of the Catchment area, criteria for airport site selection and ICAO stipulations, Typical airport layouts, Case studies, Parking and circulation area.

UNIT IV AIRPORT DESIGN

8

Runway Design: Orientation, Wind Rose Diagram - Runway length - Problems on basic and Actual Length, Geometric design of runways, Configuration and Pavement Design Principles - Elements of Taxiway Design - Airport Zones - Passenger Facilities and Services - Runway and Taxiway Markings and lighting.

UNIT V HARBOUR ENGINEERING

10

Definition of Basic Terms: Harbor, Port, Satellite Port, Docks, Waves and Tides – Planning and Design of Harbours: Requirements, Classification, Location and Design Principles – Harbour Layout and Terminal Facilities – Coastal Structures: Piers, Break waters, Wharves, Jetties, Quays, Spring Fenders, Dolphins and Floating Landing Stage – Inland Water Transport – Wave action on Coastal Structures and Coastal Protection Works – Environmental concern of Port Operations – Coastal Regulation Zone, 2011.

OUTCOMES:

TOTAL: 45 PERIODS

• On completing the course, the students will have the ability to Plan and Design various civil Engineering aspects of Railways, Airports and Harbour.

TEXTBOOKS:

- 1. Saxena Subhash C and Satyapal Arora, "A Course in Railway Engineering", Dhanpat Rai and Sons, Delhi, 2003
- 2. Satish Chandra and Agarwal M.M, "Railway Engineering", 2nd Edition, Oxford University Press. New Delhi. 2013.
- 3. Khanna S K, Arora M G and Jain S S, "Airport Planning and Design", Nemchand and Brothers, Roorkee, 2012.
- 4. Bindra S P, "A Course in Docks and Harbour Engineering", Dhanpat Rai and Sons, New Delhi, 2013

- 1. Rangwala, "Railway Engineering", Charotar Publishing House, 2013.
- 2. Rangwala, "Airport Engineering", Charotar Publishing House, 2013.
- 3. Rangwala, "Harbor Engineering", Charotar Publishing House, 2013.

- 4. Oza.H.P. and Oza.G.H., "A course in Docks & Harbour Engineering". Charotar Publishing Co., 2013
- 5. Mundrey J.S. "A course in Railway Track Engineering". Tata McGraw Hill, 2007.
- 6. Srinivasan R. Harbour, "Dock and Tunnel Engineering", 26th Edition 2013

ENVIRONMENTAL ENGINEERING II

LTPC 3 0 0 3

OBJECTIVES:

• To educate the students on the principles and design of Sewage Collection, Conveyance, treatment and disposal.

UNIT I PLANNING FOR SEWERAGE SYSTEMS

7

Sources of wastewater generation – Effects – Estimation of sanitary sewage flow – Estimation of storm runoff – Factors affecting Characteristics and composition of sewage and their significance – Effluent standards – Legislation requirements.

UNIT II SEWER DESIGN

Ω

Sewerage – Hydraulics of flow in sewers – Objectives – Design period - Design of sanitary and storm sewers – Small bore systems - Computer applications – Laying, joining & testing of sewers – appurtenances – Pumps – selection of pumps and pipe Drainage -. Plumbing System for Buildings – One pipe and two pipe system.

UNIT III PRIMARY TREATMENT OF SEWAGE

9

Objective – Selection of treatment processes – Principles, Functions, Design and Drawing of Units - Onsite sanitation - Septic tank with dispersion - Grey water harvesting – Primary treatment – Principles, functions design and drawing of screen, grit chambers and primary sedimentation tanks – Construction, operation and Maintenance aspects.

UNIT IV SECONDARY TREATMENT OF SEWAGE

12

Objective – Selection of Treatment Methods – Principles, Functions, Design and Drawing of Units - Activated Sludge Process and Trickling filter – Oxidation ditches, UASB – Waste Stabilization Ponds – Reclamation and Reuse of sewage - sewage recycle in residential complex - Recent Advances in Sewage Treatment – Construction and Operation & Maintenance of Sewage Treatment Plants.

UNIT V DISPOSAL OF SEWAGE AND SLUDGE MANAGEMENT

9

Standards for Disposal - Methods - dilution - Self purification of surface water bodies - Oxygen sag curve - Land disposal - Sludge characterization - Thickening - Sludge digestion - Biogas recovery - Sludge Conditioning and Dewatering - disposal - Advances in Sludge Treatment and disposal.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will have

- ability to estimate sewage generation and design sewer system including sewage pumping stations
- required understanding on the characteristics and composition of sewage, self purification of streams
- ability to perform basic design of the unit operations and processes that are used in sewage treatment

TEXTBOOKS:

- 1. Garg, S.K., "Environmental Engineering" Vol. II, Khanna Publishers, New Delhi, 2003.
- 2. Punmia, B.C., Jain, A.K., and Jain. A., "Environmental Engineering", Vol.II, Lakshmi Publications, News letter, 2005.

REFERENCES:

- 1. "Manual on Sewerage and Sewage Treatment", CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 1997.
- 2. Metcalf & Eddy, "Wastewater Engineering" Treatment and Reuse, Tata McGraw Hill Company, New Delhi, 2003.
- 3. Karia G L & Christian R A, "Wastewater Treatment", Prentice Hall of India, New Delhi, 2013.

CE6611

ENVIRONMENTAL ENGINEERING LABORATORY

L T P C 0 0 3 2

TOTAL: 45 PERIODS

OBJECTIVES:

• To understand the sampling and preservation methods and significance of characterization of wastewater.

LIST OF EXPERIMENTS:

- 1. Determination of Ammonia Nitrogen in wastewater.
- 2. Coagulation and Precipitation process for treating waste water
- 3. Determination of suspended, volatile, fixed and settleable solids in wastewater.
- 4. B.O.D. test
- 5. C.O.D. test
- 6. Nitrate in wastewater.
- 7. Phosphate in wastewater.
- 8. Determination of Calcium, Potassium and Sodium.
- 9. Heavy metals determination Chromium, Lead and Zinc. (Demonstration only)

OUTCOMES:

• The students completing the course will be able to characterize wastewater and conduct treatability studies.

REFERENCE:

1. Standards Methods for the Examination of Water and Wastewater, 17th Edition, WPCF, APHA and AWWA, USA, 1989.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.	Description of Equipment	Quantity
No.		
1.	Oxygen analyzer	1
2.	Spectrophotometer	1
3.	Ion – selective electrode	1
4.	Sodium Potassium Analyzer – Flame Photometer	1
5.	Gas Chromatography	1
6.	Atomic absorption spectroscopy (Ni, Zn, Pb)	1
7.	Nephlo - turbidity meter	1
8.	BOD Analyser	1
9.	COD Analyser	1
10.	Jar Test Apparatus	1

OBJECTIVES:

• To learn the principles and procedures of testing Concrete and Highway materials and to get hands on experience by conducting the tests and evolving inferences.

LIST OF EXPERIMENTS

I. TESTS ON FRESH CONCRETE

- 1. Slump cone test
- 2. Flow table
- 3. Compaction factor
- 4. Vee bee test.

II. TESTS ON HARDENED CONCRETE

- 1. Compressive strength Cube & Cylinder
- 2. Flexure test
- 3. Modulus of Elasticity

III. TESTS ON AGGREGATES

- 1. Specific Gravity
- 2. Gradation of Aggregate
- 3. Crushing Strength
- 4. Abrasion Value
- 5. Impact Value
- 6. Water Absorption
- 7. Flakiness and Elongation Indices

IV. TESTS ON BITUMEN

- 1. Penetration
- 2. Softening Point
- 3. Ductility
- 4. Flash and fire points.
- 5. Viscosity

V. TESTS ON BITUMINOUS MIXES

- 1. Determination of Binder Content
- 2. Marshall Stability and Flow values
- 3. Density

OUTCOMES:

 Student knows the techniques to characterize various pavement materials through relevant tests.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No	Description of Equipment	Quantity
1.	Concrete cube moulds	6
2.	Concrete cylinder moulds	3
3.	Concrete Prism moulds	3
4.	Sieves	1set
5.	Concrete Mixer	1
6.	Slump cone	3
7.	Flow table	1
8.	Vibrator	1
9.	Trovels and planers	1 set
10.	UTM – 400 kN capacity	1
11.	Vee Bee Consistometer	1
12.	Aggregate impact testing machine	1
13.	CBR Apparatus	1

OBJECTIVES:

• To learn the principles and procedures of testing Concrete and Highway materials and to get hands on experience by conducting the tests and evolving inferences.

LIST OF EXPERIMENTS

I. TESTS ON FRESH CONCRETE

- 1. Slump cone test
- 2. Flow table
- 3. Compaction factor
- 4. Vee bee test.

II. TESTS ON HARDENED CONCRETE

- 1. Compressive strength Cube & Cylinder
- 2. Flexure test
- 3. Modulus of Elasticity

III. TESTS ON AGGREGATES

- 1. Specific Gravity
- 2. Gradation of Aggregate
- 3. Crushing Strength
- 4. Abrasion Value
- 5. Impact Value
- 6. Water Absorption
- 7. Flakiness and Elongation Indices

IV. TESTS ON BITUMEN

- 1. Penetration
- 2. Softening Point
- 3. Ductility
- 4. Flash and fire points.
- 5. Viscosity

V. TESTS ON BITUMINOUS MIXES

- 1. Determination of Binder Content
- 2. Marshall Stability and Flow values
- 3. Density

OUTCOMES:

 Student knows the techniques to characterize various pavement materials through relevant tests.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No	Description of Equipment	Quantity
1.	Concrete cube moulds	6
2.	Concrete cylinder moulds	3
3.	Concrete Prism moulds	3
4.	Sieves	1set
5.	Concrete Mixer	1
6.	Slump cone	3
7.	Flow table	1
8.	Vibrator	1
9.	Trovels and planers	1 set
10.	UTM – 400 kN capacity	1
11.	Vee Bee Consistometer	1
12.	Aggregate impact testing machine	1
13.	CBR Apparatus	1

14.	Blains Apparatus	1
15.	Los - Angeles abrasion testing machine	1
16.	Marshall Stability Apparatus	1

CE6701 STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

 The main objective of the course is to introduce dynamic loading and the dynamic performance of the structures to the students. Different types of dynamic loading also to be discussed. The detailed study on the performance of structures under earthquake loading is also one of the focus of the course.

UNIT I THEORY OF VIBRATIONS

9

Difference between static loading and dynamic loading – Degree of freedom – idealisation of structure as single degree of freedom system – Formulation of Equations of motion of SDOF system - D'Alemberts principles – effect of damping – free and forced vibration of damped and undamped structures – Response to harmonic and periodic forces.

UNIT II MULTIPLE DEGREE OF FREEDOM SYSTEM

9

Two degree of freedom system – modes of vibrations – formulation of equations of motion of multi degree of freedom (MDOF) system - Eigen values and Eigen vectors – Response to free and forced vibrations - damped and undamped MDOF system – Modal superposition methods.

UNIT III ELEMENTS OF SEISMOLOGY

9

Elements of Engineering Seismology - Causes of Earthquake - Plate Tectonic theory - Elastic rebound Theory - Characteristic of earthquake - Estimation of earthquake parameters - Magnitude and intensity of earthquakes - Spectral Acceleration.

UNIT IV RESPONSE OF STRUCTURES TO EARTHQUAKE

g

Effect of earthquake on different type of structures — Behaviour of Reinforced Cement Concrete, Steel and Prestressed Concrete Structure under earthquake loading — Pinching effect — Bouchinger Effects — Evaluation of earthquake forces as per IS:1893 — 2002 - Response Spectra — Lessons learnt from past earthquakes.

UNIT V DESIGN METHODOLOGY

9

Causes of damage – Planning considerations / Architectural concepts as per IS:4326 – 1993 – Guidelines for Earthquake resistant design – Earthquake resistant design for masonry and Reinforced Cement Concrete buildings – Later load analysis – Design and detailing as per IS:13920 – 1993.

OUTCOMES:

TOTAL: 45 PERIODS

• At the end of the course, student will have the knowledge to analyse structures subjected to dynamic loading and to design the structures for seismic loading as per code provisions.

TEXTBOOKS:

- 1. Chopra, A.K., "Dynamics of Structures Theory and Applications to Earthquake Engineering", 4th Edition, Pearson Education, 2011.
- 2. Agarwal. P and Shrikhande. M., "Earthquake Resistant Design of Structures", Prentice Hall of India Pvt. Ltd. 2007

- 1. Biggs, J.M., "Introduction to Structural Dynamics", McGraw Hill Book Co., New York, 1964
- 2. Dowrick, D.J., "Earthquake Resistant Design", John Wiley & Sons, London, 2009
- 3. Paz, M. and Leigh.W. "Structural Dynamics Theory & Computation", 4th Edition, CBS Publishers & Distributors, Shahdara, Delhi, 2006.

UNIT V CONTROLLING

C

System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

TOTAL: 45 PERIODS

TOTAL: 180 PERIODS

OUTCOMES:

• Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management

TEXTBOOKS:

- 1. Stephen P. Robbins & Mary Coulter, "Management", 10th Edition, Prentice Hall (India) Pvt. Ltd., 2009.
- 2. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.

REFERENCES:

- 1. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" 7th Edition, Pearson Education, 2011.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Harold Koontz & Heinz Weihrich "Essentials of management" Tata McGraw Hill, 1998.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata McGraw Hill, 1999

CE6811 PROJECT WORK L T P C 0 0 12 6

OBJECTIVES:

• To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

OUTCOMES:

• On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

CE6001 HYDROLOGY LTPC

OBJECTIVES:

 To impart knowledge on hydrological cycle, spatial and temporal measurement and analysis of rainfall and their applications including flood routing and ground water hydrology.

UNIT I PRECIPITATION

9

Hydrologic cycle – Types of precipitation – Forms of precipitation – Measurement of Rainfall – Spatial measurement methods – Temporal measurement methods – Frequency analysis of point rainfall – Intensity, duration, frequency relationship – Probable maximum precipitation.

UNIT II ABSTRACTION FROM PRECIPITATION

9

Losses from precipitation – Evaporation process – Reservoir evaporation – Infiltration process – Infiltration capacity – Measurement of infiltration – Infiltration indices – Effective rainfall.

UNIT III HYDROGRAPHS

9

Factors affecting Hydrograph – Baseflow separation – Unit hydrograph – Derivation of unit hydrograph – S curve hydrograph – Unit hydrograph of different deviations - Synthetic Unit Hydrograph

UNIT IV FLOODS AND FLOOD ROUTING

9

Flood frequency studies – Recurrence interval – Gumbel's method – Flood routing – Reservoir flood routing – Muskingum's Channel Routing – Flood control

UNIT V GROUND WATER HYDROLOGY

9

Types of aquifers – Darcy's law – Dupuit's assumptions – Confined Aquifer – Unconfined Aquifer – Recuperation test – Transmissibility – Specific capacity – Pumping test – Steady flow analysis only.

TOTAL: 45 PERIODS

OUTCOMES:

- The students gain the knowledge needed on hydrologic cycle, hydrometeorology and formation of precipitation.
- The students are able to apply the various methods of field measurements and empirical formulae for estimating the various losses of precipitation, stream flow, flood and flood routing.
- The students will know the basics of groundwater and hydraulics of subsurface flows.

TEXTBOOKS:

- 1. Subramanya, K., "Engineering Hydrology", Tata McGraw Hill Publishing Co., Ltd., 2000
- 2. Raghunath, H.M., "Hydrology", Wiley Eastern Ltd., 2000
- 3. Jayarami Reddy .P. Hydrology, Tata McGraw Hill, 2008.
- 4. Madan Mohan das and Mimi Das Saikia, Hydrology, Prentice Hall of India, 2013.

REFERENCES:

- 1. Chow, V.T. and Maidment D.R., "Hydrology for Engineers", McGraw-Hill Inc., Ltd., 2000
- 2. Singh, V.P., "Hydrology", McGraw Hill Inc., Ltd., 2000.

CE6002 CONCRETE TECHNOLOGY

LTPC 3 0 0 3

OBJECTIVES:

• To impart knowledge to the students on the properties of materials for concrete by suitable tests, mix design for concrete and special concretes.

UNIT I CONSTITUENT MATERIALS

9

OBJECTIVES:

 To impart knowledge on hydrological cycle, spatial and temporal measurement and analysis of rainfall and their applications including flood routing and ground water hydrology.

UNIT I PRECIPITATION

9

Hydrologic cycle – Types of precipitation – Forms of precipitation – Measurement of Rainfall – Spatial measurement methods – Temporal measurement methods – Frequency analysis of point rainfall – Intensity, duration, frequency relationship – Probable maximum precipitation.

UNIT II ABSTRACTION FROM PRECIPITATION

9

Losses from precipitation – Evaporation process – Reservoir evaporation – Infiltration process – Infiltration capacity – Measurement of infiltration – Infiltration indices – Effective rainfall.

UNIT III HYDROGRAPHS

9

Factors affecting Hydrograph – Baseflow separation – Unit hydrograph – Derivation of unit hydrograph – S curve hydrograph – Unit hydrograph of different deviations - Synthetic Unit Hydrograph

UNIT IV FLOODS AND FLOOD ROUTING

9

Flood frequency studies – Recurrence interval – Gumbel's method – Flood routing – Reservoir flood routing – Muskingum's Channel Routing – Flood control

UNIT V GROUND WATER HYDROLOGY

9

Types of aquifers – Darcy's law – Dupuit's assumptions – Confined Aquifer – Unconfined Aquifer – Recuperation test – Transmissibility – Specific capacity – Pumping test – Steady flow analysis only.

TOTAL: 45 PERIODS

OUTCOMES:

- The students gain the knowledge needed on hydrologic cycle, hydrometeorology and formation of precipitation.
- The students are able to apply the various methods of field measurements and empirical formulae for estimating the various losses of precipitation, stream flow, flood and flood routing.
- The students will know the basics of groundwater and hydraulics of subsurface flows.

TEXTBOOKS:

- 1. Subramanya, K., "Engineering Hydrology", Tata McGraw Hill Publishing Co., Ltd., 2000
- 2. Raghunath, H.M., "Hydrology", Wiley Eastern Ltd., 2000
- 3. Jayarami Reddy .P. Hydrology, Tata McGraw Hill, 2008.
- 4. Madan Mohan das and Mimi Das Saikia, Hydrology, Prentice Hall of India, 2013.

REFERENCES:

- 1. Chow, V.T. and Maidment D.R., "Hydrology for Engineers", McGraw-Hill Inc., Ltd., 2000
- 2. Singh, V.P., "Hydrology", McGraw Hill Inc., Ltd., 2000.

CE6002 CONCRETE TECHNOLOGY

LTPC 3 0 0 3

OBJECTIVES:

• To impart knowledge to the students on the properties of materials for concrete by suitable tests, mix design for concrete and special concretes.

UNIT I CONSTITUENT MATERIALS

9

Cement-Different types-Chemical composition and Properties -Tests on cement-IS Specifications-Aggregates-Classification-Mechanical properties and tests as per BIS Grading requirements-Water- Quality of water for use in concrete.

UNIT II CHEMICAL AND MINERAL ADMIXTURES

9

Accelerators-Retarders- Plasticisers- Super plasticizers- Water proofers - Mineral Admixtures like Fly Ash, Silica Fume, Ground Granulated Blast Furnace Slag and Metakaoline - Their effects on concrete properties

UNIT III PROPORTIONING OF CONCRETE MIX

9

Principles of Mix Proportioning-Properties of concrete related to Mix Design-Physical properties of materials required for Mix Design - Design Mix and Nominal Mix-BIS Method of Mix Design - Mix Design Examples

UNIT IV FRESH AND HARDENED PROPERTIES OF CONCRETE

9

Workability-Tests for workability of concrete-Slump Test and Compacting factor Test-Segregation and Bleeding-Determination of Compressive and Flexural strength as per BIS - Properties of Hardened concrete-Determination of Compressive and Flexural strength-Stress-strain curve for concrete-Determination of Young's Modulus.

UNIT V SPECIAL CONCRETES

9

Light weight concretes - High strength concrete - Fibre reinforced concrete - Ferrocement - Ready mix concrete - SIFCON-Shotcrete - Polymer concrete - High performance concrete- Geopolymer Concrete

TOTAL: 45 PERIODS

OUTCOMES:

 The student will possess the knowledge on properties of materials required for concrete tests on those materials and design procedures for making conventional and special concretes.

TEXTBOOKS:

- 1. Gupta.B.L., Amit Gupta, "Concrete Technology", Jain Book Agency, 2010.
- 2. Shetty, M.S, "Concrete Technology", S.Chand and Company Ltd, New Delhi, 2003

REFERENCES:

- 1. Santhakumar, A.R; "Concrete Technology", Oxford University Press, New Delhi, 2007
- 2. Neville, A.M; "Properties of Concrete", Pitman Publishing Limited, London,1995
- 3. Gambir, M.L; "Concrete Technology", 3rd Edition, Tata McGraw Hill Publishing Co Ltd, New Delhi, 2007
- 4. IS10262-1982 Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi, 1998

CE6003

REMOTE SENSING TECHNIQUES AND GIS

LTPC 3 0 0 3

OBJECTIVES:

- To introduce the students to the basic concepts and principles of various components of remote sensing.
- To provide an exposure to GIS and its practical applications in civil engineering.

UNIT I EMR AND ITS INTERACTION WITH ATMOSPHERE & EARTH MATERIAL 9
Definition of remote sensing and its components – Electromagnetic spectrum – wavelength regions important to remote sensing – Wave theory, Particle theory, Stefan-Boltzman and Wein's

Cement-Different types-Chemical composition and Properties -Tests on cement-IS Specifications-Aggregates-Classification-Mechanical properties and tests as per BIS Grading requirements-Water- Quality of water for use in concrete.

UNIT II CHEMICAL AND MINERAL ADMIXTURES

9

Accelerators-Retarders- Plasticisers- Super plasticizers- Water proofers - Mineral Admixtures like Fly Ash, Silica Fume, Ground Granulated Blast Furnace Slag and Metakaoline - Their effects on concrete properties

UNIT III PROPORTIONING OF CONCRETE MIX

9

Principles of Mix Proportioning-Properties of concrete related to Mix Design-Physical properties of materials required for Mix Design - Design Mix and Nominal Mix-BIS Method of Mix Design - Mix Design Examples

UNIT IV FRESH AND HARDENED PROPERTIES OF CONCRETE

9

Workability-Tests for workability of concrete-Slump Test and Compacting factor Test-Segregation and Bleeding-Determination of Compressive and Flexural strength as per BIS - Properties of Hardened concrete-Determination of Compressive and Flexural strength-Stress-strain curve for concrete-Determination of Young's Modulus.

UNIT V SPECIAL CONCRETES

9

Light weight concretes - High strength concrete - Fibre reinforced concrete - Ferrocement - Ready mix concrete - SIFCON-Shotcrete - Polymer concrete - High performance concrete- Geopolymer Concrete

TOTAL: 45 PERIODS

OUTCOMES:

 The student will possess the knowledge on properties of materials required for concrete tests on those materials and design procedures for making conventional and special concretes.

TEXTBOOKS:

- 1. Gupta.B.L., Amit Gupta, "Concrete Technology", Jain Book Agency, 2010.
- 2. Shetty, M.S, "Concrete Technology", S.Chand and Company Ltd, New Delhi, 2003

REFERENCES:

- 1. Santhakumar, A.R; "Concrete Technology", Oxford University Press, New Delhi, 2007
- 2. Neville, A.M; "Properties of Concrete", Pitman Publishing Limited, London,1995
- 3. Gambir, M.L; "Concrete Technology", 3rd Edition, Tata McGraw Hill Publishing Co Ltd, New Delhi, 2007
- 4. IS10262-1982 Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi, 1998

CE6003

REMOTE SENSING TECHNIQUES AND GIS

LTPC 3 0 0 3

OBJECTIVES:

- To introduce the students to the basic concepts and principles of various components of remote sensing.
- To provide an exposure to GIS and its practical applications in civil engineering.

UNIT I EMR AND ITS INTERACTION WITH ATMOSPHERE & EARTH MATERIAL 9
Definition of remote sensing and its components – Electromagnetic spectrum – wavelength regions important to remote sensing – Wave theory, Particle theory, Stefan-Boltzman and Wein's

Displacement Law – Atmospheric scattering, absorption – Atmospheric windows – spectral signature concepts – typical spectral reflective characteristics of water, vegetation and soil.

UNIT II PLATFORMS AND SENSORS

9

Types of platforms – orbit types, Sun-synchronous and Geosynchronous – Passive and Active sensors – resolution concept – Pay load description of important Earth Resources and Meteorological satellites – Airborne and spaceborne TIR and microwave sensors.

UNIT III IMAGE INTERPRETATION AND ANALYSIS

9

Types of Data Products – types of image interpretation – basic elements of image interpretation - visual interpretation keys – Digital Image Processing – Pre-processing – image enhancement techniques – multispectral image classification – Supervised and unsupervised.

UNIT IV GEOGRAPHIC INFORMATION SYSTEM

9

Introduction – Maps – Definitions – Map projections – types of map projections – map analysis – GIS definition – basic components of GIS – standard GIS softwares – Data type – Spatial and non-spatial (attribute) data – measurement scales – Data Base Management Systems (DBMS).

UNIT V DATA ENTRY, STORAGE AND ANALYSIS

9

TOTAL: 45 PERIODS

Data models – vector and raster data – data compression – data input by digitization and scanning – attribute data analysis – integrated data analysis – Modeling in GIS Highway alignment studies – Land Information System.

OUTCOMES:

On completion of the course the students will have knowledge on

- Principles of Remote Sensing and GIS
- Analysis of RS and GIS data and interpreting the data for modeling applications

TEXTBOOKS:

- 1. Lillesand, T.M., Kiefer, R.W. and J.W.Chipman. "Remote Sensing and Image Interpretation" 5th Edition., John Willey and Sons Asia Pvt. Ltd., New Delhi, 2004.
- 2. Anji Reddy, M. "Textbook of Remote Sensing and Geographical Information System" 2nd edition. BS Publications, Hyderabad, 2001.

REFERENCES:

- 1. Lo. C.P.and A.K.W.Yeung, "Concepts and Techniques of Geographic Information Systems", Prentice Hall of India Pvt. Ltd., New Delhi, 2002
- 2. Peter A.Burrough, Rachael A. McDonnell, " Principles of GIS", Oxford University Press, 2000
- 3. Ian Heywood "An Introduction to GIS", Pearson Education Asia, 2000

CE6004 ARCHITECTURE

LTPC 3 0 0 3

OBJECTIVES:

 To provide the basic knowledge on the principles and functional design of buildings relating to the environment and climate.

UNIT I ARCHITECTURAL DESIGN

8

Architectural Design – an analysis – integration of function and aesthetics – Introduction to basic elements and principles of design.

UNIT II SITE PLANNING

9

Surveys - Site analysis - Development Control - Layout regulations - Layout design concepts.

Displacement Law – Atmospheric scattering, absorption – Atmospheric windows – spectral signature concepts – typical spectral reflective characteristics of water, vegetation and soil.

UNIT II PLATFORMS AND SENSORS

9

Types of platforms – orbit types, Sun-synchronous and Geosynchronous – Passive and Active sensors – resolution concept – Pay load description of important Earth Resources and Meteorological satellites – Airborne and spaceborne TIR and microwave sensors.

UNIT III IMAGE INTERPRETATION AND ANALYSIS

9

Types of Data Products – types of image interpretation – basic elements of image interpretation - visual interpretation keys – Digital Image Processing – Pre-processing – image enhancement techniques – multispectral image classification – Supervised and unsupervised.

UNIT IV GEOGRAPHIC INFORMATION SYSTEM

9

Introduction – Maps – Definitions – Map projections – types of map projections – map analysis – GIS definition – basic components of GIS – standard GIS softwares – Data type – Spatial and non-spatial (attribute) data – measurement scales – Data Base Management Systems (DBMS).

UNIT V DATA ENTRY, STORAGE AND ANALYSIS

9

TOTAL: 45 PERIODS

Data models – vector and raster data – data compression – data input by digitization and scanning – attribute data analysis – integrated data analysis – Modeling in GIS Highway alignment studies – Land Information System.

OUTCOMES:

On completion of the course the students will have knowledge on

- Principles of Remote Sensing and GIS
- Analysis of RS and GIS data and interpreting the data for modeling applications

TEXTBOOKS:

- 1. Lillesand, T.M., Kiefer, R.W. and J.W.Chipman. "Remote Sensing and Image Interpretation" 5th Edition., John Willey and Sons Asia Pvt. Ltd., New Delhi, 2004.
- 2. Anji Reddy, M. "Textbook of Remote Sensing and Geographical Information System" 2nd edition. BS Publications, Hyderabad, 2001.

REFERENCES:

- 1. Lo. C.P.and A.K.W.Yeung, "Concepts and Techniques of Geographic Information Systems", Prentice Hall of India Pvt. Ltd., New Delhi, 2002
- 2. Peter A.Burrough, Rachael A. McDonnell, " Principles of GIS", Oxford University Press, 2000
- 3. Ian Heywood "An Introduction to GIS", Pearson Education Asia, 2000

CE6004 ARCHITECTURE

LTPC 3 0 0 3

OBJECTIVES:

 To provide the basic knowledge on the principles and functional design of buildings relating to the environment and climate.

UNIT I ARCHITECTURAL DESIGN

8

Architectural Design – an analysis – integration of function and aesthetics – Introduction to basic elements and principles of design.

UNIT II SITE PLANNING

9

Surveys - Site analysis - Development Control - Layout regulations - Layout design concepts.

UNIT III BUILDING TYPES

12

Residential, institutional, commercial and Industrial – Application of anthropometry and space standards-Inter relationships of functions – Safety standards – Building rules and regulations – Integration of building services – Interior design

UNIT IV CLIMATE AND ENVIRONMENTAL RESPONSIVE DESIGN

8

Man and environment interaction- Factors that determine climate – Characteristics of climate types – Design for various climate types – Passive and active energy controls – Green building concept

UNIT V TOWN PLANNING

8

Planning – Definition, concepts and processes- Urban planning standards and zoning regulations- Urban renewal – Conservation – Principles of Landscape design

TOTAL: 45 PERIODS

OUTCOMES:

• Students will have the ability to plan any civil engineering project by incorporating various aspect of environment and climate of the project area. Further they know various rules and regulation of town planning and development authorities.

REFERENCES:

- 1. Pramar. V.S. "Design fundamental in Architecture", Somaiya Publications Pvt. Ltd., New Delhi. 1997.
- 2. Muthu Shoba Mohan.G.,"Principles of Architecture"., Oxford University Press., New Delhi, 2006.
- 3. Rangwala. S.C. "Town Planning" Charotar Publishing House., Anand, 2005.
- 4. De Chiara.J., Michael. J. Crosbie.,"Time Saver Standards for Building Types", McGraw Hill Publishing Company, New York, 2001.
- 5. Arvind Krishnan, Nick Baker, Simos Yannas, Szokolay.S.V., "Climate Responsive Architecture"., A Design Hand Book for Energy Efficient Building, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2007.
- 6. National Building Code of India., SP7 (Group 1) Bureau of Indian Standards, New Delhi, 2005.

GE6075

PROFESSIONAL ETHICS IN ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

 To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I HUMAN VALUES

10

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self confidence – Character – Spirituality – Introduction to Yoga and meditation for professional excellence and stress management.

UNIT II ENGINEERING ETHICS

Ç

Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Models of professional roles - Theories about right action – Self-interest – Customs and Religion – Uses of Ethical Theories

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION

9

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

9

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk - Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination

UNIT V GLOBAL ISSUES

8

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership – Code of Conduct – Corporate Social Responsibility

TOTAL: 45 PERIODS

OUTCOMES:

 Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society.

TEXTBOOKS:

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

REFERENCES:

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003
- 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001
- 5. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" McGraw Hill education, India Pvt. Ltd., New Delhi 2013
- 6. World Community Service Centre, 'Value Education', Vethathiri publications, Erode, 2011

Web sources:

- 1. www.onlineethics.org
- 2. www.nspe.org
- 3. www.globalethics.org
- 4. www.ethics.org

CE6005 CONSTRUCTION PLANNING AND SCHEDULING

LTPC 3003

OBJECTIVES:

• To make the students to learn about planning of construction projects, scheduling procedures and techniques, cost and qualilty control projects and use of project information as decision making tool.

UNIT I CONSTRUCTION PLANNING

6

Basic concepts in the development of construction plans-choice of Technology and Construction method-Defining Work Tasks- Definition- Precedence relationships among activities-Estimating Activity Durations-Estimating Resource Requirements for work activities-coding systems.

UNIT II SCHEDULING PROCEDURES AND TECHNIQUES

12

Relevance of construction schedules-Bar charts - The critical path method-Calculations for critical path scheduling-Activity float and schedules-Presenting project schedules-Critical path scheduling for Activity-on-node and with leads, Lags and Windows-Calculations for scheduling with leads, lags and windows-Resource oriented scheduling-Scheduling with resource constraints and precedences -Use of Advanced Scheduling Techniques-Scheduling with uncertain durations-Crashing and time/cost trade offs -Improving the Scheduling process - Introduction to application software.

UNIT III COST CONTROL MONITORING AND ACCOUNTING

a

The cost control problem-The project Budget-Forecasting for Activity cost control - financial accounting systems and cost accounts-Control of project cash flows-Schedule control-Schedule and Budget updates-Relating cost and schedule information.

UNIT IV QUALITY CONTROL AND SAFETY DURING CONSTRUCTION

9

Quality and safety Concerns in Construction-Organizing for Quality and Safety-Work and Material Specifications-Total Quality control-Quality control by statistical methods -Statistical Quality control with Sampling by Attributes-Statistical Quality control by Sampling and Variables-Safety.

UNIT V ORGANIZATION AND USE OF PROJECT INFORMATION

9

Types of project information-Accuracy and Use of Information-Computerized organization and use of Information -Organizing information in databases-relational model of Data bases-Other conceptual Models of Databases-Centralized database Management systems-Databases and application programs-Information transfer and Flow.

OUTCOMES:

TOTAL: 45 PERIODS

 The student should be able to plan construction projects, schedule the activities using network diagrams, determine the cost of the project, control the cost of the project by creating cash flows and budgeting and to use the project information as decision making tool.

TEXTBOOKS:

- 1. Chitkara, K.K. "Construction Project Management Planning", Scheduling and Control, Tata McGraw Hill Publishing Co.. New Delhi, 2005
- 2. Srinath, L.S., "Pert and CPM Principles and Applications", Affiliated East West Press, 2001

REFERENCES:

- 1. Chris Hendrickson and Tung Au, "Project Management for Construction Fundamentals Concepts for Owners", Engineers, Architects and Builders, Prentice Hall, Pitsburgh, 2000.
- 2. Moder.J., Phillips. C. and Davis E, "Project Management with CPM", PERT and Precedence Diagramming, Van Nostrand Reinhold Co., 3rd Edition, 1985.
- 3. Willis., E.M., "Scheduling Construction projects", John Wiley and Sons, 1986.
- 4. Halpin, D.W., "Financial and Cost Concepts for Construction Management", John Wiley and Sons, New York, 1985.

CE6006

TRAFFIC ENGINEERING AND MANAGEMENT

LTPC 3 0 0 3

OBJECTIVES:

 To give an overview of Traffic engineering, traffic regulation, management and traffic safety with integrated approach in traffic planning as well.

UNIT I TRAFFIC PLANNING AND CHARACTERISTICS

9

Road Characteristics – Road user characteristics – PIEV theory – Vehicle – Performance characteristics – Fundamentals of Traffic Flow – Urban Traffic problems in India – Integrated planning of town ,country ,regional and all urban infrastructure – Towards Sustainable approach. – land use & transport and modal integration.

 Viva voce examination (evaluated by the internal examiner appointed by the HOD with the approval of HOI and external examiner appointed by the University – with equal Weightage) : 50 marks

TOTAL: 100 MARKS

CE2401 DESIGN OF REINFORCED CONCRETE & BRICK MASONRY STRUCTURES

LT PC 31 0 4

OBJECTIVE:

This course covers the design of Reinforced Concrete Structures such as Retaining Wall, Water Tanks, Staircases, Flat slabs and Principles of design pertaining to Box culverts, Mat foundation and Bridges. At the end of the course student has a comprehensive design knowledge related to structures, systems that are likely to be encountered in professional practice.

UNIT I RETAINING WALLS

12

Design of cantilever and counter fort retaining walls

UNIT II WATER TANKS

12

Underground rectangular tanks – Domes – Overhead circular and rectangular tanks – Design of staging and foundations

UNIT III SELECTED TOPICS

12

Design of staircases (ordinary and doglegged) – Design of flat slabs – Design of Reinforced concrete walls – Principles of design of mat foundation, box culvert and road bridges

UNIT IV YIELD LINE THEORY

12

Application of virtual work method to square, rectangular, circular and triangular slabs

UNIT V BRICK MASONRY

12

Introduction, Classification of walls, Lateral supports and stability, effective height of wall and columns, effective length of walls, design loads, load dispersion, permissible stresses, design of axially and eccentrically loaded brick walls

TUTORIAL: 15 TOTAL: 60 PERIODS

TEXT BOOKS

- 1. Krishna Raju, N., "Design of RC Structures", CBS Publishers and Distributors, Delhi, 2006
- 2. Dayaratnam, P., "Brick and Reinforced Brick Structures", Oxford & IBH Publishing House, 1997
- 3. Varghese, P.C., "Limit State Design of Reinforced Concrete Structures "Prentice hall of India Pvt Ltd New Delhi, 2007.

- 1. Mallick, D.K. and Gupta A.P., "Reinforced Concrete", Oxford and IBH Publishing Company
- 2. Syal, I.C. and Goel, A.K., "Reinforced Concrete Structures", A.H. Wheelers & Co. Pvt. Ltd., 1994
- 3. Ram Chandra.N. and Virendra Gehlot, "Limit State Design", Standard Book House.2004.

ESTIMATION AND QUANTITY SURVEYING

LTPC 3003

OBJECTIVE

This subject covers the various aspects of estimating of quantities of items of works involved in buildings, water supply and sanitary works, road works and irrigation works. This also covers the rate analysis, valuation of properties and preparation of reports for estimation of various items. At the end of this course the student shall be able to estimate the material quantities, prepare a bill of quantities, make specifications and prepare tender documents. Student should also be able to prepare value estimates.

UNIT I ESTIMATE OF BUILDINGS

11

Load bearing and framed structures – Calculation of quantities of brick work, RCC, PCC, Plastering, white washing, colour washing and painting / varnishing for shops, rooms, residential building with flat and pitched roof – Various types of arches – Calculation of brick work and RCC works in arches – Estimate of joineries for panelled and glazed doors, windows, ventilators, handrails etc.

UNIT II ESTIMATE OF OTHER STRUCTURES

10

Estimating of septic tank, soak pit — sanitary and water supply installations — water supply pipe line — sewer line — tube well — open well — estimate of bituminous and cement concrete roads — estimate of retaining walls — culverts — estimating of irrigation works — aqueduct, syphon, fall.

UNIT III SPECIFICATION AND TENDERS

8

Data – Schedule of rates – Analysis of rates – Specifications – sources – Detailed and general specifications – Tenders – Contracts – Types of contracts – Arbitration and legal requirements.

UNIT IV VALUATION

•

Necessity – Basics of value engineering – Capitalised value – Depreciation – Escalation – Value of building – Calculation of Standard rent – Mortgage – Lease

UNIT V REPORT PREPARATION

8

Principles for report preparation – report on estimate of residential building – Culvert – Roads – Water supply and sanitary installations – Tube wells – Open wells.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Dutta, B.N., "Estimating and Costing in Civil Engineering", UBS Publishers & Distributors Pvt. Ltd., 2003
- 2. Kohli, D.D and Kohli, R.C., "A Text Book of Estimating and Costing (Civil)", S.Chand & Company Ltd., 2004

REFERENCE:

1. PWD Data Book.

PRESTRESSED CONCRETE STRUCTURE

LTPC 3003

OBJECTIVE

At the end of this course the student shall have a knowledge of methods of prestressing, advantages of prestressing concrete, the losses involved and the design methods for prestressed concrete elements under codal provisions.

UNIT I INTRODUCTION – THEORY AND BEHAVIOUR

9

Basic concepts – Advantages – Materials required – Systems and methods of prestressing – Analysis of sections – Stress concept – Strength concept – Load balancing concept – Effect of loading on the tensile stresses in tendons – Effect of tendon profile on deflections – Factors influencing deflections – Calculation of deflections – Short term and long term deflections - Losses of prestress – Estimation of crack width

UNIT II DESIGN CONCEPTS

9

Flexural strength – Simplified procedures as per codes – strain compatibility method – Basic concepts in selection of cross section for bending – stress distribution in end block, Design of anchorage zone reinforcement – Limit state design criteria – Partial prestressing – Applications.

UNIT III CIRCULAR PRESTRESSING

9

Design of prestressed concrete tanks – Pipes

UNIT IV COMPOSITE CONSTRUCTION

9

Analysis for stresses – Estimate for deflections – Flexural and shear strength of composite members

UNIT V PRE-STRESSED CONCRETE BRIDGES

9

TOTAL: 45 PERIODS

General aspects – pretensioned prestressed bridge decks – Post tensioned prestressed bridge decks – Principles of design only.

TEXT BOOKS:

1. Krishna Raju N., Prestressed concrete, Tata McGraw Hill Company, New Delhi 1998

- Mallic S.K. and Gupta A.P., Prestressed concrete, Oxford and IBH publishing Co. Pvt. Ltd. 1997
- 3. Rajagopalan, N, "Prestressed Concrete", Alpha Science, 2002

- 1. Ramaswamy G.S., Modern prestressed concrete design, Arnold Heinimen, New Delhi, 1990
- 2. Lin T.Y. Design of prestressed concrete structures, Asia Publishing House, Bombay 1995.
- 3. David A.Sheppard, William R. and Philips, Plant Cast precast and prestressed concrete A design guide, McGraw Hill, New Delhi 1992.

- Durga Das Basu, "Introduction to the Constitution of India,", Prentice Hall of India, New Delhi.
- 2. R.C.Agarwal, "(1997) Indian Political System", S.Chand and Company, New Delhi.
- 3. Maciver and Page, "Society: An Introduction Analysis", Mac Milan India Ltd., New Delhi.
- 4. K.L.Sharma, " (1997) Social Stratification in India: Issues and Themes ", Jawaharlal Nehru University, New Delhi.

REFERENCES:

- 1. Sharma, Brij Kishore, "Introduction to the Constitution of India:, Prentice Hall of India, New Delhi
- 2. U.R.Gahai, " (1998) Indian Political System ", New Academic Publishing House, Jalaendhar
- 3. R.N. Sharma, "Indian Social Problems", Media Promoters and Publishers Pvt. Ltd.
- 4. Yogendra Singh, " (1997) Social Stratification and Charge in India ", Manohar, New Delhi.

CE 2026 TRAFFIC ENGINEERING AND MANAGEMENT

LTPC 3003

OBJECTIVE

The students acquire comprehensive knowledge of traffic surveys and studies such as 'Volume Count', 'Speed and delay', 'Origin and destination', 'Parking', 'Pedestrian' and 'Accident surveys'. They achieve knowledge on design of 'at grade' and 'grade separated' intersections. They also become familiar with various traffic control and traffic management measures.

UNIT I INTRODUCTION

9

Significance and scope, Characteristics of Vehicles and Road Users, Skid Resistance and Braking Efficiency (Problems), Components of Traffic Engineering- Road, Traffic and Land Use Characteristics

UNIT II TRAFFIC SURVEYS AND ANALYSIS

9

Surveys and Analysis - Volume, Capacity, Speed and Delays, Origin and Destination, Parking, Pedestrian Studies, Accident Studies and Safety Level of Services-Basic principles of Traffic Flow.

UNIT III TRAFFIC CONTROL

9

Traffic signs, Road markings, Design of Traffic signals and Signal co-ordination (Problems), Traffic control aids and Street furniture, Street Lighting, Computer applications in Signal design

UNIT IV GEOMETRIC DESIGN OF INTERSECTIONS

9

Conflicts at Intersections, Classification of 'At Grade Intersections, - Channallised Intersections - Principles of Intersection Design, Elements of Intersection Design, Rotary design, Grade Separation and interchanges - Design principles.

UNIT V TRAFFIC MANAGEMENT

(

Traffic Management (Transportation System Management (TSM) - Travel Demand Management (TDM), Traffic Forecasting techniques, Restrictions on turning movements, Oneway Streets, Traffic Segregation, Traffic Calming, Tidal flow operations, Exclusive Bus Lanes, Introduction to Intelligent Transportation System (ITS).

- 1. Kadiyali L R, Traffic Engineering and Transport Planning, Khanna Technical Publications, Delhi, 2000.
- 2. Khanna K and Justo C E G, Highway Engineering, Khanna Publishers, Roorkee, 2001.

REFERENCES

- Indian Roads Congress (IRC) specifications: Guidelines and special publications on Traffic Planning and Management
- 2. Guidelines of Ministry of Road Transport and Highways, Government of India.
- 3. Subhash C.Saxena, A Course in Traffic Planning and Design, Dhanpat Rai Publications, New Delhi, 1989.
- 4. Transportation Engineering An Introduction, C.Jotin Khisty, B.Kent Lall, Prentice Hall of India Pvt Ltd, 2006.

CE 2027

HOUSING PLANNING AND MANAGEMENT

LTPC 3 0 0 3

OBJECTIVE

The objective of the course is to train the students to have a comprehensive knowledge of planning, design, evaluation, construction and financing of housing projects. The course focuses on cost effective construction materials and methods. Emphasis has also been given on the principles of sustainable housing policies and programmes.

UNIT I INTRODUCTION TO HOUSING

9

Definition of Basic Terms – House, Home, Household, Apartments, Multi storeyed Buildings, Special Buildings, Objectives and Strategies of National Housing Policies, Principle of Sustainable Housing, Housing Laws at State level, Bye-laws at Urban and Rural Local Bodies – levels - Development Control Regulations, Institutions for Housing at National, State and Local levels

UNIT II HOUSING PROGRAMMES

9

Basic Concepts, Contents and Standards for Housing Programmes - Sites and Services, Neighborhoods, Open Development Plots, Apartments, Rental Housing, Co-operative Housing, Slum Housing Programmes, Role of Public, Private and Non-Government Organizations

UNIT III PLANNING AND DESIGN OF HOUSING PROJECTS

9

Formulation of Housing Projects – Site Analysis, Layout Design, Design of Housing Units (Design Problems)

UNIT IV CONSTRUCTION TECHNIQUES AND COST-EFFECTIVE MATERIALS 9
New Constructions Techniques – Cost Effective Modern Construction Materials, Building Centers – Concept, Functions and Performance Evaluation

UNIT V HOUSING FINANCE AND PROJECT APPRAISAL

9

Appraisal of Housing Projects – Housing Finance, Cost Recovery – Cash Flow Analysis, Subsidy and Cross Subsidy, Pricing of Housing Units, Rents, Recovery Pattern (Problems).

- 1. Kadiyali L R, Traffic Engineering and Transport Planning, Khanna Technical Publications, Delhi, 2000.
- 2. Khanna K and Justo C E G, Highway Engineering, Khanna Publishers, Roorkee, 2001.

REFERENCES

- Indian Roads Congress (IRC) specifications: Guidelines and special publications on Traffic Planning and Management
- 2. Guidelines of Ministry of Road Transport and Highways, Government of India.
- 3. Subhash C.Saxena, A Course in Traffic Planning and Design, Dhanpat Rai Publications, New Delhi, 1989.
- 4. Transportation Engineering An Introduction, C.Jotin Khisty, B.Kent Lall, Prentice Hall of India Pvt Ltd, 2006.

CE 2027

HOUSING PLANNING AND MANAGEMENT

LTPC 3 0 0 3

OBJECTIVE

The objective of the course is to train the students to have a comprehensive knowledge of planning, design, evaluation, construction and financing of housing projects. The course focuses on cost effective construction materials and methods. Emphasis has also been given on the principles of sustainable housing policies and programmes.

UNIT I INTRODUCTION TO HOUSING

9

Definition of Basic Terms – House, Home, Household, Apartments, Multi storeyed Buildings, Special Buildings, Objectives and Strategies of National Housing Policies, Principle of Sustainable Housing, Housing Laws at State level, Bye-laws at Urban and Rural Local Bodies – levels - Development Control Regulations, Institutions for Housing at National, State and Local levels

UNIT II HOUSING PROGRAMMES

9

Basic Concepts, Contents and Standards for Housing Programmes - Sites and Services, Neighborhoods, Open Development Plots, Apartments, Rental Housing, Co-operative Housing, Slum Housing Programmes, Role of Public, Private and Non-Government Organizations

UNIT III PLANNING AND DESIGN OF HOUSING PROJECTS

9

Formulation of Housing Projects – Site Analysis, Layout Design, Design of Housing Units (Design Problems)

UNIT IV CONSTRUCTION TECHNIQUES AND COST-EFFECTIVE MATERIALS 9
New Constructions Techniques – Cost Effective Modern Construction Materials, Building Centers – Concept, Functions and Performance Evaluation

UNIT V HOUSING FINANCE AND PROJECT APPRAISAL

9

Appraisal of Housing Projects – Housing Finance, Cost Recovery – Cash Flow Analysis, Subsidy and Cross Subsidy, Pricing of Housing Units, Rents, Recovery Pattern (Problems).

- 1. Meera Mehta and Dinesh Mehta, Metropolitan Housing Markets, Sage Publications Pvt. Ltd., New Delhi, 1999.
- 2. Francis Cherunilam and Odeyar D Heggade, Housing in India, Himalaya Publishing House, Bombay, 1997.

REFERENCES:

- 1. Development Control Rules for Chennai Metropolitan Area, CMA, Chennai, 2002.
- 2. UNCHS, National Experiences with Shelter Delivery for the Poorest Groups, UNCHS (Habitat), Nairobi, 1994.
- 3. National Housing Policy, 1994, Government of India.

CE 2028

GROUND WATER ENGINEERING

LTPC 3 0 0 3

OBJECTIVE

To understand the distribution of ground water, evaluation of aquifer parameters, solving ground water equations. Ground water quality and development of ground water methods are dealt.

UNIT I FUNDAMENTALS OF GROUND WATER

q

Introduction – Characteristic of Ground water – Distribution of water - ground water column – Permeability - Darcy's Law - Types of aquifers - Hydrogeological Cycle – water level fluctuations.

UNIT II HYDRAULICS OF FLOW

9

Storage coefficient - Specific field - Heterogeneity and Anisotrophy -Transmissivity - Governing equations of ground water flow - Steady state flow - Dupuit Forchheimer assumptions - Velocity potential - Flow nets

UNIT III ESTIMATION OF PARAMETERS

9

Transmissivity and Storativity – Pumping test - Unsteady state flow - Thiess method - Jacob method - Image well theory – Effect of partial penetrations of wells - Collectors wells.

UNIT IV GROUND WATER DEVELOPMENT

9

Infiltration gallery - Conjunctive use - Artificial recharge Rainwater harvesting - Safe yield -Yield test – Geophysical methods – Selection of pumps.

UNIT V WATER QUALITY

9

Ground water chemistry - Origin, movement and quality - Water quality standards - Saltwater intrusion – Environmental concern

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Raghunath H.M., "Ground Water Hydrology", Wiley Eastern Ltd., 2000.
- 2. Todd D.K., "Ground Water Hydrology", John Wiley and Sons, 2000.

REFERENCE:

1. C Walton, "Ground Water Resource Evaluation", McGraw-Hill Publications.

- 1. Meera Mehta and Dinesh Mehta, Metropolitan Housing Markets, Sage Publications Pvt. Ltd., New Delhi, 1999.
- 2. Francis Cherunilam and Odeyar D Heggade, Housing in India, Himalaya Publishing House, Bombay, 1997.

REFERENCES:

- 1. Development Control Rules for Chennai Metropolitan Area, CMA, Chennai, 2002.
- 2. UNCHS, National Experiences with Shelter Delivery for the Poorest Groups, UNCHS (Habitat), Nairobi, 1994.
- 3. National Housing Policy, 1994, Government of India.

CE 2028

GROUND WATER ENGINEERING

LTPC 3 0 0 3

OBJECTIVE

To understand the distribution of ground water, evaluation of aquifer parameters, solving ground water equations. Ground water quality and development of ground water methods are dealt.

UNIT I FUNDAMENTALS OF GROUND WATER

q

Introduction – Characteristic of Ground water – Distribution of water - ground water column – Permeability - Darcy's Law - Types of aquifers - Hydrogeological Cycle – water level fluctuations.

UNIT II HYDRAULICS OF FLOW

9

Storage coefficient - Specific field - Heterogeneity and Anisotrophy -Transmissivity - Governing equations of ground water flow - Steady state flow - Dupuit Forchheimer assumptions - Velocity potential - Flow nets

UNIT III ESTIMATION OF PARAMETERS

9

Transmissivity and Storativity – Pumping test - Unsteady state flow - Thiess method - Jacob method - Image well theory – Effect of partial penetrations of wells - Collectors wells.

UNIT IV GROUND WATER DEVELOPMENT

9

Infiltration gallery - Conjunctive use - Artificial recharge Rainwater harvesting - Safe yield -Yield test – Geophysical methods – Selection of pumps.

UNIT V WATER QUALITY

9

Ground water chemistry - Origin, movement and quality - Water quality standards - Saltwater intrusion – Environmental concern

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Raghunath H.M., "Ground Water Hydrology", Wiley Eastern Ltd., 2000.
- 2. Todd D.K., "Ground Water Hydrology", John Wiley and Sons, 2000.

REFERENCE:

1. C Walton, "Ground Water Resource Evaluation", McGraw-Hill Publications.

CE2029

MANAGEMENT OF IRRIGATION SYSTEMS

LTPC 3 0 0 3

OBJECTIVE:

At the end of the semester, the student shall have a clear concept of irrigation water management practices of the past, present and future. He/she shall also be able to appreciate the importance due and duly given to stake holders.

UNIT I IRRIGATION SYSTEM REQUIREMENTS

a

Irrigation systems – Supply and demand of water – Cropping pattern – Crop rotation – Crop diversification – Estimation of total and peak crop water requirements – Effective and dependable rainfall – Irrigation efficiencies.

UNIT II IRRIGATION SCHEDULING

8

Time of irrigation – Critical stages of water need of crops – Criteria for scheduling irrigation – Frequency and interval of irrigation.

UNIT III MANAGEMENT

9

Structural and non-structural strategies in water use and management – Conjunctive use of surface and ground waters – Quality of irrigation water.

UNIT IV OPERATION

9

Operational plans – Main canals, laterals and field channels – Water control and regulating structures – Performance indicators – Case study

UNIT V INVOLVEMENT OF STAKE HOLDERS

10

Farmer's participation in System operation – Water user's associations – Farmer councils – Changing paradigms on irrigation management – Participatory irrigation management

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Dilip Kumar Majumdar, "Irrigation Water Management Principles and Practice", Prentice Hall of India Pvt. Ltd., New Delhi, 2000
- 2. Hand book on Irrigation Water Requirement, R.T. Gandhi, et. al., Water Management Division, Department of Agriculture, Ministry of Agriculture, New Delhi

REFERENCES:

- 1. Hand Book on Irrigation System Operation Practices, Water Resources Management and Training Project, Technical report No. 33, CWC, New Delhi, 1990
- 2. Maloney, C. and Raju, K.V., "Managing Irrigation Together", Practice and Policy in India, Stage Publication, New Delhi, India, 1994.

CE 2030

COASTAL ZONE MANAGEMENT

LTPC 3 0 0 3

OBJECTIVE:

At the end of the semester, the student shall be able to understand the coastal processes, coastal dynamics, impacts of structures like docks, harbours and quays leading to simple management perspectives along the coastal zone.

CE2029

MANAGEMENT OF IRRIGATION SYSTEMS

LTPC 3 0 0 3

OBJECTIVE:

At the end of the semester, the student shall have a clear concept of irrigation water management practices of the past, present and future. He/she shall also be able to appreciate the importance due and duly given to stake holders.

UNIT I IRRIGATION SYSTEM REQUIREMENTS

a

Irrigation systems – Supply and demand of water – Cropping pattern – Crop rotation – Crop diversification – Estimation of total and peak crop water requirements – Effective and dependable rainfall – Irrigation efficiencies.

UNIT II IRRIGATION SCHEDULING

8

Time of irrigation – Critical stages of water need of crops – Criteria for scheduling irrigation – Frequency and interval of irrigation.

UNIT III MANAGEMENT

9

Structural and non-structural strategies in water use and management – Conjunctive use of surface and ground waters – Quality of irrigation water.

UNIT IV OPERATION

9

Operational plans – Main canals, laterals and field channels – Water control and regulating structures – Performance indicators – Case study

UNIT V INVOLVEMENT OF STAKE HOLDERS

10

Farmer's participation in System operation – Water user's associations – Farmer councils – Changing paradigms on irrigation management – Participatory irrigation management

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Dilip Kumar Majumdar, "Irrigation Water Management Principles and Practice", Prentice Hall of India Pvt. Ltd., New Delhi, 2000
- 2. Hand book on Irrigation Water Requirement, R.T. Gandhi, et. al., Water Management Division, Department of Agriculture, Ministry of Agriculture, New Delhi

REFERENCES:

- 1. Hand Book on Irrigation System Operation Practices, Water Resources Management and Training Project, Technical report No. 33, CWC, New Delhi, 1990
- 2. Maloney, C. and Raju, K.V., "Managing Irrigation Together", Practice and Policy in India, Stage Publication, New Delhi, India, 1994.

CE 2030

COASTAL ZONE MANAGEMENT

LTPC 3 0 0 3

OBJECTIVE:

At the end of the semester, the student shall be able to understand the coastal processes, coastal dynamics, impacts of structures like docks, harbours and quays leading to simple management perspectives along the coastal zone.

UNIT I COASTAL ZONE

9

Coastal zone – Coastal zone regulations – Beach profile – Surf zone – Off shore – Coastal waters – Estuaries – Wet lands and Lagoons – Living resources – Non living resources.

UNIT II WAVE DYNAMICS

10

Wave classification – Airy's Linear Wave theory – Deep water waves – Shallow water waves – Wave pressure – Wave energy – Wave Decay – Reflection, Refraction and Diffraction of waves – Breaking of waves – Wave force on structures – Vertical – Sloping and stepped barriers – Force on piles.

UNIT III WAVE FORECASTING AND TIDES

9

Need for forecasting - SMB and PNJ methods of wave forecasting – Classification of tides – Darwin's equilibrium theory of tides – Effects on structures – seiches, Surges and Tsunamis.

UNIT IV COASTAL PROCESSES

8

Erosion and depositional shore features – Methods of protection – Littoral currents – Coastal aquifers – Sea water intrusion – Impact of sewage disposal in seas.

UNIT V HARBOURS

9

Structures near coast – Selection of site – Types and selection of break waters – Need and mode of dredging – Selection of dredgers – Effect of Mangalore forest.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scientific Publishing Co.,
- 2. Quinn, A.D., "Design & Construction of Ports and Marine Structures", McGraw-Hill Book Co., 1999

REFERENCES:

- 1. Ed. A.T. Ippen, "Coastline Hydrodynamics", McGraw-Hill Inc., New York, 1993
- 2. Dwivedi, S.N., Natarajan, R and Ramachandran, S., "Coastal Zone Management in Tamilnadu".

CE 2031

WATER RESOURCES ENGINEERING

LTPC 3 0 0 3

OBJECTIVE

The student is exposed to the different phases in Water Resources viz planning, collection of relevant data on water resources and also on National Water Policy. Reservoir planning, management and economic analysis aspects are covered in detail.

UNIT I GENERAL

9

Water resources survey – Water resources of India and Tamilnadu – Description of water resources planning – Economics of water resources planning, physical and socio economic data – National Water Policy – Collection of meteorological and hydrological data for water resources development.

UNIT I COASTAL ZONE

9

Coastal zone – Coastal zone regulations – Beach profile – Surf zone – Off shore – Coastal waters – Estuaries – Wet lands and Lagoons – Living resources – Non living resources.

UNIT II WAVE DYNAMICS

10

Wave classification – Airy's Linear Wave theory – Deep water waves – Shallow water waves – Wave pressure – Wave energy – Wave Decay – Reflection, Refraction and Diffraction of waves – Breaking of waves – Wave force on structures – Vertical – Sloping and stepped barriers – Force on piles.

UNIT III WAVE FORECASTING AND TIDES

9

Need for forecasting - SMB and PNJ methods of wave forecasting – Classification of tides – Darwin's equilibrium theory of tides – Effects on structures – seiches, Surges and Tsunamis.

UNIT IV COASTAL PROCESSES

8

Erosion and depositional shore features – Methods of protection – Littoral currents – Coastal aquifers – Sea water intrusion – Impact of sewage disposal in seas.

UNIT V HARBOURS

9

Structures near coast – Selection of site – Types and selection of break waters – Need and mode of dredging – Selection of dredgers – Effect of Mangalore forest.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Richard Sylvester, "Coastal Engineering, Volume I and II", Elseiner Scientific Publishing Co.,
- 2. Quinn, A.D., "Design & Construction of Ports and Marine Structures", McGraw-Hill Book Co., 1999

REFERENCES:

- 1. Ed. A.T. Ippen, "Coastline Hydrodynamics", McGraw-Hill Inc., New York, 1993
- 2. Dwivedi, S.N., Natarajan, R and Ramachandran, S., "Coastal Zone Management in Tamilnadu".

CE 2031

WATER RESOURCES ENGINEERING

LTPC 3 0 0 3

OBJECTIVE

The student is exposed to the different phases in Water Resources viz planning, collection of relevant data on water resources and also on National Water Policy. Reservoir planning, management and economic analysis aspects are covered in detail.

UNIT I GENERAL

9

Water resources survey – Water resources of India and Tamilnadu – Description of water resources planning – Economics of water resources planning, physical and socio economic data – National Water Policy – Collection of meteorological and hydrological data for water resources development.

UNIT II NETWORK DESIGN

9

Hydrologic measurements – Analysis of hydrologic data – Hydrologic station network – Station network design – Statistical techniques in network design.

UNIT III WATER RESOURCE NEEDS

9

Consumptive and non-consumptive water use - Estimation of water requirements for irrigation, for drinking and navigation - Water characteristics and quality – Scope and aims of master plan - Concept of basin as a unit for development - Water budget and development plan.

UNIT IV RESERVOIR PLANNING AND MANAGEMENT

9

Reservoir - Single and multipurpose – Multi objective - Fixation of Storage capacity - Strategies for reservoir operation - Sedimentation of reservoirs - Design flood-levees and flood walls - Channel improvement.

UNIT V ECONOMIC ANALYSIS

9

Estimation of cost and Evaluation of Benefits - Discount rate - Discounting factors - Discounting techniques - Computer Applications.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Linsley R.K. and Franzini J.B, "Water Resources Engineering", McGraw-Hill Inc, 2000.
- 2. Douglas J.L. and Lee R.R., "Economics of Water Resources Planning", Tata McGraw-Hill Inc. 2000.
- 3. Duggal, K.N. and Soni, J.P., "Elements of Water Resources Engineering", New Age International Publishers

REFERENCES:

- Chaturvedi M.C., "Water Resources Systems Planning and Management", Tata McGraw-Hill Inc., New Delhi, 1997.
- Goodman Alvin S., "Principles of Water Resources Planning", Prentice-Hall, 1984.
- Maass et al. Design of Water Resources Systems, Macmillan, 1968.

CE 2032

PAVEMENT ENGINEERING

LTPC 3 0 0 3

OBJECTIVE:

Student gains knowledge on various IRC guidelines for designing flexible and rigid pavements. Further, he/she will be in a position to assess quality and serviceability conditions of roads.

UNIT I TYPE OF PAVEMENT AND STRESS DISTRIBUTION ON LAYERED SYSTEM

9

Introduction - Pavement as layered structure - Pavement types - flexible and rigid -Stress and deflections in pavements under repeated loading

UNIT II DESIGN OF FLEXIBLE PAVEMENTS

9

Flexible pavement design - Empirical - Semi empirical and theoretical Methods - Design procedure as per latest IRC guidelines - Design and specification of rural roads

UNIT II NETWORK DESIGN

9

Hydrologic measurements – Analysis of hydrologic data – Hydrologic station network – Station network design – Statistical techniques in network design.

UNIT III WATER RESOURCE NEEDS

9

Consumptive and non-consumptive water use - Estimation of water requirements for irrigation, for drinking and navigation - Water characteristics and quality – Scope and aims of master plan - Concept of basin as a unit for development - Water budget and development plan.

UNIT IV RESERVOIR PLANNING AND MANAGEMENT

9

Reservoir - Single and multipurpose – Multi objective - Fixation of Storage capacity - Strategies for reservoir operation - Sedimentation of reservoirs - Design flood-levees and flood walls - Channel improvement.

UNIT V ECONOMIC ANALYSIS

9

Estimation of cost and Evaluation of Benefits - Discount rate - Discounting factors - Discounting techniques - Computer Applications.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Linsley R.K. and Franzini J.B, "Water Resources Engineering", McGraw-Hill Inc, 2000.
- 2. Douglas J.L. and Lee R.R., "Economics of Water Resources Planning", Tata McGraw-Hill Inc. 2000.
- 3. Duggal, K.N. and Soni, J.P., "Elements of Water Resources Engineering", New Age International Publishers

REFERENCES:

- Chaturvedi M.C., "Water Resources Systems Planning and Management", Tata McGraw-Hill Inc., New Delhi, 1997.
- Goodman Alvin S., "Principles of Water Resources Planning", Prentice-Hall, 1984.
- Maass et al. Design of Water Resources Systems, Macmillan, 1968.

CE 2032

PAVEMENT ENGINEERING

LTPC 3 0 0 3

OBJECTIVE:

Student gains knowledge on various IRC guidelines for designing flexible and rigid pavements. Further, he/she will be in a position to assess quality and serviceability conditions of roads.

UNIT I TYPE OF PAVEMENT AND STRESS DISTRIBUTION ON LAYERED SYSTEM

9

Introduction - Pavement as layered structure - Pavement types - flexible and rigid -Stress and deflections in pavements under repeated loading

UNIT II DESIGN OF FLEXIBLE PAVEMENTS

9

Flexible pavement design - Empirical - Semi empirical and theoretical Methods - Design procedure as per latest IRC guidelines - Design and specification of rural roads

UNIT III DESIGN OF RIGID PAVEMENTS

9 per latest

Cement concrete pavements - Modified Westergard approach - Design procedure as per latest IRC guidelines - Joints in rigid pavements - Concrete roads and their scope in India.

UNIT IV PERFORMANCE EVALUATION AND MAINTENANCE

9

Pavement Evaluation [Condition and evaluation surveys (Surface Appearance, Cracks, Patches And Pot Holes, Undulations, Ravelling, Roughness, Skid Resistance), Structural Evaluation By Deflection Measurements, Present Serviceability Index]

Pavement maintenance. [IRC Recommendations Only]

UNIT V STABILISATION OF PAVEMENTS

q

Stabilisation with special reference to highway pavements - Choice of stabilisers -Testing and field control -Stabilisation for rural roads in India -use of Geosynthetics (geotextiles & geogrids) in roads.

TEXT BOOKS:

TOTAL: 45 PERIODS

- 1. Kadiyali, L.R., "Principles and Practice of Highway Engineering", Khanna tech. Publications, New Delhi, 1989.
- 2. Wright, P.H., "Highway Engineers", John Wiley & Sons, Inc., New York, 1996
- 3. Design and Specification of Rural Roads (Manual), Ministry of rural roads, Government of India, New Delhi, 2001

REFERENCES:

- 1. Yoder R.J and Witczak M.W., "Principles of Pavement Design", John Wiley, 1975.
- 2. Guidelines for the Design of Flexible Pavements, IRC:37 2001, The Indian roads Congress, New Delhi.
- 3. Guideline for the Design of Rigid Pavements for Highways, IRC:58-1998, The Indian Roads Congress, New Delh.

CE2033

GROUND IMPROVEMENT TECHNIQUES

LTPC 3 0 0 3

OBJECTIVE

After this course, the student is expected to identify basic deficiencies of various soil deposits and he/she be in a position to decide various ways and means of improving the soil and implementing techniques of improvement.

UNIT I INTRODUCTION

9

Role of ground improvement in foundation engineering - methods of ground improvement – Geotechnical problems in alluvial, laterite and black cotton soils - Selection of suitable ground improvement techniques based on soil condition.

UNIT II DRAINAGE AND DEWATERING

9

Drainage techniques - Well points - Vaccum and electroosmotic methods - Seepage analysis for two dimensional flow-fully and partially penetrating slots in homogenous deposits (Simple cases only).

UNIT III INSITU TREATMENT OF COHESIONLESS AND COHESIVE SOILS 9
Insitu densification of cohesionless and consolidation of cohesive soils Dynamic compaction and consolidation - Vibrofloation - Sand pile compaction - Preloading with sand drains and fabric drains - Stone columns - Lime piles - Installation techniques only - relative merits of various methods and their limitations.

UNIT III DESIGN OF RIGID PAVEMENTS

9 per latest

Cement concrete pavements - Modified Westergard approach - Design procedure as per latest IRC guidelines - Joints in rigid pavements - Concrete roads and their scope in India.

UNIT IV PERFORMANCE EVALUATION AND MAINTENANCE

9

Pavement Evaluation [Condition and evaluation surveys (Surface Appearance, Cracks, Patches And Pot Holes, Undulations, Ravelling, Roughness, Skid Resistance), Structural Evaluation By Deflection Measurements, Present Serviceability Index]

Pavement maintenance. [IRC Recommendations Only]

UNIT V STABILISATION OF PAVEMENTS

q

Stabilisation with special reference to highway pavements - Choice of stabilisers -Testing and field control -Stabilisation for rural roads in India -use of Geosynthetics (geotextiles & geogrids) in roads.

TEXT BOOKS:

TOTAL: 45 PERIODS

- 1. Kadiyali, L.R., "Principles and Practice of Highway Engineering", Khanna tech. Publications, New Delhi, 1989.
- 2. Wright, P.H., "Highway Engineers", John Wiley & Sons, Inc., New York, 1996
- 3. Design and Specification of Rural Roads (Manual), Ministry of rural roads, Government of India, New Delhi, 2001

REFERENCES:

- 1. Yoder R.J and Witczak M.W., "Principles of Pavement Design", John Wiley, 1975.
- 2. Guidelines for the Design of Flexible Pavements, IRC:37 2001, The Indian roads Congress, New Delhi.
- 3. Guideline for the Design of Rigid Pavements for Highways, IRC:58-1998, The Indian Roads Congress, New Delh.

CE2033

GROUND IMPROVEMENT TECHNIQUES

LTPC 3 0 0 3

OBJECTIVE

After this course, the student is expected to identify basic deficiencies of various soil deposits and he/she be in a position to decide various ways and means of improving the soil and implementing techniques of improvement.

UNIT I INTRODUCTION

9

Role of ground improvement in foundation engineering - methods of ground improvement – Geotechnical problems in alluvial, laterite and black cotton soils - Selection of suitable ground improvement techniques based on soil condition.

UNIT II DRAINAGE AND DEWATERING

9

Drainage techniques - Well points - Vaccum and electroosmotic methods - Seepage analysis for two dimensional flow-fully and partially penetrating slots in homogenous deposits (Simple cases only).

UNIT III INSITU TREATMENT OF COHESIONLESS AND COHESIVE SOILS 9
Insitu densification of cohesionless and consolidation of cohesive soils Dynamic compaction and consolidation - Vibrofloation - Sand pile compaction - Preloading with sand drains and fabric drains - Stone columns - Lime piles - Installation techniques only - relative merits of various methods and their limitations.

UNIT IV EARTH REINFORCEMENT

9

Concept of reinforcement - Types of reinforcement material - Applications of reinforced earth use of Geotextiles for filtration, drainage and separation in road and other works.

UNIT V GROUT TECHNIQUES

9

Types of grouts - Grouting equipment and machinery - Injection methods - Grout monitoring – Stabilisation with cement, lime and chemicals - Stabilisation of expansive soils.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Koerner R.M., "Construction and Geotechnical Methods in Foundation Engineering", McGraw-Hill, 1994.
- 2. Purushothama Raj, P. "Ground Improvement Techniques", Tata McGraw-Hill Publishing Company, New Delhi, 1995

REFERENCES:

- 1. Moseley M.P., Ground Improvement Blockie Academic and Professional, Chapman and Hall, Glassgow, 1993.
- 2. Jones J.E.P., Earth Reinforcement and Soil Structure, Butterworths, 1995.
- 3. Koerner, R.M., "Design with Geosynthetics", (3rd Edition) Prentice Hall, New Jersey, 2002
- 4. Jewell, R.A., "Soil Reinforcement with Geotextiles", CIRIA special publication, London, 1996
- 5. Das, B.M., "Principles of Foundation Engineering", Thomson Books / Cole, 2003.

CE 2034 INTRODUCTION TO SOIL DYNAMICS AND MACHINE LTPC FOUNDATIONS 3 0 0 3

OBJECTIVES:

At the end of this program the, student is expected to assess the dynamic properties of soil and various design parameters required for the design of machine foundation as well as design of foundation for various reciprocating machines.

UNIT I INTRODUCTION

9

Vibration of elementary systems-vibratory motion-single degree freedom system-free and forced vibration with and without damping

UNIT II WAVES AND WAVE PROPAGATION

9

Wave propagation in an elastic homogeneous isotropic medium- Raleigh, shear and compression waves-waves in elastic half space

UNIT III DYNAMIC PROPERTIES OF SOILS

9

Elastic properties of soils-coefficient of elastic, uniform and non-uniform compression - shear-effect of vibration dissipative properties of soils-determination of dynamic properties of soil-codal provisions

UNIT IV DESIGN PROCEDURES

9

Design criteria -dynamic loads - simple design procedures for foundations under reciprocating machines - machines producing impact loads - rotary type machines

- 1. Mitch, J.W. and Jorgensen, S.E., Ecological Engineering An Introduction to Ecotechnology, John Wiley and Sons, 1996.
- 2. Colinvaux, P., Ecology, John Wiley and Sons, 1996.
- 3. Etnier, C & Guterstam, B., "Ecological Engineering for Wastewater Treatment", 2nd Edition, Lewis Publications, London, 1996.

GE2073 CONTRACT LAWS AND REGULATIONS

LTPC 3 0 0 3

UNIT I CONSTRUCTION CONTRACTS

q

Indian Contracts Act – Elements of Contracts – Types of Contracts – Features – Suitability – Design of Contract Documents – International Contract Document – Standard Contract Document – Law of Torts

UNIT II TENDERS

10

Prequalification – Bidding – Accepting – Evaluation of Tender from Technical, Contractual and Commercial Points of View – Contract Formation and Interpretation – Potential Contractual Problems – World Bank Procedures and Guidelines – Transparency in Tenders Act.

UNIT III ARBITRATION

8

Comparison of Actions and Laws – Agreements – Subject Matter – Violations – Appointment of Arbitrators – Conditions of Arbitration – Powers and Duties of Arbitrator – Rules of Evidence – Enforcement of Award – Costs

UNIT IV LEGAL REQUIREMENTS

9

Insurance and Bonding – Laws Governing Sale, Purchase and Use of Urban and Rural Land – Land Revenue Codes – Tax Laws – Income Tax, Sales Tax, Excise and Custom Duties and their Influence on Construction Costs – Legal Requirements for Planning – Property Law – Agency Law – Local Government Laws for Approval – Statutory Regulations

UNIT V LABOUR REGULATIONS

9

Social Security – Welfare Legislation – Laws relating to Wages, Bonus and Industrial Disputes, Labour Administration – Insurance and Safety Regulations – Workmen's Compensation Act – Indian Factory Act – Tamil Nadu Factory Act – Child Labour Act - Other Labour Laws

TOTAL: 45 PERIODS

REFERENCES

- 1. Gajaria G.T., Laws Relating to Building and Engineering Contracts in India, M.M.Tripathi Private Ltd., Bombay, 1982
- 2. Tamilnadu PWD Code, 1986
- 3. Jimmie Hinze, Construction Contracts, Second Edition, McGraw Hill, 2001
- 4. Joseph T. Bockrath, Contracts and the Legal Environment for Engineers and Architects, Sixth Edition, McGraw Hill, 2000.

CE 2041

BRIDGE STRUCTURES

LTPC 3 0 0 3

OBJECTIVE

At the end of this course the student shall be able to choose appropriate bridge structure and design it for given site conditions.

UNIT IV EARTH REINFORCEMENT

9

Concept of reinforcement - Types of reinforcement material - Applications of reinforced earth use of Geotextiles for filtration, drainage and separation in road and other works.

UNIT V GROUT TECHNIQUES

9

Types of grouts - Grouting equipment and machinery - Injection methods - Grout monitoring – Stabilisation with cement, lime and chemicals - Stabilisation of expansive soils.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Koerner R.M., "Construction and Geotechnical Methods in Foundation Engineering", McGraw-Hill, 1994.
- 2. Purushothama Raj, P. "Ground Improvement Techniques", Tata McGraw-Hill Publishing Company, New Delhi, 1995

REFERENCES:

- 1. Moseley M.P., Ground Improvement Blockie Academic and Professional, Chapman and Hall, Glassgow, 1993.
- 2. Jones J.E.P., Earth Reinforcement and Soil Structure, Butterworths, 1995.
- 3. Koerner, R.M., "Design with Geosynthetics", (3rd Edition) Prentice Hall, New Jersey, 2002
- 4. Jewell, R.A., "Soil Reinforcement with Geotextiles", CIRIA special publication, London, 1996
- 5. Das, B.M., "Principles of Foundation Engineering", Thomson Books / Cole, 2003.

CE 2034 INTRODUCTION TO SOIL DYNAMICS AND MACHINE LTPC FOUNDATIONS 3 0 0 3

OBJECTIVES:

At the end of this program the, student is expected to assess the dynamic properties of soil and various design parameters required for the design of machine foundation as well as design of foundation for various reciprocating machines.

UNIT I INTRODUCTION

9

Vibration of elementary systems-vibratory motion-single degree freedom system-free and forced vibration with and without damping

UNIT II WAVES AND WAVE PROPAGATION

9

Wave propagation in an elastic homogeneous isotropic medium- Raleigh, shear and compression waves-waves in elastic half space

UNIT III DYNAMIC PROPERTIES OF SOILS

9

Elastic properties of soils-coefficient of elastic, uniform and non-uniform compression - shear-effect of vibration dissipative properties of soils-determination of dynamic properties of soil-codal provisions

UNIT IV DESIGN PROCEDURES

9

Design criteria -dynamic loads - simple design procedures for foundations under reciprocating machines - machines producing impact loads - rotary type machines

UNIT V VIBRATION ISOLATION

9

Vibration isolation technique-mechanical isolation-foundation isolation-isolation by location-isolation by barriers-active passive isolation tests.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. S.Prakesh & V.K Puri, Foundation for machines, McGraw-Hill 1993
- 2. Srinivasulu, P & Vaidyanathan, Hand book of Machine Foundations, McGraw-Hill, 1996

REFERENCES:

- 1. Swamisaran, "Soil Dynamics and Machine Foundations", Galgotia Publications Pvt. Ltd., 1999
- 2. Kramar S.L, "Geotechnical Earthquake Engineering", Prentice Hall International series, Pearson Education (Singapore) Pvt. Ltd.
- 3. Kameswara Rao, "Dynamics Soil Tests and Applications", Wheeler Publishing, New Delhi, 2003
- 4. Kameswara Rao, "Vibration Analysis and Foundation Dynamics", Wheeler Publishing, New Delhi, 1998
- 5. IS code of Practice for Design and Construction of Machine Foundations, McGraw-Hill, 1996.
- 6. Moore P.J., "Analysis and Design of Foundation for Vibration", Oxford and IBH, 1995.

CE 2035 ROCK ENGINEERING L T P C 3 0 0 3

OBJECTIVE

Student gains the knowledge on the mechanics of rock and its applications in underground structures and rock slope stability analysis.

UNIT I CLASSIFICATION AND INDEX PROPERTIES OF ROCKS 7
Geological classification – Index properties of rock systems – Classification of rock masses for engineering purpose.

UNIT II ROCK STRENGTH AND FAILURE CRITERIA

11

Modes of rock failure – Strength of rock – Laboratory and field measurement of shear, tensile and compressive strength – Stress strain behaviour in compression – Mohr-coulomb failure criteria and empirical criteria for failure – Deformability of rock.

UNIT III INITIAL STRESSES AND THEIR MEASUREMENTS

10

Estimation of initial stresses in rocks – influence of joints and their orientation in distribution of stresses – technique for measurements of insitu stresses.

UNIT IV APPLICATION OF ROCK MECHANICS IN ENGINEERING 9

Simple engineering application – Underground openings – Rock slopes – Foundations and mining subsidence.

UNIT V ROCK BOLTING

8

Introduction – Rock bolt systems – rock bolt installation techniques – Testing of rock bolts – Choice of rock bolt based on rock mass condition.

UNIT V VIBRATION ISOLATION

9

Vibration isolation technique-mechanical isolation-foundation isolation-isolation by location-isolation by barriers-active passive isolation tests.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. S.Prakesh & V.K Puri, Foundation for machines, McGraw-Hill 1993
- 2. Srinivasulu, P & Vaidyanathan, Hand book of Machine Foundations, McGraw-Hill, 1996

REFERENCES:

- 1. Swamisaran, "Soil Dynamics and Machine Foundations", Galgotia Publications Pvt. Ltd., 1999
- 2. Kramar S.L, "Geotechnical Earthquake Engineering", Prentice Hall International series, Pearson Education (Singapore) Pvt. Ltd.
- 3. Kameswara Rao, "Dynamics Soil Tests and Applications", Wheeler Publishing, New Delhi, 2003
- 4. Kameswara Rao, "Vibration Analysis and Foundation Dynamics", Wheeler Publishing, New Delhi, 1998
- 5. IS code of Practice for Design and Construction of Machine Foundations, McGraw-Hill, 1996.
- 6. Moore P.J., "Analysis and Design of Foundation for Vibration", Oxford and IBH, 1995.

CE 2035 ROCK ENGINEERING L T P C 3 0 0 3

OBJECTIVE

Student gains the knowledge on the mechanics of rock and its applications in underground structures and rock slope stability analysis.

UNIT I CLASSIFICATION AND INDEX PROPERTIES OF ROCKS 7
Geological classification – Index properties of rock systems – Classification of rock masses for engineering purpose.

UNIT II ROCK STRENGTH AND FAILURE CRITERIA

11

Modes of rock failure – Strength of rock – Laboratory and field measurement of shear, tensile and compressive strength – Stress strain behaviour in compression – Mohr-coulomb failure criteria and empirical criteria for failure – Deformability of rock.

UNIT III INITIAL STRESSES AND THEIR MEASUREMENTS

10

Estimation of initial stresses in rocks – influence of joints and their orientation in distribution of stresses – technique for measurements of insitu stresses.

UNIT IV APPLICATION OF ROCK MECHANICS IN ENGINEERING 9

Simple engineering application – Underground openings – Rock slopes – Foundations and mining subsidence.

UNIT V ROCK BOLTING

8

Introduction – Rock bolt systems – rock bolt installation techniques – Testing of rock bolts – Choice of rock bolt based on rock mass condition.

- 1.Goodman P.E., "Introduction to Rock Mechanics", John Wiley and Sons, 1999.
- 2.Stillborg B., "Professional User Handbook for rock Bolting", Tran Tech Publications, 1996.

REFERENCES:

- 1 .Brow E.T., "Rock Characterisation Testing and Monitoring", Pergaman Press, 1991.
- 2. Arogyaswamy R.N.P., "Geotechnical Application in Civil Engineering", Oxford and IBH, 1991.
- 3. Hock E. and Bray J., "Rock Slope Engineering, Institute of Mining and Metallurgy", 1991.

CE 2036 ENVIRONMENTAL IMPACT ASSESSMENT OF CIVIL ENGINEERING PROJECTS

LTPC 3 0 0 3

OBJECTIVE

This subject deals with the various impacts of infrastructure projects on the components of environment and method of assessing the impact and mitigating the same.

The student is expected to know about the various impacts of development projects on environment and the mitigating measures.

UNIT I INTRODUCTION

8

Impact of development projects under Civil Engineering on environment - Environmental Impact Assessment (EIA) - Environmental Impact Statement (EIS) - EIA capability and limitations - Legal provisions on EIA

UNIT II METHODOLOGIES

9

Methods of EIA -Check lists - Matrices - Networks - Cost-benefit analysis - Analysis of alternatives

UNIT III PREDICTION AND ASSESSMENT

9

Assessment of Impact on land, water and air, noise, social, cultural flora and fauna; Mathematical models; public participation – Rapid EIA

UNIT IV ENVIRONMENTAL MANAGEMENT PLAN

9

Plan for mitigation of adverse impact on environment – options for mitigation of impact on water, air and land, flora and fauna; Addressing the issues related to the Project Affected People – ISO 14000

UNIT V CASE STUDIES

10

EIA for infrastructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Buildings – Water Supply and Drainage Projects

TOTAL: 45 PERIODS

- 1. Canter, R.L., "Environmental Impact Assessment", McGraw-Hill Inc., New Delhi, 1996.
- 2. Shukla, S.K. and Srivastava, P.R., "Concepts in Environmental Impact Analysis", Common Wealth Publishers, New Delhi, 1992.

- 1.Goodman P.E., "Introduction to Rock Mechanics", John Wiley and Sons, 1999.
- 2.Stillborg B., "Professional User Handbook for rock Bolting", Tran Tech Publications, 1996.

REFERENCES:

- 1 .Brow E.T., "Rock Characterisation Testing and Monitoring", Pergaman Press, 1991.
- 2. Arogyaswamy R.N.P., "Geotechnical Application in Civil Engineering", Oxford and IBH, 1991.
- 3. Hock E. and Bray J., "Rock Slope Engineering, Institute of Mining and Metallurgy", 1991.

CE 2036 ENVIRONMENTAL IMPACT ASSESSMENT OF CIVIL ENGINEERING PROJECTS

LTPC 3 0 0 3

OBJECTIVE

This subject deals with the various impacts of infrastructure projects on the components of environment and method of assessing the impact and mitigating the same.

The student is expected to know about the various impacts of development projects on environment and the mitigating measures.

UNIT I INTRODUCTION

8

Impact of development projects under Civil Engineering on environment - Environmental Impact Assessment (EIA) - Environmental Impact Statement (EIS) - EIA capability and limitations - Legal provisions on EIA

UNIT II METHODOLOGIES

9

Methods of EIA -Check lists - Matrices - Networks - Cost-benefit analysis - Analysis of alternatives

UNIT III PREDICTION AND ASSESSMENT

9

Assessment of Impact on land, water and air, noise, social, cultural flora and fauna; Mathematical models; public participation – Rapid EIA

UNIT IV ENVIRONMENTAL MANAGEMENT PLAN

9

Plan for mitigation of adverse impact on environment – options for mitigation of impact on water, air and land, flora and fauna; Addressing the issues related to the Project Affected People – ISO 14000

UNIT V CASE STUDIES

10

EIA for infrastructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Buildings – Water Supply and Drainage Projects

TOTAL: 45 PERIODS

- 1. Canter, R.L., "Environmental Impact Assessment", McGraw-Hill Inc., New Delhi, 1996.
- 2. Shukla, S.K. and Srivastava, P.R., "Concepts in Environmental Impact Analysis", Common Wealth Publishers, New Delhi, 1992.

- 1. John G. Rau and David C Hooten (Ed)., "Environmental Impact Analysis Handbook", McGraw-Hill Book Company, 1990.
- 2. "Environmental Assessment Source book", Vol. I, II & III. The World Bank, Washington, D.C., 1991.
- 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I & II", Blackwell Science, 1999.

CE2037

INDUSTRIAL WASTE MANAGEMENT

LTPC 3 0 0 3

OBJECTIVE

This subject deals with the pollution from major industries and methods of controlling the same. The student is expected to know about the polluting potential of major industries in the country and the methods of controlling the same.

UNIT I INTRODUCTION

8

Types of industries and industrial pollution – Characteristics of industrial wastes – Population equivalent – Bioassay studies – effects of industrial effluents on streams, sewer, land, sewage treatment plants and human health – Environmental legislations related to prevention and control of industrial effluents and hazardous wastes

UNIT II CLEANER PRODUCTION

8

Waste management Approach – Waste Audit – Volume and strength reduction – Material and process modifications – Recycle, reuse and byproduct recovery – Applications.

UNIT III POLLUTION FROM MAJOR INDUSTRIES

9

Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants, Refineries, fertilizer, thermal power plants – Wastewater reclamation concepts

UNIT IV TREATMENT TECHNOLOGIES

11

Equalisation – Neutralisation – Removal of suspended and dissolved organic solids - Chemical oxidation – Adsorption - Removal of dissolved inorganics – Combined treatment of industrial and municipal wastes – Residue management – Dewatering - Disposal

UNIT V HAZARDOUS WASTE MANAGEMENT

9

Hazardous wastes - Physico chemical treatment - solidification - incineration - Secure land fills

TOTAL: 45 PERIODS

- 1. M.N.Rao & A.K.Dutta, "Wastewater Treatment", Oxford IBH Publication, 1995.
- 2. W .W. Eckenfelder Jr., "Industrial Water Pollution Control", McGraw-Hill Book Company, New Delhi. 2000.

- 1. John G. Rau and David C Hooten (Ed)., "Environmental Impact Analysis Handbook", McGraw-Hill Book Company, 1990.
- 2. "Environmental Assessment Source book", Vol. I, II & III. The World Bank, Washington, D.C., 1991.
- 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I & II", Blackwell Science, 1999.

CE2037

INDUSTRIAL WASTE MANAGEMENT

LTPC 3 0 0 3

OBJECTIVE

This subject deals with the pollution from major industries and methods of controlling the same. The student is expected to know about the polluting potential of major industries in the country and the methods of controlling the same.

UNIT I INTRODUCTION

8

Types of industries and industrial pollution – Characteristics of industrial wastes – Population equivalent – Bioassay studies – effects of industrial effluents on streams, sewer, land, sewage treatment plants and human health – Environmental legislations related to prevention and control of industrial effluents and hazardous wastes

UNIT II CLEANER PRODUCTION

8

Waste management Approach – Waste Audit – Volume and strength reduction – Material and process modifications – Recycle, reuse and byproduct recovery – Applications.

UNIT III POLLUTION FROM MAJOR INDUSTRIES

9

Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants, Refineries, fertilizer, thermal power plants – Wastewater reclamation concepts

UNIT IV TREATMENT TECHNOLOGIES

11

Equalisation – Neutralisation – Removal of suspended and dissolved organic solids - Chemical oxidation – Adsorption - Removal of dissolved inorganics – Combined treatment of industrial and municipal wastes – Residue management – Dewatering - Disposal

UNIT V HAZARDOUS WASTE MANAGEMENT

9

Hazardous wastes - Physico chemical treatment - solidification - incineration - Secure land fills

TOTAL: 45 PERIODS

- 1. M.N.Rao & A.K.Dutta, "Wastewater Treatment", Oxford IBH Publication, 1995.
- 2. W .W. Eckenfelder Jr., "Industrial Water Pollution Control", McGraw-Hill Book Company, New Delhi. 2000.

- 1. T.T.Shen, "Industrial Pollution Prevention", Springer, 1999.
- 2. R.L.Stephenson and J.B.Blackburn, Jr., "Industrial Wastewater Systems Hand book", Lewis Publisher, New Yark, 1998
- 3. H.M.Freeman, "Industrial Pollution Prevention Hand Book", McGraw-Hill Inc., New Delhi, 1995.
- 4. Bishop, P.L., "Pollution Prevention: Fundamental & Practice", McGraw-Hill, 2000.

CE 2038

AIR POLLUTION MANAGEMENT

LTPC 3 0 0 3

OBJECTIVE:

This subject covers the sources, characteristics and effects of air and noise pollution and the methods of controlling the same. The student is expected to know about source inventory and control mechanism.

UNIT I SOURCES AND EFFECTS OF AIR POLLUTANTS

9

Classification of air pollutants – Particulates and gaseous pollutants – Sources of air pollution – Source inventory – Effects of air pollution on human beings, materials, vegetation, animals – global warming-ozone layer depletion, Sampling and Analysis – Basic Principles of Sampling – Source and ambient sampling – Analysis of pollutants – Principles.

UNIT II DISPERSION OF POLLUTANTS

9

Elements of atmosphere – Meteorological factors – Wind roses – Lapse rate - Atmospheric stability and turbulence – Plume rise – Dispersion of pollutants – Dispersion models – Applications.

UNIT III AIR POLLUTION CONTROL

12

Concepts of control – Principles and design of control measures – Particulates control by gravitational, centrifugal, filtration, scrubbing, electrostatic precipitation – Selection criteria for equipment - gaseous pollutant control by adsorption, absorption, condensation, combustion – Pollution control for specific major industries.

UNIT IV AIR QUALITY MANAGEMENT

8

Air quality standards – Air quality monitoring – Preventive measures - Air pollution control efforts – Zoning – Town planning regulation of new industries – Legislation and enforcement – Environmental Impact Assessment and Air quality

UNIT V NOISE POLLUTION

7

Sources of noise pollution – Effects – Assessment - Standards – Control methods – Prevention

- 1. T.T.Shen, "Industrial Pollution Prevention", Springer, 1999.
- 2. R.L.Stephenson and J.B.Blackburn, Jr., "Industrial Wastewater Systems Hand book", Lewis Publisher, New Yark, 1998
- 3. H.M.Freeman, "Industrial Pollution Prevention Hand Book", McGraw-Hill Inc., New Delhi, 1995.
- 4. Bishop, P.L., "Pollution Prevention: Fundamental & Practice", McGraw-Hill, 2000.

CE 2038

AIR POLLUTION MANAGEMENT

LTPC 3 0 0 3

OBJECTIVE:

This subject covers the sources, characteristics and effects of air and noise pollution and the methods of controlling the same. The student is expected to know about source inventory and control mechanism.

UNIT I SOURCES AND EFFECTS OF AIR POLLUTANTS

9

Classification of air pollutants – Particulates and gaseous pollutants – Sources of air pollution – Source inventory – Effects of air pollution on human beings, materials, vegetation, animals – global warming-ozone layer depletion, Sampling and Analysis – Basic Principles of Sampling – Source and ambient sampling – Analysis of pollutants – Principles.

UNIT II DISPERSION OF POLLUTANTS

9

Elements of atmosphere – Meteorological factors – Wind roses – Lapse rate - Atmospheric stability and turbulence – Plume rise – Dispersion of pollutants – Dispersion models – Applications.

UNIT III AIR POLLUTION CONTROL

12

Concepts of control – Principles and design of control measures – Particulates control by gravitational, centrifugal, filtration, scrubbing, electrostatic precipitation – Selection criteria for equipment - gaseous pollutant control by adsorption, absorption, condensation, combustion – Pollution control for specific major industries.

UNIT IV AIR QUALITY MANAGEMENT

8

Air quality standards – Air quality monitoring – Preventive measures - Air pollution control efforts – Zoning – Town planning regulation of new industries – Legislation and enforcement – Environmental Impact Assessment and Air quality

UNIT V NOISE POLLUTION

7

Sources of noise pollution – Effects – Assessment - Standards – Control methods – Prevention

- 1. Anjanevulu, D., "Air Pollution and Control Technologies", Allied Publishers, Mumbai, 2002.
- 2. Rao, C.S. Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 1996.
- 3. Rao M.N., and Rao H. V. N., Air Pollution Control, Tata-McGraw-Hill, New Delhi, 1996.

REFERENCES

- 1. W.L.Heumann, Industrial Air Pollution Control Systems, McGraw-Hill, New Yark, 1997.
- 2. Mahajan S.P., Pollution Control in Process Industries, Tata McGraw-Hill Publishing Company, New Delhi, 1991.
- 3. Peavy S.W., Rowe D.R. and Tchobanoglous G. Environmental Engineering, McGraw Hill, New Delhi, 1985.
- 4. Garg, S.K., "Environmental Engineering Vol. II", Khanna Publishers, New Delhi
- 5. Mahajan, S.P., "Pollution Control in Process Industries", Tata McGraw-Hill, New Delhi, 1991.

CE 2039

MUNICIPAL SOLID WASTE MANAGEMENT

LTPC 3 0 0 3

OBJECTIVE

This subject covers the various sources and characterisation of municipal solid wastes and the on-site/off-site processing of the same and the disposal methods. The student is expected to know about the various effects and disposal options for the municipal solid waste.

UNIT I SOURCES AND TYPES OF MUNICIPAL SOLID WASTES

9

Sources and types of solid wastes - Quantity - factors affecting generation of solid wastes; characteristics - methods of sampling and characterization; Effects of improper disposal of solid wastes - public health effects. Principle of solid waste management - social & economic aspects; Public awareness; Role of NGOs; Legislation.

UNIT II ON-SITE STORAGE & PROCESSING

9

On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage – options under Indian conditions – Critical Evaluation of Options.

UNIT III COLLECTION AND TRANSFER

9

Methods of Collection – types of vehicles – Manpower requirement – collection routes; transfer stations – selection of location, operation & maintenance; options under Indian conditions.

UNIT IV OFF-SITE PROCESSING

9

Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis - options under Indian conditions.

UNIT V DISPOSAL

9

Dumping of solid waste; sanitary land fills – site selection, design and operation of sanitary landfills – Leachate collection & treatment

- 1. Anjanevulu, D., "Air Pollution and Control Technologies", Allied Publishers, Mumbai, 2002.
- 2. Rao, C.S. Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 1996.
- 3. Rao M.N., and Rao H. V. N., Air Pollution Control, Tata-McGraw-Hill, New Delhi, 1996.

REFERENCES

- 1. W.L.Heumann, Industrial Air Pollution Control Systems, McGraw-Hill, New Yark, 1997.
- 2. Mahajan S.P., Pollution Control in Process Industries, Tata McGraw-Hill Publishing Company, New Delhi, 1991.
- 3. Peavy S.W., Rowe D.R. and Tchobanoglous G. Environmental Engineering, McGraw Hill, New Delhi, 1985.
- 4. Garg, S.K., "Environmental Engineering Vol. II", Khanna Publishers, New Delhi
- 5. Mahajan, S.P., "Pollution Control in Process Industries", Tata McGraw-Hill, New Delhi, 1991.

CE 2039

MUNICIPAL SOLID WASTE MANAGEMENT

LTPC 3 0 0 3

OBJECTIVE

This subject covers the various sources and characterisation of municipal solid wastes and the on-site/off-site processing of the same and the disposal methods. The student is expected to know about the various effects and disposal options for the municipal solid waste.

UNIT I SOURCES AND TYPES OF MUNICIPAL SOLID WASTES

9

Sources and types of solid wastes - Quantity - factors affecting generation of solid wastes; characteristics - methods of sampling and characterization; Effects of improper disposal of solid wastes - public health effects. Principle of solid waste management - social & economic aspects; Public awareness; Role of NGOs; Legislation.

UNIT II ON-SITE STORAGE & PROCESSING

9

On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage – options under Indian conditions – Critical Evaluation of Options.

UNIT III COLLECTION AND TRANSFER

9

Methods of Collection – types of vehicles – Manpower requirement – collection routes; transfer stations – selection of location, operation & maintenance; options under Indian conditions.

UNIT IV OFF-SITE PROCESSING

9

Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis - options under Indian conditions.

UNIT V DISPOSAL

9

Dumping of solid waste; sanitary land fills – site selection, design and operation of sanitary landfills – Leachate collection & treatment

- George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-Hill Publishers, 1993.
- 2. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste Management", Springer, 1994.

REFERENCES

- 1. Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 2000
- 2. R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes problems and Solutions", Lewis Publishers, 1997.
- 3. Bhide A.D. and Sundaresan, B.B., "Solid Waste Management in Developing Countries", INSDOC, 1993.

CE 2040

ECOLOGICAL ENGINEERING

LTPC 3 0 0 3

OBJECTIVE

This subject deals with the scope and applications of ecological principles for wastewater treatment and reuse. The student is expected to be aware of the various effects of industrialisation on ecology and ecological based waste purification methods.

UNIT I PRINCIPLES AND CONCEPTS

9

Scope and applications of Ecological Engineering – Development and evolution of ecosystems – principles and concepts pertaining to species, populations and community

UNIT II ECOSYSTEM FUNCTIONS

10

Energy flow and nutrient cycling – Food chain and food webs – biological magnification, diversity and stability, immature and mature systems. Primary productivity – Biochemical cycling of nitrogen, phosphorous, sulphur and carbon dioxide; Habitat ecology - Terrestrial, fresh water, estuarine and marine habitats.

UNIT III ECOLOGICAL ENGINEERING METHODS

9

Bio monitoring and its role in evaluation of aquatic ecosystem; Rehabilitation of ecosystems through ecological principles – step cropping, bio-wind screens, Wetlands, ponds, Root Zone Treatment for wastewater, Reuse of treated wastewater through ecological systems.

UNIT IV ECOLOGICAL EFFECTS OF INDUSTRIALISATION

9

Ecological effects of exploration, production, extraction, processing, manufacture & transport.

UNIT V CASE STUDIES

8

TOTAL: 45 PERIODS

Case studies of integrated ecological engineering systems

- 1. Odum, E.P., "Fundamental of Ecology", W.B.Sauders, 1990.
- 2. Kormondy, E.J., "Concepts of Ecology", Prentice Hall, New Delhi, 1996

- George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-Hill Publishers, 1993.
- 2. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste Management", Springer, 1994.

REFERENCES

- 1. Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 2000
- 2. R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes problems and Solutions", Lewis Publishers, 1997.
- 3. Bhide A.D. and Sundaresan, B.B., "Solid Waste Management in Developing Countries", INSDOC, 1993.

CE 2040

ECOLOGICAL ENGINEERING

LTPC 3 0 0 3

OBJECTIVE

This subject deals with the scope and applications of ecological principles for wastewater treatment and reuse. The student is expected to be aware of the various effects of industrialisation on ecology and ecological based waste purification methods.

UNIT I PRINCIPLES AND CONCEPTS

9

Scope and applications of Ecological Engineering – Development and evolution of ecosystems – principles and concepts pertaining to species, populations and community

UNIT II ECOSYSTEM FUNCTIONS

10

Energy flow and nutrient cycling – Food chain and food webs – biological magnification, diversity and stability, immature and mature systems. Primary productivity – Biochemical cycling of nitrogen, phosphorous, sulphur and carbon dioxide; Habitat ecology - Terrestrial, fresh water, estuarine and marine habitats.

UNIT III ECOLOGICAL ENGINEERING METHODS

9

Bio monitoring and its role in evaluation of aquatic ecosystem; Rehabilitation of ecosystems through ecological principles – step cropping, bio-wind screens, Wetlands, ponds, Root Zone Treatment for wastewater, Reuse of treated wastewater through ecological systems.

UNIT IV ECOLOGICAL EFFECTS OF INDUSTRIALISATION

9

Ecological effects of exploration, production, extraction, processing, manufacture & transport.

UNIT V CASE STUDIES

8

TOTAL: 45 PERIODS

Case studies of integrated ecological engineering systems

- 1. Odum, E.P., "Fundamental of Ecology", W.B.Sauders, 1990.
- 2. Kormondy, E.J., "Concepts of Ecology", Prentice Hall, New Delhi, 1996

- 1. Mitch, J.W. and Jorgensen, S.E., Ecological Engineering An Introduction to Ecotechnology, John Wiley and Sons, 1996.
- 2. Colinvaux, P., Ecology, John Wiley and Sons, 1996.
- 3. Etnier, C & Guterstam, B., "Ecological Engineering for Wastewater Treatment", 2nd Edition, Lewis Publications, London, 1996.

GE2073 CONTRACT LAWS AND REGULATIONS

LTPC 3 0 0 3

UNIT I CONSTRUCTION CONTRACTS

q

Indian Contracts Act – Elements of Contracts – Types of Contracts – Features – Suitability – Design of Contract Documents – International Contract Document – Standard Contract Document – Law of Torts

UNIT II TENDERS

10

Prequalification – Bidding – Accepting – Evaluation of Tender from Technical, Contractual and Commercial Points of View – Contract Formation and Interpretation – Potential Contractual Problems – World Bank Procedures and Guidelines – Transparency in Tenders Act.

UNIT III ARBITRATION

8

Comparison of Actions and Laws – Agreements – Subject Matter – Violations – Appointment of Arbitrators – Conditions of Arbitration – Powers and Duties of Arbitrator – Rules of Evidence – Enforcement of Award – Costs

UNIT IV LEGAL REQUIREMENTS

9

Insurance and Bonding – Laws Governing Sale, Purchase and Use of Urban and Rural Land – Land Revenue Codes – Tax Laws – Income Tax, Sales Tax, Excise and Custom Duties and their Influence on Construction Costs – Legal Requirements for Planning – Property Law – Agency Law – Local Government Laws for Approval – Statutory Regulations

UNIT V LABOUR REGULATIONS

9

Social Security – Welfare Legislation – Laws relating to Wages, Bonus and Industrial Disputes, Labour Administration – Insurance and Safety Regulations – Workmen's Compensation Act – Indian Factory Act – Tamil Nadu Factory Act – Child Labour Act - Other Labour Laws

TOTAL: 45 PERIODS

REFERENCES

- 1. Gajaria G.T., Laws Relating to Building and Engineering Contracts in India, M.M.Tripathi Private Ltd., Bombay, 1982
- 2. Tamilnadu PWD Code, 1986
- 3. Jimmie Hinze, Construction Contracts, Second Edition, McGraw Hill, 2001
- 4. Joseph T. Bockrath, Contracts and the Legal Environment for Engineers and Architects, Sixth Edition, McGraw Hill, 2000.

CE 2041

BRIDGE STRUCTURES

LTPC 3 0 0 3

OBJECTIVE

At the end of this course the student shall be able to choose appropriate bridge structure and design it for given site conditions.

LTPC 0 0 4 2

OBJECTIVE:

At the end of the course the student acquires hands on experience in design and preparation of structural drawings for concrete / steel structures normally encountered in Civil Engineering practice.

- 1. Design and drawing of RCC cantilever and counterfort type retaining walls with reinforcement details
- Design of solid slab and RCC Tee beam bridges for IRC loading and reinforcement details
- 3. Design and drafting of Intz type water tank, Detailing of circular and rectangular water tanks
- Design of plate girder bridge Twin Girder deck type railway bridge Truss Girder bridges – Detailed Drawings including connections

TOTAL: 60 PERIODS

TEXT BOOKS:

- 1. Krishna Raju, "Structural Design & Drawing (Concrete & Steel)", CBS Publishers 2004.
- 2. Punmia, B.C., Ashok Kumar Jain, Arun Kumar Jain, "Design of steel structures", Lakshmi publications Pvt. Ltd 2003.

REFERENCES:

- 1. Krishnamurthy, D., "Structural Design & Drawing Vol. II", CBS Publishers & Distributors, Delhi 1992.
- 2. Krishnamurthy, D., "Structural Design & Drawing Vol. III Steel Structures", CBS Publishers & Distributors, New Delhi 1992.

EXAMINATION DURATION 4 HOURS

LIST OF EQUIPMENTS

1. Models of Structures
 2. Computers Pentium IV
 30 Nos.

3. Analysis and Design Software

- Minimum 5 user License - 1 No.

4. Auto CAD Software

- Multi user License - 1 No.

CE 2406 DESIGN PROJECT L T P C 0 0 4 2

OBJECTIVE:

The objective of this course is to impart and improve the design capability of the student. This course conceives purely a design problem in any one of the disciplines of Civil Engineering; e.g., Design of an RC structure, Design of a waste water treatment plant, Design of a foundation system, Design of traffic intersection etc. The design problem can be allotted to either an individual student or a group of students comprising of not more than four. At the end of the course the group should submit a complete report on the design problem consisting of the data given, the design calculations, specifications if any and complete set of drawings which follow the design.

TOTAL: 60 PERIODS

LTPC 0 0 4 2

OBJECTIVE:

At the end of the course the student acquires hands on experience in design and preparation of structural drawings for concrete / steel structures normally encountered in Civil Engineering practice.

- 1. Design and drawing of RCC cantilever and counterfort type retaining walls with reinforcement details
- Design of solid slab and RCC Tee beam bridges for IRC loading and reinforcement details
- 3. Design and drafting of Intz type water tank, Detailing of circular and rectangular water tanks
- Design of plate girder bridge Twin Girder deck type railway bridge Truss Girder bridges – Detailed Drawings including connections

TOTAL: 60 PERIODS

TEXT BOOKS:

- 1. Krishna Raju, "Structural Design & Drawing (Concrete & Steel)", CBS Publishers 2004.
- 2. Punmia, B.C., Ashok Kumar Jain, Arun Kumar Jain, "Design of steel structures", Lakshmi publications Pvt. Ltd 2003.

REFERENCES:

- 1. Krishnamurthy, D., "Structural Design & Drawing Vol. II", CBS Publishers & Distributors, Delhi 1992.
- 2. Krishnamurthy, D., "Structural Design & Drawing Vol. III Steel Structures", CBS Publishers & Distributors, New Delhi 1992.

EXAMINATION DURATION 4 HOURS

LIST OF EQUIPMENTS

1. Models of Structures
 2. Computers Pentium IV
 30 Nos.

3. Analysis and Design Software

- Minimum 5 user License - 1 No.

4. Auto CAD Software

- Multi user License - 1 No.

CE 2406 DESIGN PROJECT L T P C 0 0 4 2

OBJECTIVE:

The objective of this course is to impart and improve the design capability of the student. This course conceives purely a design problem in any one of the disciplines of Civil Engineering; e.g., Design of an RC structure, Design of a waste water treatment plant, Design of a foundation system, Design of traffic intersection etc. The design problem can be allotted to either an individual student or a group of students comprising of not more than four. At the end of the course the group should submit a complete report on the design problem consisting of the data given, the design calculations, specifications if any and complete set of drawings which follow the design.

TOTAL: 60 PERIODS

EVALUATION PROCEDURE

The method of evaluation will be as follows:

1. Internal Marks : 20 marks

(Decided by conducting 3 reviews by the guide appointed by the Institution)

2. Evaluation of Project Report

: 30 marks

(Evaluated by the external examiner appointed the University).

Every student belonging to the same group gets the same mark

3. Viva voce examination : 50 marks

(Evaluated by the internal examiner appointed by the HOD with the approval of HOI, external examiner appointed by the University and Guide of the course – with equal Weightage)

Total: 100 marks

CE 2451 ENGINEERING ECONOMICS AND COST ANALYSIS

LTPC 3 0 0 3

OBJECTIVE:

The main objective of this course is to make the Civil Engineering student know about the basic law of economics, how to organise a business, the financial aspects related to business, different methods of appraisal of projects and pricing techniques. At the end of this course the student shall have the knowledge of how to start a construction business, how to get finances, how to account, how to price and bid and how to assess the health of a project.

UNIT I BASIC ECONOMICS

7

Definition of economics - nature and scope of economic science - nature and scope of managerial economics - basic terms and concepts - goods - utility - value - wealth - factors of production - land - its peculiarities - labour - economies of large and small scale - consumption - wants - its characteristics and classification - law of diminishing marginal utility - relation between economic decision and technical decision.

UNIT II DEMAND AND SCHEDULE

8

Demand - demand schedule - demand curve - law of demand - elasticity of demand - types of elasticity - factors determining elasticity - measurement - its significance - supply - supply schedule - supply curve - law of supply - elasticity of supply - time element in the determination of value - market price and normal price - perfect competition - monopoly - monopolistic competition.

UNIT III ORGANISATION

8

Forms of business - proprietorship - partnership - joint stock company - cooperative organisation - state enterprise - mixed economy - money and banking - banking - kinds - commercial banks - central banking functions - control of credit - monetary policy - credit instrument.

UNIT IV FINANCING

9

Types of financing - Short term borrowing - Long term borrowing - Internal generation of funds - External commercial borrowings - Assistance from government budgeting support and international finance corporations - analysis of financial statement — Balance Sheet - Profit and Loss account - Funds flow statement.

EVALUATION PROCEDURE

The method of evaluation will be as follows:

1. Internal Marks : 20 marks

(Decided by conducting 3 reviews by the guide appointed by the Institution)

2. Evaluation of Project Report

: 30 marks

(Evaluated by the external examiner appointed the University).

Every student belonging to the same group gets the same mark

3. Viva voce examination : 50 marks

(Evaluated by the internal examiner appointed by the HOD with the approval of HOI, external examiner appointed by the University and Guide of the course – with equal Weightage)

Total: 100 marks

CE 2451 ENGINEERING ECONOMICS AND COST ANALYSIS

LTPC 3 0 0 3

OBJECTIVE:

The main objective of this course is to make the Civil Engineering student know about the basic law of economics, how to organise a business, the financial aspects related to business, different methods of appraisal of projects and pricing techniques. At the end of this course the student shall have the knowledge of how to start a construction business, how to get finances, how to account, how to price and bid and how to assess the health of a project.

UNIT I BASIC ECONOMICS

7

Definition of economics - nature and scope of economic science - nature and scope of managerial economics - basic terms and concepts - goods - utility - value - wealth - factors of production - land - its peculiarities - labour - economies of large and small scale - consumption - wants - its characteristics and classification - law of diminishing marginal utility - relation between economic decision and technical decision.

UNIT II DEMAND AND SCHEDULE

8

Demand - demand schedule - demand curve - law of demand - elasticity of demand - types of elasticity - factors determining elasticity - measurement - its significance - supply - supply schedule - supply curve - law of supply - elasticity of supply - time element in the determination of value - market price and normal price - perfect competition - monopoly - monopolistic competition.

UNIT III ORGANISATION

8

Forms of business - proprietorship - partnership - joint stock company - cooperative organisation - state enterprise - mixed economy - money and banking - banking - kinds - commercial banks - central banking functions - control of credit - monetary policy - credit instrument.

UNIT IV FINANCING

9

Types of financing - Short term borrowing - Long term borrowing - Internal generation of funds - External commercial borrowings - Assistance from government budgeting support and international finance corporations - analysis of financial statement — Balance Sheet - Profit and Loss account - Funds flow statement.

UNIT V COST AND BREAK EVEN ANALYSES

13

Types of costing – traditional costing approach - activity base costing - Fixed Cost – variable cost – marginal cost – cost output relationship in the short run and in long run – pricing practice – full cost pricing – marginal cost pricing – going rate pricing – bid pricing – pricing for a rate of return – appraising project profitability –internal rate of return – pay back period – net present value – cost benefit analysis – feasibility reports – appraisal process – technical feasibility-economic feasibility – financial feasibility. Break even analysis - basic assumptions – break even chart – managerial uses of break even analysis.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Dewett K.K. & Varma J.D., Elementary Economic Theory, S Chand & Co., 2006
- 2. Sharma JC "Construction Management and Accounts" Satya Prakashan, New Delhi.

REFERENCES:

- 1. Barthwal R.R., Industrial Economics An Introductory Text Book, New Age
- 2. Jhingan M.L., Micro Economic Theory, Konark
- 3. Samuelson P.A., Economics An Introductory Analysis, McGraw-Hill
- 4. Adhikary M., Managerial Economics
- 5. Khan MY and Jain PK "Financial Management" McGraw-Hill Publishing Co., Ltd
- 6. Varshney RL and Maheshwary KL "Managerial Economics" S Chand and Co

CE 2453 PROJECT WORK L T P C 0 0 12 6

OBJECTIVE

The objective of the project work is to enable the students to work in convenient groups of not more than four members in a group on a project involving theoretical and experimental studies related to Civil Engineering. Every Project Work shall have a Guide who is a member of the faculty of Civil Engineering of the college where the student is registered. The hours allotted for this course shall be utilized by the students to receive directions from the Guide, on library reading, laboratory work, computer analysis or field work and also to present in periodical seminars the progress made in the project.

Each student shall finally produce a comprehensive report covering background information, literature Survey, problem statement, Project work details and conclusions.

This experience of project work shall help the student in expanding his / her knowledge base and also provide opportunity to utilise the creative ability and inference capability.

TOTAL: 180 PERIODS

EVALUATION PROCEDURE

The method of evaluation will be as follows:

1. Internal Marks : 20 marks

(decided by conducting 3 reviews by the guide appointed by the Institution)

2. Evaluation of Project Report : 30 marks

(Evaluated by the external examiner appointed the University). Every student belonging to the same group gets the same mark

3. Viva voce examination : 50 marks

(evaluated by the internal examiner appointed by the HOD with the approval of HOI, external examiner appointed by the University and Guide of the course – with equal Weightage)

TOTAL: 100 MARKS

- 1. Mitch, J.W. and Jorgensen, S.E., Ecological Engineering An Introduction to Ecotechnology, John Wiley and Sons, 1996.
- 2. Colinvaux, P., Ecology, John Wiley and Sons, 1996.
- 3. Etnier, C & Guterstam, B., "Ecological Engineering for Wastewater Treatment", 2nd Edition, Lewis Publications, London, 1996.

GE2073 CONTRACT LAWS AND REGULATIONS

LTPC 3 0 0 3

UNIT I CONSTRUCTION CONTRACTS

q

Indian Contracts Act – Elements of Contracts – Types of Contracts – Features – Suitability – Design of Contract Documents – International Contract Document – Standard Contract Document – Law of Torts

UNIT II TENDERS

10

Prequalification – Bidding – Accepting – Evaluation of Tender from Technical, Contractual and Commercial Points of View – Contract Formation and Interpretation – Potential Contractual Problems – World Bank Procedures and Guidelines – Transparency in Tenders Act.

UNIT III ARBITRATION

8

Comparison of Actions and Laws – Agreements – Subject Matter – Violations – Appointment of Arbitrators – Conditions of Arbitration – Powers and Duties of Arbitrator – Rules of Evidence – Enforcement of Award – Costs

UNIT IV LEGAL REQUIREMENTS

9

Insurance and Bonding – Laws Governing Sale, Purchase and Use of Urban and Rural Land – Land Revenue Codes – Tax Laws – Income Tax, Sales Tax, Excise and Custom Duties and their Influence on Construction Costs – Legal Requirements for Planning – Property Law – Agency Law – Local Government Laws for Approval – Statutory Regulations

UNIT V LABOUR REGULATIONS

9

Social Security – Welfare Legislation – Laws relating to Wages, Bonus and Industrial Disputes, Labour Administration – Insurance and Safety Regulations – Workmen's Compensation Act – Indian Factory Act – Tamil Nadu Factory Act – Child Labour Act - Other Labour Laws

TOTAL: 45 PERIODS

REFERENCES

- 1. Gajaria G.T., Laws Relating to Building and Engineering Contracts in India, M.M.Tripathi Private Ltd., Bombay, 1982
- 2. Tamilnadu PWD Code, 1986
- 3. Jimmie Hinze, Construction Contracts, Second Edition, McGraw Hill, 2001
- 4. Joseph T. Bockrath, Contracts and the Legal Environment for Engineers and Architects, Sixth Edition, McGraw Hill, 2000.

CE 2041

BRIDGE STRUCTURES

LTPC 3 0 0 3

OBJECTIVE

At the end of this course the student shall be able to choose appropriate bridge structure and design it for given site conditions.

UNIT I INTRODUCTION

9

Design of through type steel highway bridges for IRC loading - Design of stringers, cross girders and main girders - Design of deck type steel highway bridges for IRC loading - Design of main girders

UNIT II STEEL BRIDGES

9

Design of pratt type truss girder highway bridges - Design of top chord, bottom chord, web members - Effect of repeated loading - Design of plate girder railway bridges for railway loading - Wind effects - Design of web and flange plates - Vertical and horizontal stiffeners.

UNIT III REINFORCED CONCRETE SLAB BRIDGES

9

Design of solid slab bridges for IRC loading - Design of kerb - Design of tee beam bridges - Design of panel and cantilever for IRC loading

UNIT IV REINFORCED CONCRETE GIRDER BRIDGES

a

Design of tee beam - Courbon's theory - Pigeaud's curves - Design of balanced cantilever bridges - Deck slab - Main girder - Design of cantilever - Design of articulation.

UNIT V PRESTRESSED CONCRETE BRIDGES

9

Design of prestressed concrete bridges - Preliminary dimensions - Flexural and torsional parameters - Courbon's theory - Distribution coefficient by exact analysis - Design of girder section - Maximum and minimum prestressing forces - Eccentricity - Live load and dead load shear forces - cable zone in girder —Check for stresses at various sections - Check for diagonal tension - Diaphragms - End block - Short term and long term deflections.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Johnson Victor D., "Essentials of Bridge Engineering", Oxford and IBH Publishing Co. New Delhi, 1990.
- 2. Rajagopalan, N.Bridge Superstructure, Alpha Science International, 2006

REFERENCES

- 1. Phatak D.R., "Bridge Engineering", Satya Prakashan, New Delhi, 1990.
- 2. Ponnuswamy S., "Bridge Engineering", Tata McGraw-Hill, New Delhi, 1996.

CE 2042

STORAGE STRUCTURES

LTPC 3 0 0 3

OBJECTIVE

The main objective of this course is to impart the principles involved in designing structures which have to store different types of materials. The student at the end of the course shall be able to design concrete and steel material retaining structures.

UNIT I STEEL WATER TANKS

12

Design of rectangular riveted steel water tank – Tee covers – Plates – Stays –Longitudinal and transverse beams – Design of staging – Base plates – Foundation and anchor bolts – Design of pressed steel water tank – Design of stays – Joints – Design of hemispherical bottom water tank – side plates – Bottom plates – joints – Ring girder – Design of staging and foundation.

UNIT I INTRODUCTION

9

Design of through type steel highway bridges for IRC loading - Design of stringers, cross girders and main girders - Design of deck type steel highway bridges for IRC loading - Design of main girders

UNIT II STEEL BRIDGES

9

Design of pratt type truss girder highway bridges - Design of top chord, bottom chord, web members - Effect of repeated loading - Design of plate girder railway bridges for railway loading - Wind effects - Design of web and flange plates - Vertical and horizontal stiffeners.

UNIT III REINFORCED CONCRETE SLAB BRIDGES

9

Design of solid slab bridges for IRC loading - Design of kerb - Design of tee beam bridges - Design of panel and cantilever for IRC loading

UNIT IV REINFORCED CONCRETE GIRDER BRIDGES

a

Design of tee beam - Courbon's theory - Pigeaud's curves - Design of balanced cantilever bridges - Deck slab - Main girder - Design of cantilever - Design of articulation.

UNIT V PRESTRESSED CONCRETE BRIDGES

9

Design of prestressed concrete bridges - Preliminary dimensions - Flexural and torsional parameters - Courbon's theory - Distribution coefficient by exact analysis - Design of girder section - Maximum and minimum prestressing forces - Eccentricity - Live load and dead load shear forces - cable zone in girder —Check for stresses at various sections - Check for diagonal tension - Diaphragms - End block - Short term and long term deflections.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Johnson Victor D., "Essentials of Bridge Engineering", Oxford and IBH Publishing Co. New Delhi, 1990.
- 2. Rajagopalan, N.Bridge Superstructure, Alpha Science International, 2006

REFERENCES

- 1. Phatak D.R., "Bridge Engineering", Satya Prakashan, New Delhi, 1990.
- 2. Ponnuswamy S., "Bridge Engineering", Tata McGraw-Hill, New Delhi, 1996.

CE 2042

STORAGE STRUCTURES

LTPC 3 0 0 3

OBJECTIVE

The main objective of this course is to impart the principles involved in designing structures which have to store different types of materials. The student at the end of the course shall be able to design concrete and steel material retaining structures.

UNIT I STEEL WATER TANKS

12

Design of rectangular riveted steel water tank – Tee covers – Plates – Stays –Longitudinal and transverse beams – Design of staging – Base plates – Foundation and anchor bolts – Design of pressed steel water tank – Design of stays – Joints – Design of hemispherical bottom water tank – side plates – Bottom plates – joints – Ring girder – Design of staging and foundation.

UNIT II CONCRETE WATER TANKS

12

Design of Circular tanks – Hinged and fixed at the base – IS method of calculating shear forces and moments – Hoop tension – Design of intze tank – Dome – Ring girders – Conical dome – Staging – Bracings – Raft foundation – Design of rectangular tanks – Approximate methods and IS methods – Design of under ground tanks – Design of base slab and side wall – Check for uplift.

UNIT III STEEL BUNKERS AND SILOS

7

Design of square bunker – Jansen's and Airy's theories – IS Codal provisions – Design of side plates – Stiffeners – Hooper – Longitudinal beams – Design of cylindrical silo – Side plates – Ring girder – stiffeners.

UNIT IV CONCRETE BUNKERS AND SILOS

7

Design of square bunker – Side Walls – Hopper bottom – Top and bottom edge beams – Design of cylindrical silo – Wall portion – Design of conical hopper – Ring beam at junction

UNIT V PRESTRESSED CONCRETE WATER TANKS

7

Principles of circular prestressing – Design of prestressed concrete circular water tanks

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Rajagopalan K., Storage Structures, Tata McGraw-Hill, New Delhi, 1998.
- 2. Krishna Raju N., Advanced Reinforced Concrete Design, CBS Publishers and Distributors, New Delhi, 1998.

CE 2043

DESIGN OF PLATE AND SHELL STRUCTURES

LTPC 3003

OBJECTIVE

At the end of this course the student shall understand the rudimentary principles involved in the analysis and design of plates and shells.

UNIT I THIN PLATES WITH SMALL DEFLECTION

9

Laterally loaded thin plates – governing differential equations – Simply supported and fixed boundary conditions

UNIT II RECTANGULAR PLATES

9

Simply supported rectangular plates – Navier's solution and Levy's method.

UNIT III THIN SHELLS

9

Classification of shells-structural actions – membrane theory

UNIT IV ANALYSIS OF SHELLS

9

Analysis of spherical dome – cylindrical shells – folded plates

UNIT V DESIGN OF SHELLS

9

Design of spherical dome – cylindrical shells – folded plates

TOTAL: 45 PERIODS

UNIT II CONCRETE WATER TANKS

12

Design of Circular tanks – Hinged and fixed at the base – IS method of calculating shear forces and moments – Hoop tension – Design of intze tank – Dome – Ring girders – Conical dome – Staging – Bracings – Raft foundation – Design of rectangular tanks – Approximate methods and IS methods – Design of under ground tanks – Design of base slab and side wall – Check for uplift.

UNIT III STEEL BUNKERS AND SILOS

7

Design of square bunker – Jansen's and Airy's theories – IS Codal provisions – Design of side plates – Stiffeners – Hooper – Longitudinal beams – Design of cylindrical silo – Side plates – Ring girder – stiffeners.

UNIT IV CONCRETE BUNKERS AND SILOS

7

Design of square bunker – Side Walls – Hopper bottom – Top and bottom edge beams – Design of cylindrical silo – Wall portion – Design of conical hopper – Ring beam at junction

UNIT V PRESTRESSED CONCRETE WATER TANKS

7

Principles of circular prestressing – Design of prestressed concrete circular water tanks

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Rajagopalan K., Storage Structures, Tata McGraw-Hill, New Delhi, 1998.
- 2. Krishna Raju N., Advanced Reinforced Concrete Design, CBS Publishers and Distributors, New Delhi, 1998.

CE 2043

DESIGN OF PLATE AND SHELL STRUCTURES

LTPC 3003

OBJECTIVE

At the end of this course the student shall understand the rudimentary principles involved in the analysis and design of plates and shells.

UNIT I THIN PLATES WITH SMALL DEFLECTION

9

Laterally loaded thin plates – governing differential equations – Simply supported and fixed boundary conditions

UNIT II RECTANGULAR PLATES

9

Simply supported rectangular plates – Navier's solution and Levy's method.

UNIT III THIN SHELLS

9

Classification of shells-structural actions – membrane theory

UNIT IV ANALYSIS OF SHELLS

9

Analysis of spherical dome – cylindrical shells – folded plates

UNIT V DESIGN OF SHELLS

9

Design of spherical dome – cylindrical shells – folded plates

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Bairagi N K, A text book of Plate Analysis, Khanna Publishers, New Delhi, 1996.
- 2. G.S. Ramaswamy, Design and Construction of Shell Structures, CBS Plublishers, New Delhi, 1996
- 3. S. Timoshenko & S. Woinowsky Krieger, "Theory of Plates and Shells", McGraw Hill Book Company

REFERENCES

- 1. Szilard R, Theory and analysis of plates, Prentice Hall Inc. 1995
- 2. Chatterjee B. K., Theory and Design of Concrete Shells, Oxford & IBH, New Delhi, 1998
- 3. Billington D. P., Thin Shell Concrete Structures, McGraw-Hill, 1995.

CE 2044 TALL BUILDINGS

LTPC 3 0 0 3

OBJECTIVE

At the end of this course the student should have understood the problems associated with large heights of structures with respect to loads (wind and earthquake and deflections of the structure). He should know the rudimentary principles of designing tall buildings as per the existing course.

UNIT I INTRODUCTION

9

The Tall Building in the Urban Context - The Tall Building and its Support Structure - Development of High Rise Building Structures - General Planning Considerations. Dead Loads - Live Loads-Construction Loads - Snow, Rain, and Ice Loads - Wind Loads-Seismic Loading — Water and Earth Pressure Loads - Loads - Loads Due to Restrained Volume Changes of Material - Impact and Dynamic Loads - Blast Loads - Combination of Loads.

UNIT II THE VERTICAL STRUCTURE PLANE

9

Dispersion of Vertical Forces- Dispersion of Lateral Forces - Optimum Ground Level Space - Shear Wall Arrangement - Behaviour of Shear Walls under Lateral Loading. The Floor Structure or Horizontal Building Plane Floor Framing Systems-Horizontal Bracing- Composite Floor Systems The High - Rise Building as related to assemblage Kits Skeleton Frame Systems - Load Bearing Wall Panel Systems - Panel – Frame Systems - Multistory Box Systems.

UNIT III COMMON HIGH-RISE BUILDING STRUCTURES AND THEIR BEHAVIOUR UNDER LOAD

The Bearing Wall Structure- The Shear Core Structure - Rigid Frame Systems- The Wall - Beam Structure: Interspatial and Staggered Truss Systems - Frame - Shear Wall Building Systems - Flat Slab Building Structures - Shear Truss - Frame Interaction System with Rigid - Belt Trusses - Tubular Systems-Composite Buildings - Comparison of High - Rise Structural Systems Other Design Approaches Controlling Building Drift Efficient Building Forms - The Counteracting Force or Dynamic Response.

UNIT IV APPROXIMATE STRUCTURAL ANALYSIS AND DESIGN OF BUILDINGS 9
Approximate Analysis of Bearing Wall Buildings The Cross Wall Structure - The Long Wall Structure The Rigid Frame Structure Approximate Analysis for Vertical Loading - Approximate Analysis for Lateral Loading - Approximate Design of Rigid Frame Buildings-Lateral Deformation of Rigid Frame Buildings The Rigid Frame - Shear Wall Structure - The Vierendeel Structure - The Hollow Tube Structure.

TEXT BOOKS

- 1. Bairagi N K, A text book of Plate Analysis, Khanna Publishers, New Delhi, 1996.
- 2. G.S. Ramaswamy, Design and Construction of Shell Structures, CBS Plublishers, New Delhi, 1996
- 3. S. Timoshenko & S. Woinowsky Krieger, "Theory of Plates and Shells", McGraw Hill Book Company

REFERENCES

- 1. Szilard R, Theory and analysis of plates, Prentice Hall Inc. 1995
- 2. Chatterjee B. K., Theory and Design of Concrete Shells, Oxford & IBH, New Delhi, 1998
- 3. Billington D. P., Thin Shell Concrete Structures, McGraw-Hill, 1995.

CE 2044 TALL BUILDINGS

LTPC 3 0 0 3

OBJECTIVE

At the end of this course the student should have understood the problems associated with large heights of structures with respect to loads (wind and earthquake and deflections of the structure). He should know the rudimentary principles of designing tall buildings as per the existing course.

UNIT I INTRODUCTION

9

The Tall Building in the Urban Context - The Tall Building and its Support Structure - Development of High Rise Building Structures - General Planning Considerations. Dead Loads - Live Loads-Construction Loads - Snow, Rain, and Ice Loads - Wind Loads-Seismic Loading — Water and Earth Pressure Loads - Loads - Loads Due to Restrained Volume Changes of Material - Impact and Dynamic Loads - Blast Loads - Combination of Loads.

UNIT II THE VERTICAL STRUCTURE PLANE

9

Dispersion of Vertical Forces- Dispersion of Lateral Forces - Optimum Ground Level Space - Shear Wall Arrangement - Behaviour of Shear Walls under Lateral Loading. The Floor Structure or Horizontal Building Plane Floor Framing Systems-Horizontal Bracing- Composite Floor Systems The High - Rise Building as related to assemblage Kits Skeleton Frame Systems - Load Bearing Wall Panel Systems - Panel – Frame Systems - Multistory Box Systems.

UNIT III COMMON HIGH-RISE BUILDING STRUCTURES AND THEIR BEHAVIOUR UNDER LOAD

The Bearing Wall Structure- The Shear Core Structure - Rigid Frame Systems- The Wall - Beam Structure: Interspatial and Staggered Truss Systems - Frame - Shear Wall Building Systems - Flat Slab Building Structures - Shear Truss - Frame Interaction System with Rigid - Belt Trusses - Tubular Systems-Composite Buildings - Comparison of High - Rise Structural Systems Other Design Approaches Controlling Building Drift Efficient Building Forms - The Counteracting Force or Dynamic Response.

UNIT IV APPROXIMATE STRUCTURAL ANALYSIS AND DESIGN OF BUILDINGS 9
Approximate Analysis of Bearing Wall Buildings The Cross Wall Structure - The Long Wall Structure The Rigid Frame Structure Approximate Analysis for Vertical Loading - Approximate Analysis for Lateral Loading - Approximate Design of Rigid Frame Buildings-Lateral Deformation of Rigid Frame Buildings The Rigid Frame - Shear Wall Structure - The Vierendeel Structure - The Hollow Tube Structure.

UNIT V OTHER HIGH-RISE BUILDING STRUCTURE

9

Deep - Beam Systems - High-Rise Suspension Systems - Pneumatic High -Rise Buildings - Space Frame Applied to High - Rise Buildings - Capsule Architecture.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. WOLFGANG SCHUELLER " High rise building Structures", John Wiley and Sons, New York 1976.
- 2. Bryan Stafford Smith and Alex Coull, "Tall Building Structures ", Analysis and Design, John Wiley and Sons, Inc., 1991.

REFERENCES

- 1. COULL, A. and SMITH, STAFFORD, B. " Tall Buildings ", Pergamon Press, London, 1997.
- 2. LinT.Y. and Burry D.Stotes, "Structural Concepts and Systems for Architects and Engineers "John Wiley, 1994.
- 3. Lynn S.Beedle, Advances in Tall Buildings, CBS Publishers and Distributors, Delhi, 1996.
- 4. Taranath.B.S., Structural Analysis and Design of Tall Buildings, Mc Graw Hill, 1998.

CE 2045

PREFABRICATED STRUCTURES

LTPC 3 0 0 3

OBJECTIVE

At the end of this course the student shall be able to appreciate modular construction, industrialised construction and shall be able to design some of the prefabricated elements and also have the knowledge of the construction methods using these elements.

UNIT I INTRODUCTION

9

Need for prefabrication – Principles – Materials – Modular coordination – Standarization – Systems – Production – Transportation – Erection.

UNIT II PREFABRICATED COMPONENTS

9

Behaviour of structural components – Large panel constructions – Construction of roof and floor slabs – Wall panels – Columns – Shear walls

UNIT III DESIGN PRINCIPLES

9

Disuniting of structures- Design of cross section based on efficiency of material used – Problems in design because of joint flexibility – Allowance for joint deformation.

UNIT IV JOINT IN STRUCTURAL MEMBERS

٤

Joints for different structural connections – Dimensions and detailing – Design of expansion joints

UNIT V DESIGN FOR ABNORMAL LOADS

9

Progressive collapse – Code provisions – Equivalent design loads for considering abnormal effects such as earthquakes, cyclones, etc., - Importance of avoidance of progressive collapse.

TOTAL: 45 PERIODS

UNIT V OTHER HIGH-RISE BUILDING STRUCTURE

9

Deep - Beam Systems - High-Rise Suspension Systems - Pneumatic High -Rise Buildings - Space Frame Applied to High - Rise Buildings - Capsule Architecture.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. WOLFGANG SCHUELLER " High rise building Structures", John Wiley and Sons, New York 1976.
- 2. Bryan Stafford Smith and Alex Coull, "Tall Building Structures ", Analysis and Design, John Wiley and Sons, Inc., 1991.

REFERENCES

- 1. COULL, A. and SMITH, STAFFORD, B. " Tall Buildings ", Pergamon Press, London, 1997.
- 2. LinT.Y. and Burry D.Stotes, "Structural Concepts and Systems for Architects and Engineers "John Wiley, 1994.
- 3. Lynn S.Beedle, Advances in Tall Buildings, CBS Publishers and Distributors, Delhi, 1996.
- 4. Taranath.B.S., Structural Analysis and Design of Tall Buildings, Mc Graw Hill, 1998.

CE 2045

PREFABRICATED STRUCTURES

LTPC 3 0 0 3

OBJECTIVE

At the end of this course the student shall be able to appreciate modular construction, industrialised construction and shall be able to design some of the prefabricated elements and also have the knowledge of the construction methods using these elements.

UNIT I INTRODUCTION

9

Need for prefabrication – Principles – Materials – Modular coordination – Standarization – Systems – Production – Transportation – Erection.

UNIT II PREFABRICATED COMPONENTS

9

Behaviour of structural components – Large panel constructions – Construction of roof and floor slabs – Wall panels – Columns – Shear walls

UNIT III DESIGN PRINCIPLES

9

Disuniting of structures- Design of cross section based on efficiency of material used – Problems in design because of joint flexibility – Allowance for joint deformation.

UNIT IV JOINT IN STRUCTURAL MEMBERS

٤

Joints for different structural connections – Dimensions and detailing – Design of expansion joints

UNIT V DESIGN FOR ABNORMAL LOADS

9

Progressive collapse – Code provisions – Equivalent design loads for considering abnormal effects such as earthquakes, cyclones, etc., - Importance of avoidance of progressive collapse.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. CBRI, Building materials and components, India, 1990
- 2. Gerostiza C.Z., Hendrikson C. and Rehat D.R., Knowledge based process planning for construction and manufacturing, Academic Press Inc., 1994

REFERENCES

- 1. Koncz T., Manual of precast concrete construction, Vols. I, II and III, Bauverlag, GMBH, 1971.
- 2. Structural design manual, Precast concrete connection details, Society for the studies in the use of precast concrete, Netherland Betor Verlag, 1978.

CE 2046 WIND ENGINEERING L T P C 3 0 0 3

OBJECTIVE

At the end of this course the student should be able to appreciate the forces generated on structures due to normal wind as well as gusts. He should also be able to analyse the dynamic effects created by these wind forces.

UNIT I INTRODUCTION 9
Terminology – Wind Data – Gust factor and its determination - Wind speed variation with height – Shape factor – Aspect ratio – Drag and lift.

UNIT II EFFECT OF WIND ON STRUCTURES

9

Static effect – Dynamic effect – Interference effects (concept only) – Rigid structure – Aeroelastic structure (concept only).

UNIT III EFFECT ON TYPICAL STRUCTURES

9

Tail buildings – Low rise buildings – Roof and cladding – Chimneys, towers and bridges.

UNIT IV APPLICATION TO DESIGN

9

Design forces on multistorey building, towers and roof trusses.

UNIT V INTRODUCTION TO WIND TUNNEL

9

Types of models (Principles only) – Basic considerations – Examples of tests and their use.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Peter Sachs, "Wind Forces in Engineering, Pergamon Press, New York, 1992.
- 2. Lawson T.V., Wind Effects on Buildings, Vols. I and II, Applied Science and Publishers, London, 1993.

REFERENCES

- 1. Devenport A.G., "Wind Loads on Structures", Division of Building Research, Ottowa, 1990
- 2. Wind Force on Structures Course Notes, Building Technology Centre, Anna University, 1995.

TEXT BOOKS

- 1. CBRI, Building materials and components, India, 1990
- 2. Gerostiza C.Z., Hendrikson C. and Rehat D.R., Knowledge based process planning for construction and manufacturing, Academic Press Inc., 1994

REFERENCES

- 1. Koncz T., Manual of precast concrete construction, Vols. I, II and III, Bauverlag, GMBH, 1971.
- 2. Structural design manual, Precast concrete connection details, Society for the studies in the use of precast concrete, Netherland Betor Verlag, 1978.

CE 2046 WIND ENGINEERING L T P C 3 0 0 3

OBJECTIVE

At the end of this course the student should be able to appreciate the forces generated on structures due to normal wind as well as gusts. He should also be able to analyse the dynamic effects created by these wind forces.

UNIT I INTRODUCTION 9
Terminology – Wind Data – Gust factor and its determination - Wind speed variation with height – Shape factor – Aspect ratio – Drag and lift.

UNIT II EFFECT OF WIND ON STRUCTURES

9

Static effect – Dynamic effect – Interference effects (concept only) – Rigid structure – Aeroelastic structure (concept only).

UNIT III EFFECT ON TYPICAL STRUCTURES

9

Tail buildings – Low rise buildings – Roof and cladding – Chimneys, towers and bridges.

UNIT IV APPLICATION TO DESIGN

9

Design forces on multistorey building, towers and roof trusses.

UNIT V INTRODUCTION TO WIND TUNNEL

9

Types of models (Principles only) – Basic considerations – Examples of tests and their use.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Peter Sachs, "Wind Forces in Engineering, Pergamon Press, New York, 1992.
- 2. Lawson T.V., Wind Effects on Buildings, Vols. I and II, Applied Science and Publishers, London, 1993.

REFERENCES

- 1. Devenport A.G., "Wind Loads on Structures", Division of Building Research, Ottowa, 1990
- 2. Wind Force on Structures Course Notes, Building Technology Centre, Anna University, 1995.

CE 2047

COMPUTER AIDED DESIGN OF STRUCTURE

LTPC 3 0 0 3

OBJECTIVE

The main objective of this programme is to train the student in the use of computers and creating a computer code as well as using commercially available software for the design of Civil Engineering structures.

UNIT I INTRODUCTION

9

Fundamentals of CAD - Hardware and software requirements -Design process - Applications and benefits.

UNIT II COMPUTER GRAPHICS

9

Graphic primitives - Transformations -Wire frame modeling and solid modeling -Graphic standards -Drafting packages

UNIT III STRUCTURAL ANALYSIS

9

Fundamentals of finite element analysis - Principles of structural analysis - Analysis packages and applications.

UNIT IV DESIGN AND OPTIMISATION

9

Principles of design of steel and RC Structures -Applications to simple design problems - Optimisation techniques - Algorithms - Linear Programming - Simplex method

UNIT V EXPERT SYSTEMS

9

Introduction to artificial intelligence - Knowledge based expert systems -Rules and decision tables -Inference mechanisms - Simple applications.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Groover M.P. and Zimmers E.W. Jr., "CAD/CAM, Computer Aided Design and Manufacturing", Prentice Hall of India Ltd, New Delhi, 1993.
- 2. Krishnamoorthy C.S.Rajeev S., "Computer Aided Design", Narosa Publishing House, New Delhi, 1993

REFERENCES

- 1. Harrison H.B., "Structural Analysis and Design", Part I and II Pergamon Press, Oxford,
- 2. Rao S.S., "Optimisation Theory and Applications", Wiley Eastern Limited, New Delhi, 1977.
- 3. Richard Forsyth (Ed), "Expert System Principles and Case Studies", Chapman and Hall, London, 1989.

CE 2048

INDUSTRIAL STRUCTURES

LTPC 3 0 0 3

OBJECTIVE

This course deals with some of the special aspects with respect to Civil Engineering structures in industries. At the end of this course the student shall be able to design some of the structures.

CE 2047

COMPUTER AIDED DESIGN OF STRUCTURE

LTPC 3 0 0 3

OBJECTIVE

The main objective of this programme is to train the student in the use of computers and creating a computer code as well as using commercially available software for the design of Civil Engineering structures.

UNIT I INTRODUCTION

9

Fundamentals of CAD - Hardware and software requirements -Design process - Applications and benefits.

UNIT II COMPUTER GRAPHICS

9

Graphic primitives - Transformations -Wire frame modeling and solid modeling -Graphic standards -Drafting packages

UNIT III STRUCTURAL ANALYSIS

9

Fundamentals of finite element analysis - Principles of structural analysis - Analysis packages and applications.

UNIT IV DESIGN AND OPTIMISATION

9

Principles of design of steel and RC Structures -Applications to simple design problems - Optimisation techniques - Algorithms - Linear Programming - Simplex method

UNIT V EXPERT SYSTEMS

9

Introduction to artificial intelligence - Knowledge based expert systems -Rules and decision tables -Inference mechanisms - Simple applications.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Groover M.P. and Zimmers E.W. Jr., "CAD/CAM, Computer Aided Design and Manufacturing", Prentice Hall of India Ltd, New Delhi, 1993.
- 2. Krishnamoorthy C.S.Rajeev S., "Computer Aided Design", Narosa Publishing House, New Delhi, 1993

REFERENCES

- 1. Harrison H.B., "Structural Analysis and Design", Part I and II Pergamon Press, Oxford,
- 2. Rao S.S., "Optimisation Theory and Applications", Wiley Eastern Limited, New Delhi, 1977.
- 3. Richard Forsyth (Ed), "Expert System Principles and Case Studies", Chapman and Hall, London, 1989.

CE 2048

INDUSTRIAL STRUCTURES

LTPC 3 0 0 3

OBJECTIVE

This course deals with some of the special aspects with respect to Civil Engineering structures in industries. At the end of this course the student shall be able to design some of the structures.

UNIT I PLANNING

9

Classification of Industries and Industrial structures – General requirements for industries like cement, chemical and steel plants – Planning and layout of buildings and components.

UNIT II FUNCTIONAL REQUIREMENTS

9

Lighting – Ventilation – Acoustics – Fire safety – Guidelines from factories act.

UNIIT III DESIGN OF STEEL STRUCTURES

9

Industrial roofs – Crane girders – Mill buildings – Design of Bunkers and Silos

UNIT IV DESIGN OF R.C. STRUCTURES

9

Silos and bunkers - Chimneys - Principles of folded plates and shell roofs

UNIT V PREFABRICATION

9

Principles of prefabrication – Prestressed precast roof trusses- Functional requirements for Precast concrete units

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Reinforced Concrete Structural elements P. Purushothaman.
- 2. Pasala Dayaratnam Design of Steel Structure 1990.

REFERENCES

- 1. Henn W. Buildings for Industry, vols. I and II, London Hill Books, 1995.
- 2. Handbook on Functional Requirements of Industrial buildings, SP32 1986, Bureau of Indian Standards, New Delhi 1990.
- 3. Course Notes on Modern Developments in the Design and Construction of Industrial Structures, Structural Engineering Research Centre, Madras, 1982.
- 4. Koncz, J, Manual of Precast Construction Vol I & II Bauverlay GMBH, 1971.

CE 2049

SMART STRUCTURES AND SMART MATERIALS

LTPC 3 0 0 3

OBJECTIVE

This course is designed to give an insight into the latest developments regarding smart materials and their use in structures. Further, this also deals with structures which can self adjust their stiffness with load.

UNIT I INTRODUCTION

9

Introduction to Smart Materials and Structures – Instrumented structures functions and response – Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors.

UNIT II MEASURING TECHNIQUES

9

Strain Measuring Techniques using Electrical strain gauges, Types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes.

UNIT I PLANNING

9

Classification of Industries and Industrial structures – General requirements for industries like cement, chemical and steel plants – Planning and layout of buildings and components.

UNIT II FUNCTIONAL REQUIREMENTS

9

Lighting – Ventilation – Acoustics – Fire safety – Guidelines from factories act.

UNIIT III DESIGN OF STEEL STRUCTURES

9

Industrial roofs – Crane girders – Mill buildings – Design of Bunkers and Silos

UNIT IV DESIGN OF R.C. STRUCTURES

9

Silos and bunkers - Chimneys - Principles of folded plates and shell roofs

UNIT V PREFABRICATION

9

Principles of prefabrication – Prestressed precast roof trusses- Functional requirements for Precast concrete units

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Reinforced Concrete Structural elements P. Purushothaman.
- 2. Pasala Dayaratnam Design of Steel Structure 1990.

REFERENCES

- 1. Henn W. Buildings for Industry, vols. I and II, London Hill Books, 1995.
- 2. Handbook on Functional Requirements of Industrial buildings, SP32 1986, Bureau of Indian Standards, New Delhi 1990.
- 3. Course Notes on Modern Developments in the Design and Construction of Industrial Structures, Structural Engineering Research Centre, Madras, 1982.
- 4. Koncz, J, Manual of Precast Construction Vol I & II Bauverlay GMBH, 1971.

CE 2049

SMART STRUCTURES AND SMART MATERIALS

LTPC 3 0 0 3

OBJECTIVE

This course is designed to give an insight into the latest developments regarding smart materials and their use in structures. Further, this also deals with structures which can self adjust their stiffness with load.

UNIT I INTRODUCTION

9

Introduction to Smart Materials and Structures – Instrumented structures functions and response – Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors.

UNIT II MEASURING TECHNIQUES

9

Strain Measuring Techniques using Electrical strain gauges, Types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes.

UNIT III SENSORS

۵

Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strain measurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors – Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement.

UNIT IV ACTUATORS

9

Actuator Techniques – Actuator and actuator materials – Piezoelectric and Electrostrictive Material – Magnetostructure Material – Shape Memory Alloys – Electro orheological Fluids– Electro magnetic actuation – Role of actuators and Actuator Materials.

UNIT V SIGNAL PROCESSING AND CONTROL SYSTEMS

9

Data Acquisition and Processing – Signal Processing and Control for Smart Structures – Sensors as Geometrical Processors – Signal Processing – Control System – Linear and Non-Linear.

TOTAL: 45 PERIODS

TEXT BOOKS

Brain Culshaw – Smart Structure and Materials Artech House – Borton, London-1996.

REFERENCES

- 1. L. S. Srinath Experimental Stress Analysis Tata McGraw-Hill, 1998.
- 2. J. W. Dally & W. F. Riley Experimental Stress Analysis Tata McGraw-Hill, 1998.

CE 2050

FINITE ELEMENT TECHNIQUES

LTPC 3 0 0 3

OBJECTIVE

At the end of this course the student shall have a basic knowledge of finite element method and shall be able to analyse linear elastic structures, that he has studied about in core courses, using finite element method.

UNIT I INTRODUCTION – VARIATIONAL FORMULATION

9

General field problems in Engineering – Modelling – Discrete and Continuous models – Characteristics – Difficulties involved in solution – The relevance and place of the finite element method – Historical comments – Basic concept of FEM, Boundary and initial value problems – Gradient and divergence theorems – Functionals – Variational calculus Variational formulation of VBPS. The method of weighted residuals – The Ritz method.

UNIT II FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS

One dimensional second order equations – discretisation of domain into elements –
Generalised coordinates approach – derivation of elements equations – assembly of elements equations – imposition of boundary conditions – solution of equations – Cholesky method – Post processing – Extension of the method to fourth order equations and their solutions – time dependant problems and their solutions – example from heat transfer, fluid flow and solid mechanics.

UNIT III FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS

Second order equation involving a scalar-valued function – model equation – Variational formulation – Finite element formulation through generalised coordinates approach – Triangular elements and quadrilateral elements – convergence criteria for chosen models – Interpolation functions – Elements matrices and vectors – Assembly of element matrices – boundary conditions – solution techniques.

UNIT III SENSORS

۵

Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strain measurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors – Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement.

UNIT IV ACTUATORS

9

Actuator Techniques – Actuator and actuator materials – Piezoelectric and Electrostrictive Material – Magnetostructure Material – Shape Memory Alloys – Electro orheological Fluids– Electro magnetic actuation – Role of actuators and Actuator Materials.

UNIT V SIGNAL PROCESSING AND CONTROL SYSTEMS

9

Data Acquisition and Processing – Signal Processing and Control for Smart Structures – Sensors as Geometrical Processors – Signal Processing – Control System – Linear and Non-Linear.

TOTAL: 45 PERIODS

TEXT BOOKS

Brain Culshaw – Smart Structure and Materials Artech House – Borton, London-1996.

REFERENCES

- 1. L. S. Srinath Experimental Stress Analysis Tata McGraw-Hill, 1998.
- 2. J. W. Dally & W. F. Riley Experimental Stress Analysis Tata McGraw-Hill, 1998.

CE 2050

FINITE ELEMENT TECHNIQUES

LTPC 3 0 0 3

OBJECTIVE

At the end of this course the student shall have a basic knowledge of finite element method and shall be able to analyse linear elastic structures, that he has studied about in core courses, using finite element method.

UNIT I INTRODUCTION – VARIATIONAL FORMULATION

9

General field problems in Engineering – Modelling – Discrete and Continuous models – Characteristics – Difficulties involved in solution – The relevance and place of the finite element method – Historical comments – Basic concept of FEM, Boundary and initial value problems – Gradient and divergence theorems – Functionals – Variational calculus Variational formulation of VBPS. The method of weighted residuals – The Ritz method.

UNIT II FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS

One dimensional second order equations – discretisation of domain into elements –
Generalised coordinates approach – derivation of elements equations – assembly of elements equations – imposition of boundary conditions – solution of equations – Cholesky method – Post processing – Extension of the method to fourth order equations and their solutions – time dependant problems and their solutions – example from heat transfer, fluid flow and solid mechanics.

UNIT III FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS

Second order equation involving a scalar-valued function – model equation – Variational formulation – Finite element formulation through generalised coordinates approach – Triangular elements and quadrilateral elements – convergence criteria for chosen models – Interpolation functions – Elements matrices and vectors – Assembly of element matrices – boundary conditions – solution techniques.

UNIT IV ISOPARAMETRIC ELEMENTS AND FORMULATION

8

Natural coordinates in 1, 2 and 3 dimensions – use of area coordinates for triangular elements in - 2 dimensional problems – Isoparametric elements in 1,2 and 3 dimensional Largrangean and serendipity elements – Formulations of elements equations in one and two dimensions - Numerical integration.

UNIT V APPLICATIONS TO FIELD PROBLEMS IN TWO DIMENSIONALS

8

Equations of elasticity – plane elasticity problems – axisymmetric problems in elasticity – Bending of elastic plates – Time dependent problems in elasticity – Heat – transfer in two dimensions – incompressible fluid flow

TOTAL: 45 PERIODS

TEXT BOOK

1. Chandrupatla, T.R., and Belegundu, A.D., "Introduction to Finite Element in Engineering", Third Edition, Prentice Hall, India, 2003.

REFERENCES

- 1. J.N.Reddy, "An Introduction to Finite Element Method", McGraw-Hill, Intl. Student Edition, 1985.
- 2. Zienkiewics, "The finite element method, Basic formulation and linear problems", Vol.1, 4/e, McGraw-Hill, Book Co.
- 3. S.S.Rao, "The Finite Element Method in Engineering", Pergaman Press, 2003.
- 4. C.S.Desai and J.F.Abel, "Introduction to the Finite Element Method", Affiliated East West Press, 1972.

CE 2071 REPAIR AND REHABILITATION OF STRUCTURES

LTPC 3 0 0 3

OBJECTIVE

To get the knowledge on quality of concrete, durability aspects, causes of deterioration, assessment of distressed structures, repairing of structures and demolition procedures.

UNIT I MAINTENANCE AND REPAIR STRATEGIES

9

Maintenance, repair and rehabilitation, Facets of Maintenance, importance of Maintenance various aspects of Inspection, Assessment procedure for evaluating a damaged structure, causes of deterioration

UNIT II SERVICEABILITY AND DURABILITY OF CONCRETE

11

Quality assurance for concrete construction concrete properties- strength, permeability, thermal properties and cracking. - Effects due to climate, temperature, chemicals, corrosion - design and construction errors - Effects of cover thickness and cracking

UNIT III MATERIALS FOR REPAIR

9

Special concretes and mortar, concrete chemicals, special elements for accelerated strength gain, Expansive cement, polymer concrete, sulphur infiltrated concrete, ferro cement, Fibre reinforced concrete.

UNIT IV TECHNIQUES FOR REPAIR AND DEMOLITION

8

Rust eliminators and polymers coating for rebars during repair, foamed concrete, mortar and dry pack, vacuum concrete, Gunite and Shotcrete, Epoxy injection, Mortar repair for cracks, shoring and underpinning. Methods of corrosion protection, corrosion inhibitors, corrosion resistant steels, coatings and cathodic protection. Engineered demolition techniques for dilapidated structures - case studies.

UNIT IV ISOPARAMETRIC ELEMENTS AND FORMULATION

8

Natural coordinates in 1, 2 and 3 dimensions – use of area coordinates for triangular elements in - 2 dimensional problems – Isoparametric elements in 1,2 and 3 dimensional Largrangean and serendipity elements – Formulations of elements equations in one and two dimensions - Numerical integration.

UNIT V APPLICATIONS TO FIELD PROBLEMS IN TWO DIMENSIONALS

8

Equations of elasticity – plane elasticity problems – axisymmetric problems in elasticity – Bending of elastic plates – Time dependent problems in elasticity – Heat – transfer in two dimensions – incompressible fluid flow

TOTAL: 45 PERIODS

TEXT BOOK

1. Chandrupatla, T.R., and Belegundu, A.D., "Introduction to Finite Element in Engineering", Third Edition, Prentice Hall, India, 2003.

REFERENCES

- 1. J.N.Reddy, "An Introduction to Finite Element Method", McGraw-Hill, Intl. Student Edition, 1985.
- 2. Zienkiewics, "The finite element method, Basic formulation and linear problems", Vol.1, 4/e, McGraw-Hill, Book Co.
- 3. S.S.Rao, "The Finite Element Method in Engineering", Pergaman Press, 2003.
- 4. C.S.Desai and J.F.Abel, "Introduction to the Finite Element Method", Affiliated East West Press, 1972.

CE 2071 REPAIR AND REHABILITATION OF STRUCTURES

LTPC 3 0 0 3

OBJECTIVE

To get the knowledge on quality of concrete, durability aspects, causes of deterioration, assessment of distressed structures, repairing of structures and demolition procedures.

UNIT I MAINTENANCE AND REPAIR STRATEGIES

9

Maintenance, repair and rehabilitation, Facets of Maintenance, importance of Maintenance various aspects of Inspection, Assessment procedure for evaluating a damaged structure, causes of deterioration

UNIT II SERVICEABILITY AND DURABILITY OF CONCRETE

11

Quality assurance for concrete construction concrete properties- strength, permeability, thermal properties and cracking. - Effects due to climate, temperature, chemicals, corrosion - design and construction errors - Effects of cover thickness and cracking

UNIT III MATERIALS FOR REPAIR

9

Special concretes and mortar, concrete chemicals, special elements for accelerated strength gain, Expansive cement, polymer concrete, sulphur infiltrated concrete, ferro cement, Fibre reinforced concrete.

UNIT IV TECHNIQUES FOR REPAIR AND DEMOLITION

8

Rust eliminators and polymers coating for rebars during repair, foamed concrete, mortar and dry pack, vacuum concrete, Gunite and Shotcrete, Epoxy injection, Mortar repair for cracks, shoring and underpinning. Methods of corrosion protection, corrosion inhibitors, corrosion resistant steels, coatings and cathodic protection. Engineered demolition techniques for dilapidated structures - case studies.

UNIT V REPAIRS, REHABILITATION AND RETROFITTING OF STRUCTURES 8
Repairs to overcome low member strength, Deflection, Cracking, Chemical disruption, weathering corrosion, wear, fire, leakage and marine exposure.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Denison Campbell, Allen and Harold Roper, Concrete Structures, Materials, Maintenance and Repair, Longman Scientific and Technical UK, 1991.
- 2. R.T.Allen and S.C.Edwards, Repair of Concrete Structures, Blakie and Sons, UK, 1987

REFERENCES

- 1. M.S.Shetty, Concrete Technology Theory and Practice, S.Chand and Company, New Delhi, 1992.
- 2. Santhakumar, A.R., Training Course notes on Damage Assessment and repair in Low Cost Housing, "RHDC-NBO" Anna University, July 1992.
- 3. Raikar, R.N., Learning from failures Deficiencies in Design, Construction and Service R&D Centre (SDCPL), Raikar Bhavan, Bombay, 1987.
- 4. N.Palaniappan, Estate Management, Anna Institute of Management, Chennai, 1992.
- 5. Lakshmipathy, M. etal. Lecture notes of Workshop on "Repairs and Rehabilitation of Structures", 29 30th October 1999.s

UNIT IV ISOPARAMETRIC ELEMENTS AND FORMULATION

8

Natural coordinates in 1, 2 and 3 dimensions – use of area coordinates for triangular elements in - 2 dimensional problems – Isoparametric elements in 1,2 and 3 dimensional Largrangean and serendipity elements – Formulations of elements equations in one and two dimensions - Numerical integration.

UNIT V APPLICATIONS TO FIELD PROBLEMS IN TWO DIMENSIONALS

8

Equations of elasticity – plane elasticity problems – axisymmetric problems in elasticity – Bending of elastic plates – Time dependent problems in elasticity – Heat – transfer in two dimensions – incompressible fluid flow

TOTAL: 45 PERIODS

TEXT BOOK

1. Chandrupatla, T.R., and Belegundu, A.D., "Introduction to Finite Element in Engineering", Third Edition, Prentice Hall, India, 2003.

REFERENCES

- 1. J.N.Reddy, "An Introduction to Finite Element Method", McGraw-Hill, Intl. Student Edition, 1985.
- 2. Zienkiewics, "The finite element method, Basic formulation and linear problems", Vol.1, 4/e, McGraw-Hill, Book Co.
- 3. S.S.Rao, "The Finite Element Method in Engineering", Pergaman Press, 2003.
- 4. C.S.Desai and J.F.Abel, "Introduction to the Finite Element Method", Affiliated East West Press, 1972.

CE 2071 REPAIR AND REHABILITATION OF STRUCTURES

LTPC 3 0 0 3

OBJECTIVE

To get the knowledge on quality of concrete, durability aspects, causes of deterioration, assessment of distressed structures, repairing of structures and demolition procedures.

UNIT I MAINTENANCE AND REPAIR STRATEGIES

9

Maintenance, repair and rehabilitation, Facets of Maintenance, importance of Maintenance various aspects of Inspection, Assessment procedure for evaluating a damaged structure, causes of deterioration

UNIT II SERVICEABILITY AND DURABILITY OF CONCRETE

11

Quality assurance for concrete construction concrete properties- strength, permeability, thermal properties and cracking. - Effects due to climate, temperature, chemicals, corrosion - design and construction errors - Effects of cover thickness and cracking

UNIT III MATERIALS FOR REPAIR

9

Special concretes and mortar, concrete chemicals, special elements for accelerated strength gain, Expansive cement, polymer concrete, sulphur infiltrated concrete, ferro cement, Fibre reinforced concrete.

UNIT IV TECHNIQUES FOR REPAIR AND DEMOLITION

8

Rust eliminators and polymers coating for rebars during repair, foamed concrete, mortar and dry pack, vacuum concrete, Gunite and Shotcrete, Epoxy injection, Mortar repair for cracks, shoring and underpinning. Methods of corrosion protection, corrosion inhibitors, corrosion resistant steels, coatings and cathodic protection. Engineered demolition techniques for dilapidated structures - case studies.

UNIT V REPAIRS, REHABILITATION AND RETROFITTING OF STRUCTURES 8
Repairs to overcome low member strength, Deflection, Cracking, Chemical disruption, weathering corrosion, wear, fire, leakage and marine exposure.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Denison Campbell, Allen and Harold Roper, Concrete Structures, Materials, Maintenance and Repair, Longman Scientific and Technical UK, 1991.
- 2. R.T.Allen and S.C.Edwards, Repair of Concrete Structures, Blakie and Sons, UK, 1987

REFERENCES

- 1. M.S.Shetty, Concrete Technology Theory and Practice, S.Chand and Company, New Delhi, 1992.
- 2. Santhakumar, A.R., Training Course notes on Damage Assessment and repair in Low Cost Housing, "RHDC-NBO" Anna University, July 1992.
- 3. Raikar, R.N., Learning from failures Deficiencies in Design, Construction and Service R&D Centre (SDCPL), Raikar Bhavan, Bombay, 1987.
- 4. N.Palaniappan, Estate Management, Anna Institute of Management, Chennai, 1992.
- 5. Lakshmipathy, M. etal. Lecture notes of Workshop on "Repairs and Rehabilitation of Structures", 29 30th October 1999.s

UNIT V COST AND BREAK EVEN ANALYSES

13

Types of costing – traditional costing approach - activity base costing - Fixed Cost – variable cost – marginal cost – cost output relationship in the short run and in long run – pricing practice – full cost pricing – marginal cost pricing – going rate pricing – bid pricing – pricing for a rate of return – appraising project profitability –internal rate of return – pay back period – net present value – cost benefit analysis – feasibility reports – appraisal process – technical feasibility-economic feasibility – financial feasibility. Break even analysis - basic assumptions – break even chart – managerial uses of break even analysis.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Dewett K.K. & Varma J.D., Elementary Economic Theory, S Chand & Co., 2006
- 2. Sharma JC "Construction Management and Accounts" Satya Prakashan, New Delhi.

REFERENCES:

- 1. Barthwal R.R., Industrial Economics An Introductory Text Book, New Age
- 2. Jhingan M.L., Micro Economic Theory, Konark
- 3. Samuelson P.A., Economics An Introductory Analysis, McGraw-Hill
- 4. Adhikary M., Managerial Economics
- 5. Khan MY and Jain PK "Financial Management" McGraw-Hill Publishing Co., Ltd
- 6. Varshney RL and Maheshwary KL "Managerial Economics" S Chand and Co

CE 2453 PROJECT WORK L T P C 0 0 12 6

OBJECTIVE

The objective of the project work is to enable the students to work in convenient groups of not more than four members in a group on a project involving theoretical and experimental studies related to Civil Engineering. Every Project Work shall have a Guide who is a member of the faculty of Civil Engineering of the college where the student is registered. The hours allotted for this course shall be utilized by the students to receive directions from the Guide, on library reading, laboratory work, computer analysis or field work and also to present in periodical seminars the progress made in the project.

Each student shall finally produce a comprehensive report covering background information, literature Survey, problem statement, Project work details and conclusions.

This experience of project work shall help the student in expanding his / her knowledge base and also provide opportunity to utilise the creative ability and inference capability.

TOTAL: 180 PERIODS

EVALUATION PROCEDURE

The method of evaluation will be as follows:

1. Internal Marks : 20 marks

(decided by conducting 3 reviews by the guide appointed by the Institution)

2. Evaluation of Project Report : 30 marks

(Evaluated by the external examiner appointed the University). Every student belonging to the same group gets the same mark

3. Viva voce examination : 50 marks

(evaluated by the internal examiner appointed by the HOD with the approval of HOI, external examiner appointed by the University and Guide of the course – with equal Weightage)

TOTAL: 100 MARKS

UNIT II COMPASS AND PLANE TABLE SURVEYING

Compass – Basic principles - Types - Bearing - Systems and conversions- Sources of errors - Local attraction - Magnetic declination-Dip-Traversing - Plotting - Adjustment of closing error – applications - Plane table and its accessories - Merits and demerits - Radiation - Intersection - Resection – Traversing- sources of errors – applications.

UNIT III LEVELLING

9

Level line - Horizontal line - Datum - Bench marks -Levels and staves - temporary and permanent adjustments - Methods of levelling - Fly levelling - Check levelling - Procedure in levelling - Booking -Reduction - Curvature and refraction - Reciprocal levelling - Sources of Errors in levelling- Precise levelling - Types of instruments - Adjustments - Field procedure

UNIT IV LEVELLING APPLICATIONS

9

Longitudinal and Cross-section-Plotting - Contouring - Methods - Characteristics and uses of contours - Plotting - Methods of interpolating contours - Computations of cross sectional areas and volumes - Earthwork calculations - Capacity of reservoirs - Mass haul diagrams.

UNIT V THEODOLITE SURVEYING

9

Theodolite - Types - Description - Horizontal and vertical angles - Temporary and permanent adjustments — Heights and distances— Tangential and Stadia Tacheometry — Subtense method - Stadia constants - Anallactic lens.

TOTAL: 45 PERIODS

OUTCOMES:

• Students are expected to use all surveying equipments, prepare LS & CS, contour maps and carryout surveying works related to land and civil engineering projects.

TEXT BOOKS:

- 1. Chandra A.M., "Plane Surveying", New Age International Publishers, 2002.
- 2. Alak De, "Plane Surveying", S. Chand & Company Ltd., 2000.

REFERENCES:

- 1. James M. Anderson and Edward M. Mikhail, "Surveying, Theory and Practice",7th Edition, McGraw Hill, 2001.
- 2. Bannister and S. Raymond, "Surveying", 7th Edition, Longman 2004.
- 3. Roy S.K., "Fundamentals of Surveying", 2nd Edition, Prentice Hall of India, 2004.
- 4. Arora K.R., "Surveying Vol I & II", Standard Book house, 10th Edition 2008

CE6311

SURVEY PRACTICAL I

LTPC 0042

OBJECTIVES:

• At the end of the course the student will posses knowledge about Survey field techniques

LIST OF EXPERIMENTS:

- 1. Study of chains and its accessories
- 2. Aligning, Ranging and Chaining
- 3. Chain Traversing
- 4. Compass Traversing
- 5. Plane table surveying: Radiation
- 6. Plane table surveying: Intersection
- Plane table surveying: Traversing
- 8. Plane table surveying: Resection Three point problem
- 9. Plane table surveying: Resection Two point problem
- 10. Study of levels and leveling staff
- 11. Fly leveling using Dumpy level
- 12. Fly leveling using tilting level

- 13. Check leveling
- 14. LS and CS
- 15. Contouring
- 16. Study of Theodolite

OUTCOMES:

 Students completing this course would have acquired practical knowledge on handling basic survey instruments including leveling and development of contour map of given area.

REFERENCES:

- 1. James M. Anderson and Edward M. Mikhail, Surveying, Theory and Practice, 7th Edition, McGraw Hill, 2001.
- 2. Bannister and S. Raymond, "Surveying", 7th Edition, Longman 2004.
- 3. Roy S.K., "Fundamentals of Surveying", 2nd Edition, Prentice' Hall of India, 2004.
- 4. Arora K.R., Surveying Vol I & II, Standard Book house, 10th Edition 2008

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI. No.	Description of Equipment	Quantity
1.	Total Station	3 Nos
2.	Theodolites	Atleast 1 for every 5 students
3.	Dumpy level	Atleast 1 for every 5 students
4.	Plane table	Atleast 1 for every 5 students
5.	Pocket stereoscope	1
6.	Ranging rods	1 for a set of 5 students
7.	Leveling staff	
8.	Cross staff	
9.	Chains	
10.	Tapes	
11.	Arrows	
12.	Prismatic Compass	3 Nos.
13.	Surveyor Compass	1 No.

CE6312

COMPUTER AIDED BUILDING DRAWING

LTPC 0042

TOTAL: 60 PERIODS

TOTAL: 60 PERIODS

OBJECTIVES:

• To introduce the students to draft the plan, elevation and sectional views of buildings in accordance with development and control rules satisfying orientation and functional requirements as per National Building Code.

LIST OF EXPERIMENTS:

- 1. Principles of planning, orientation and complete joinery details (Paneled and Glazed Doors and Windows)
- Buildings with load bearing walls
- 3. Buildings with sloping roof
- 4. R.C.C. framed structures.
- 5. Industrial buildings North light roof structures
- Building Information Modeling

OUTCOMES:

• The students will be able to draft the plan, elevation and sectional views of the buildings, industrial structures, framed buildings using computer softwares.

36

- 13. Check leveling
- 14. LS and CS
- 15. Contouring
- 16. Study of Theodolite

OUTCOMES:

 Students completing this course would have acquired practical knowledge on handling basic survey instruments including leveling and development of contour map of given area.

REFERENCES:

- 1. James M. Anderson and Edward M. Mikhail, Surveying, Theory and Practice, 7th Edition, McGraw Hill, 2001.
- 2. Bannister and S. Raymond, "Surveying", 7th Edition, Longman 2004.
- 3. Roy S.K., "Fundamentals of Surveying", 2nd Edition, Prentice' Hall of India, 2004.
- 4. Arora K.R., Surveying Vol I & II, Standard Book house, 10th Edition 2008

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI. No.	Description of Equipment	Quantity
1.	Total Station	3 Nos
2.	Theodolites	Atleast 1 for every 5 students
3.	Dumpy level	Atleast 1 for every 5 students
4.	Plane table	Atleast 1 for every 5 students
5.	Pocket stereoscope	1
6.	Ranging rods	1 for a set of 5 students
7.	Leveling staff	
8.	Cross staff	
9.	Chains	
10.	Tapes	
11.	Arrows	
12.	Prismatic Compass	3 Nos.
13.	Surveyor Compass	1 No.

CE6312

COMPUTER AIDED BUILDING DRAWING

LTPC 0042

TOTAL: 60 PERIODS

TOTAL: 60 PERIODS

OBJECTIVES:

• To introduce the students to draft the plan, elevation and sectional views of buildings in accordance with development and control rules satisfying orientation and functional requirements as per National Building Code.

LIST OF EXPERIMENTS:

- 1. Principles of planning, orientation and complete joinery details (Paneled and Glazed Doors and Windows)
- Buildings with load bearing walls
- 3. Buildings with sloping roof
- 4. R.C.C. framed structures.
- 5. Industrial buildings North light roof structures
- Building Information Modeling

OUTCOMES:

• The students will be able to draft the plan, elevation and sectional views of the buildings, industrial structures, framed buildings using computer softwares.

36

TEXTBOOKS:

- 1. Sikka V. B., A Course in Civil Engineering Drawing, 4th Edition, S.K. Kataria and Sons, 1998.
- 2. George Omura, "Mastering in AUTOCAD 2002", BPB Publications, 2002

REFERENCES:

- 1. Shah.M.G., Kale. C.M. and Patki. S.Y., "Building Drawing with an Integrated Approach to Built Environment", Tata McGraw Hill Publishers Limited, 2004.
- 2. Verma.B.P., "Civil Engineering Drawing and House Planning", Khanna Publishers, 1989.
- 3. Marimuthu V.M., Murugesan R. and Padmini S., "Civil Engineering Drawing-I", Pratheeba Publishers, 2008.
- 4. A Guide to building information modeling for Owners, Managers, Designers, Engineers, and Contractors, John Wiley and Sons. Inc., 2008.

NOTE TO QUESTION PAPER SETTER:

30% weightage for planning, while the rest 70% for drafting skill.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI. No.	Description of Equipment	Quantity
1.	Computer system of Pentium IV or equivalent	1 for each student
2.	AUTOCAD	1 copy for a set of 3 students

MA6459

NUMERICAL METHODS

LTPC 3 104

OBJECTIVES:

 This course aims at providing the necessary basic concepts of a few numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology

UNIT I SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS 10+

Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method- Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel - Matrix Inversion by Gauss Jordan method - Eigen values of a matrix by Power method.

UNIT II INTERPOLATION AND APPROXIMATION

8+3

Interpolation with unequal intervals - Lagrange's interpolation - Newton's divided difference interpolation - Cubic Splines - Interpolation with equal intervals - Newton's forward and backward difference formulae.

UNIT III NUMERICAL DIFFERENTIATION AND INTEGRATION

9+:

Approximation of derivatives using interpolation polynomials - Numerical integration using Trapezoidal, Simpson's 1/3 rule - Romberg's method - Two point and three point Gaussian quadrature formulae - Evaluation of double integrals by Trapezoidal and Simpson's 1/3 rules.

UNIT IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

9+3

Single Step methods - Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge-Kutta method for solving first order equations - Multi step methods - Milne's and Adams-Bash forth predictor corrector methods for solving first order equations.