- To understand weathering process and mass movements.
- To distinguish geological formations.
- To identify geological structures and processes for rock mass quality.
- To know subsurface information and ground water potential sites through geophysical investigations.
- To apply geological principles for mitigation of natural hazards and select sites for dams and tunnels.

UNIT I GENERAL GEOLOGY

9

Geology in civil engineering- Branches of geology; Earth structures and composition- Elementary knowledge on continental drift and plate tectonics; Earth processes- Weathering - Geological work of rivers, wind and sea - Engineering importance; Earthquake belts in India; Groundwater- Mode of occurrence - Prospecting - Importance in civil engineering.

UNIT II MINERALOGY

9

Introduction -Study of rock forming minerals - Felspar group, Quartz Group- hornblende - Mica group-Muscovite, biotite; Oxide minerals - Quartz, corundum; Carbonate minerals- Calcite, dolomite, magnesite; Coal and petroleum- Origin and occurrence in India.

UNIT III PETROLOGY

9

Classification of rocks; Distinction between igneous, sedimentary and metamorphic rocks; Occurrence, engineering properties and distribution; Igneous rocks- Granite, syenite, diorite, gabbro, pegmatite, dolerite and basalt; sedimentary rocks- Sandstone, limestone, shale, conglomerate and breccia; Metamorphic rocks- quartzite, marble, slate, phyllite, gneiss and schist.

UNIT IV STRUCTURAL GEOLOGY AND GEOPHYSICAL METHOD

9

Introduction- Study of structural features- Folds, faults and joints; Engineering considerations - Geophysical investigations- Seismic and electrical.

UNIT V GEOLOGICAL INVESTIGATIONS IN CIVIL ENGINEERING

9

Geological conditions necessary for construction of dams, tunnels, buildings, road cuttings - Landslides – Causes and preventions - improvement of sites.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of the course, the students will be able to

- classify the various geological agents and processes involved.
- identify the available minerals by their properties and behavior.
- understand the importance of geological knowledge such as earth, earthquake, volcanism and the action of various geological agencies.
- realize the importance of this knowledge in projects such as dams, tunnels, bridges, roads, airport and harbour.
- choose the types of foundations and other related aspects.

TEXTBOOKS

- 1. Parbin Singh, "Engineering and General Geology", S.K.Kataria& Sons, 2008.
- 2. MarlandP.Billings, "Structural Geology", PHI Learing Pvt. Ltd. New Delhi, 2012

REFERENCES

- 1. F.G.Bell, "Engineering Geology", Butterworth Heinemann (An Imprint of Elsevier), 2007.
- 2. F.G.H. Blyth and M.H.de Freitas, "A Geology for Engineers", Butterworth –Heinemann (An Imprint of Elsevier), 2006.
- 3. Rutleys "Mineralogy"
- 4. Leverson "Petroleum Geology"
- 5. Tyrell "Petrology"

										ne Outc 2-Mediu	omes: n, 1-We	ak				
						Prog	gramme	Outco	mes (Po	Os)						
Cos	PO1															
CO1	2															
CO2	2															
CO3	2	2	1	1	-	-	-	-	2	=	-	-	2	-		
CO4	2	2	-	1	2	2	2	2	-	=	2	2	2	-		
CO5	-	=	1	1	-	2	2	2	2	1	2	2	2	-		

- To understand the state of stresses and strains in structural components as a result of different loading conditions.
- To analyze the truss elements under complex state of stress by means of analytical and graphical methods. Also behavior thin cylinder with different conditions.
- To acquire knowledge in shear force and bending moment for all statically determinate beams by recognizing the beam type and loading.
- To find deflection of beam with different load and different method. To provide exposure on the concepts of internal stress in beams of various cross sections.
- To know the behavior of members subjected to pure torsion and also to develop knowledge about springs.

UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 9

Rigid bodies and deformable solids - stability, strength, stiffness, tension, compression and shear stresses; strain, elasticity, Hooke's law, limit of proportionately, modules of elasticity, stress-strain curve, lateral strain - temperature stresses - deformation of simple and compound bars; shear modulus, bulk modulus, relationship between elastic constants; biaxial state of stress - stress at a point - stress on inclined plane - principal stresses and principal planes - Mohr's circle of stresses.

UNIT II ANALYSIS OF PLANE TRUSS, THIN CYLINDERS / SHELLS 9

Stability and equilibrium of plane frames; types of trusses - analysis of forces in truss members- method of joints- method of sections- method of tension coefficients; thin cylinders and shells - under internal pressure - deformation of thin cylinders and shells.

UNIT III TRANSVERSE LOADING ON BEAMS 9

Beams - types of supports - simple and fixed, types of load - concentrated, uniformly distributed, varying distributed load, combination of above loading; relationship between bending moment and shear force - bending moment, shear force diagram for simply supported, cantilever and over hanging beams - Theory of simple bending - analysis of stresses - load carrying capacity of beams - proportioning of sections

UNIT IV DEFLECTION OF BEAMS AND SHEAR STRESSES 9

Deflection of beams - double integration method - Macaulay's method - slope and deflection using moment area method, Conjugate Beam method - variation of shear stress - shear stress distribution in

rectangular, I sections, solid circular sections, hollow circular sections, angle and channel sections- shear flow- shear centre.

UNIT V TORSION AND SPRINGS

9

Stresses and deformation in circular (solid and hollow shafts) - stepped shafts - shafts fixed at both ends - leaf springs - stresses in helical springs - deflection of springs.

TOTAL: 45PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- understand the fundamental concepts of stress and strain in mechanics of solids and structures.
- analyse the truss for internal forces and also forces of thin cylinder.
- analyse determinate beams and to determine shear forces, bending moments and axial forces.
- evaluate the elements subjected to complex deflection by means of analytical methods. also internal shear stress of different cross section.
- gain a sufficient knowledge in designing shafts to transmit required power and also springs for its maximum energy storage capacities.

TEXT BOOKS

- 1. Rajput.R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2007.
- 2. Bhavikatti. S., "Solid Mechanics", Vikas publishing house Pvt. Ltd, New Delhi, 2010.
- 3. Bansal R.K. Strength of materials, Laxmi Publications, New Delhi 2007

REFERENCES

- 1. Subramanian R., Strength of materials, Oxford university press, New Delhi 2005
- 2. William A.Nash, Theory and Problems of Strength of Materials, Schaum's Outline Series, Tata McGraw-Hill publishing co., New Delhi 2007.
- 3. Ramamrutham, S., "Strength of Materials", DhanpatRai& Sons, 2008
- 4. Srinath L.S," Advanced Mechanics of Solids", Tata McGraw-Hill Publishing Co., New Delhi, 2005.
- 5. Gambhir. M.L., "Fundamentals of Solid Mechanics", PHI Learning Private Limited., New Delhi, 2009.
- 6. http://web.mst.edu/~mecmovie/

										me Outo 2-Mediu		eak			
~						Prog	gramme	Outco	mes (P	Os)					
Cos	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1	3	2	-	-	-	-	-	-	-	-	-	-	2	1	
CO2	2	2	-	2	2	-	-	-	-	-	-	-	2	2	
CO3	2	2	2	2	2	-	-	-	-	-	1	-	2	1	
CO4	2	3	2	2	2	2	-	-	-	-	1	-	2	1	
CO5	2	2	3	2	-	2	-	-	-	-	1	1	2	1	

- To apply conservation laws to derive governing equations of fluid flows.
- To obtain knowledge in kinematic flow of fluid
- To compute hydrostatic and hydro dynamic forces.
- To analyze and design simple pipe systems.
- To apply principles of dimensional analysis to design experiments.

UNIT I FLUID STATICS, BUOYANCY AND FLOATATION

10

Fluid Statics; Variation of static pressure; Pascal's law; Atmospheric, Absolute and gauge pressure; Pressure measurement by mechanical gauges and manometers; pressure on plane surfaces and curved surfaces. Buoyancy; Buoyant and Centre of Buoyancy; Stability of submerged bodies and floating bodies; Metacentre and metacentric height; Determination of Metacentric height-Floatation.

UNIT II KINEMATICS OF FLUID FLOW

10

Methods of describing fluid motion; Types of flow- Three, two and one dimensional flows; irrotational and rotational flows; Streamline; pathline; Streakline; Equation for acceleration; Continuity equation; Velocity potential and stream function; flownet; Vortex flow-Free vortex and forced vertex flow.

UNIT III DYNAMICS OF FLUID FLOW

8

Control volume and control surface - Energy and its forms. Energy equation- Euler's and Bernoulli's equation - Applications - venturimeter - orifice meter - pitot tube- Flow over notches and weirs - Other Flow measuring devices.

UNIT IV FLOW THROUGH PIPES

9

Laminar flow through circular pipes and between parallel plates - Hagen Poisullie equation - turbulent flow - Darcy Weisbach formula - Moody diagram - Impulse Momentum principle-Major and Minor losses.

UNIT V BOUNDARY LAYER AND FLOW ON SUBMERGED BODIES

8

Boundary layer- Definition - Boundary layer on a flat plate - Thickness and classification - Displacement, energy and momentum thickness - Boundary layer separation and control- Flow around submerged objects - Drag and lift coefficients - Lift on cylinders - Streamlined and Airfoil.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course the students will be able to

- attain a thorough knowledge in various fundamental properties of fluids.
- determine the forces acting on bodies submerged in static fluid.
- apply the continuity, energy and momentum equations to fluid flow.
- distinguish laminar and turbulent flow through pipes and compute the energy losses in pipe flow.
- select appropriate model to provide solution to a real time problem related to hydraulics.

TEXT BOOKS

- 1. R.K.Rajput., "A text book of Fluid Mechanics", S.Chand and Company, NewDelhi, 2007.
- 2. R.K. Bansal, "Fluid mechanics and hydraulic machines," Laxmi Publications (P) Ltd, 2006.
- 3. Modi P.N and Seth S.M, "Hydraulics and Fluid Mechanics", Including Hydraulic Machines, Standard Book House, Newdelhi, 2002.
- 4. S.Ramamurtham and R.Narayanan, "Hydraulics and Fluid Mechanics and Fluid Mechines" Dhanpatrai Publishing Co (P) Ltd, NewDelhi, 2000.

REFERENCES

- 1. Streeter, Victor L., Wylie, E.Benjamin, "Fluid Mechanics", McGraw Hill., 1998.
- Kumar.K.L., "Engineering FluidMechanics", Eurasia Publishing Houses (P) Ltd., NewDelhi, 2000. Natarajan M.K, "Principles of Fluid Mechanics", Anuradha Agencies, VidayalKaruppur, Kumbakonam, 1995.
- 3. P.N. Modi& S.M. Seth, "Hydraulics and fluid mechanics including hydraulic machines," Standard book house, New Delhi, 2005
- 4. K.L. Kumar, "Engineering fluid mechanics," Eurasia publishing house, 1995
- 5. bookboon.com > en > engineering-fluid-mechanics-ebook
- 6. engineeringtoolbox.com > fluid-mechanics-t 21
- 7. efunda.com > formulae > fluids

				`	_				_	me Out 2-Mediu		eak				
~						Prog	gramm	e Outco	omes (P	Os)						
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3															
CO2	3															
CO3	3	2	-	2	1	-	-	-	-	1	1	2	3	1		
CO4	3	2	-	2	1	-	-	-	-	1	1	2	3	1		
CO5	3	2	-	2	1	-	-	-	-	1	1	2	3	2		

CE15304 CONSTRUCTION TECHNOLOGY

3003

COURSE OBJECTIVES

- To identify the characteristics building materials
- To understand the Manufacturing process of bricks and cement.
- To explain the manufacturing process of concrete.
- To identify the methods for preservation of timber and metals.
- To understand the use of non-conventional Civil Engineering materials.

UNIT I STONES – BRICKS – CONCRETE BLOCKS

9

Stone as building material - Criteria for selection - Tests on stones - Deterioration and Preservation of stone work; Bricks - Classification - Manufacturing of clay bricks - Tests on bricks - Compressive Strength - Water Absorption - Efflorescence - Bricks for special use - Refractory bricks; Cement, Concrete blocks-Lightweight concrete blocks.

UNIT II LIME – CEMENT – AGGREGATES – MORTAR

9

Lime - Preparation of lime mortar; Cement - Ingredients - Manufacturing process - Types and Grades - Properties of cement and Cement mortar - Hydration - Compressive strength - Tensile strength - Fineness-Soundness and consistency - Setting time - Industrial byproducts - Fly ash; Aggregates - Natural stone aggregates - Crushing strength - Impact strength - Flakiness Index - Elongation Index - Abrasion Resistance - Grading - Sand Bulking.

UNIT III CONCRETE

9

Concrete -Ingredients -Manufacturing Process- Batching plants- RMC- Properties of fresh concrete - Slump - Flow and compaction Factor- Properties of hardened concrete -Compressive, Tensile and shear Strength Concrete and HPC - Self compacting Concrete -Other types of Concrete; Durability of Concrete.

UNIT IV TIMBER AND OTHER MATERIALS

9

Timber-Market forms- Industrial timber -Plywood - Veneer -Thermacole - Panels of laminates; Steel - Aluminum and Other Metallic Materials -Composition - Aluminium composite panel -Uses -Market forms -Mechanical treatment; Paints - Varnishes - Distempers -Bitumens.

UNIT V MODERN MATERIALS

9

Glass – Ceramics- Sealants for joints-Fibre glass reinforced plastic; Clay products - Refractories-Composite materials -Types -Applications of laminar composites; Fibre textiles -Geomembranes and Geotextiles for earth reinforcement.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of the course students will be able to

- identify construction materials
- familiarize on wave characteristics of basic building materials
- understand the behavior and manufacture of cement and concrete.
- identify timber materials.
- understand and conserve the modern materials.

TEXT BOOKS

- 1. Varghese.P.C, "Building Materials", PHI Learning Pvt. Ltd, New Delhi, 2012.
- 2. Rajput. R.K., "Engineering Materials", S. Chand and Company Ltd., 2008.
- 3. Shetty.M.S., "Concrete Technology (Theory and Practice)", S. Chand and Company Ltd., 2008.
- 4. Gambhir.M.L., "Concrete Technology", 3rd Edition, Tata McGraw Hill Education, 2004
- 5. Duggal.S.K., "Building Materials", 4th Edition, New Age International, 2008.

REFERENCES

- 1. Jagadish.K.S, "Alternative Building Materials Technology", New Age International, 2007.
- 2. Gambhir. M.L., &NehaJamwal., "Building Materials, products, properties and systems", Tata McGraw Hill Educations Pvt. Ltd, New Delhi, 2012.
- 3. IS456 2000: Indian Standard specification for plain and reinforced concrete, 2011
- 4. IS4926–2003: Indian Standard specification for ready–mixed concrete, 2012

										me Out 2-Mediu		eak			
~						Prog	gramm	e Outco	omes (P	Os)					
Cos	PO1														
CO1	3	2	-	2	-	3	-	2	-	-	-	-	3	-	
CO2	3	-	3	-	1	-	1	-	-	-	-	-	3	-	
CO3	3	-	-	-	-	-	-	-	2	1	-	-	3	3	
CO4	3	-	-	-	-	-	-	-	-	-	2	-	3	-	
CO5	2	-	-	2	-	-	-	2	-	-	-	1	3	2	

CE15305 SURVEYING I 3 0 0 3

COURSE OBJECTIVES

- To understand the working principles of survey instruments.
- To calculate angles and distances.
- To identify data collection methods and prepare filed notes.
- To estimate measurement errors and and apply corrections.
- To interpret survey data and compute areas and volumes.

UNIT I INTRODUCTION AND CHAIN SURVEYING

9

Definition - Principles - Classification - Field and office work - Scales - Conventional signs - Survey instruments, their care and adjustment - Ranging and chaining - Reciprocal ranging - Setting perpendiculars - well - conditioned triangles - Traversing - Plotting - Enlarging and reducing figures.

UNIT II COMPASS SURVEYING AND PLANE TABLE SURVEYING

Prismatic compass - Surveyor's compass - Bearing - Systems and conversions - Local attraction - Magnetic declination - Dip - Traversing - Plotting - Adjustment of errors; Plane table instruments and accessories - Merits and demerits - Methods - Radiation - Intersection - Resection - Traversing.

UNIT III LEVELLING AND APPLICATIONS

9

9

Level line - Horizontal line - Levels and Staves - Spirit level - Sensitiveness - Bench marks - Temporary and permanent adjustments - Fly and check levelling - Booking - Reduction - Curvature and refraction - Reciprocal levelling - Longitudinal and cross sections - Plotting - Calculation of areas and volumes; Contouring - Methods - Characteristics and uses of contours - Plotting - Earth work volume - Capacity of reservoirs.

UNIT IV THEODOLITE SURVEYING

9

Theodolite - Vernier and micro optic - Description and uses - Temporary and permanent adjustments of vernier transit - Horizontal angles - Vertical angles - Heights and distances - Traversing - Closing error and distribution - Gale's tables - Omitted measurements.

UNIT V TACHEOMETRIC SURVEYING

9

Tacheometric systems - Tangential, stadia and subtense methods - Stadia systems - Horizontal and inclined sights - Vertical and normal staffing - Fixed and movable hairs - Stadia constants - Anallactic lens - Subtense bar.

TOTAL:45PERIODS

COURSE OUTCOMES

At the end of the course students will be able to

- understand the working principles of survey instruments.
- calculate included angles and bearings by using compass.
- interpret survey data compute areas and volumes.
- estimate measurement errors and apply corrections.
- calculate horizontal angles and vertical angles by using tacheometer.

TEXT BOOKS

- 1. Dr. B.C. Punmia, Ashok Kumar Jain, Ashok Kr. Jain, Arun Kr. Jain "Surveying (Volume –I)", Lakshmi Publications, 2005.
- 2. S.K.Duggal, "Surveying (Volume-I) "Tata Mcgraw-Hill Publishing company Ltd. Newdelhi, 2007.
- 3. Dr.P.Purushothama Raj, "Surveying-I" Tata Mcgraw-Hill Publishing company Ltd. Newdelhi, 2013.

REFERENCES

- 1. AlakDe, "Plane surveying", S.Chand& Company, New Delhi, 2002.
- 2. A.M Chandra, "Plane Surveying", New age International, New Delhi, 2004.
- 3. S. S. Bhavikatti, "Surveying and Levelling (Volume-1)"I. K. International Pvt Ltd, 2009.
- 4. Basak, "Surveying & Levelling", Tata McGraw-Hill Education, 2000.
- 5. http://nptel.ac.in

					_	•			_	me Out 2-Mediu		eak				
G						Prog	gramm	e Outco	omes (P	Os)						
Cos	PO1															
CO1	2	2 2 1 1 1 3 1														
CO2	3															
CO3	2	2	1	1	-	-	-	=	-	-	=	2	3	1		
CO4	2	2	2	2	-	-	I	=	=	=	=	2	3	1		
CO5	1	2	2	2	-	-	-	-	-	-	_	2	3	1		

- To conduct survey and field data.
- To prepare field notes from survey data.
- To interpret survey data and compute areas and volumes.
- To understand the working procedure of total station

LIST OF EXPERIMENTS

- 1. Study of chains and its accessories
- 2. Aligning, Ranging and Chaining
- 3. Chain Traversing
- 4. Compass Traversing
- 5. Plane table surveying: Radiation
- 6. Plane table surveying: Intersection
- 7. Plane table surveying: Traversing
- 8. Plane table surveying: Resection Three point problem
- 9. Plane table surveying: Resection Two point problem
- 10. Study of levels and levelling staff
- 11. Fly levelling using Dumpy level
- 12. Fly levelling using tilting level
- 13. Check levelling
- 14. LS and CS
- 15. Contouring

COURSE OUTCOMES

At the end of the course the student will be able to

- conduct survey by using surveying instruments such as chain/tape, compass, plane table, and theodolite.
- prepare field notes from survey data.
- interpret survey data and compute areas and volumes.
- measure the horizontal and vertical distance by total station

TOTAL:60PERIODS

										ıme Out ,2-Mediı		'eak				
						Prog	gramme	e Outco	omes (P	Os)						
Cos	PO1	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2														
CO1	1	1 1 2 1 3 1														
CO2	2	1	-	-	3	2	-	-	3	1	=	1	3	-		
CO3	3	2	ı	-	2	-	ì	-	2	1	ı	2	3	1		
CO4	2	2	-	-	3	2	-	-	3	1	-	2	3	2		

- To construct the different types of bonds in brickwork and making different joints.
- To find every day room temperature by setting standard Temperature measuring Devices.
- To demonstrate and practice in plastering, painting, varnishing and polishing.
- To practice Cutting, Hooking, Cranking and arrangement of reinforcement.

LIST OF EXPERIMENTS

- 1. Arrangement of bricks using English bond in one brick thick wall and one and half brick thick for right angled corner junction.
- 2. Arrangement of bricks using English bond in one brick thick wall and one and half brick thick wall for Tee-junction
- 3. Arrangement bricks using English bond in one brick thick, one and half and two brick thick square pillars.
- 4. Arrangement of bricks using Flemish bond in one brick thick wall and one and half brick thick for right angled corner junction.
- 5. Arrangement of bricks using Flemish bond in one brick thick wall and one and half brick thick wall for Tee-junction
- Arrangement bricks using Flemish bond in one brick thick, one and half and two brick thick square pillars.
- 7. Practice on measuring every day temperature in the Laboratory by setting standard Temperature measuring Devices in the Laboratory and separate register to be maintained in the Laboratory for temperature records for future reference. (For Demonstration purpose but it is Compulsory).
- 8. Demonstration and practice in plastering, painting, varnishing and polishing.
- 9. Cutting, Hooking, cranking and arrangement of reinforcement.
 - a. Beam
 - b. Lintel and Sunshade
 - c. Column and footing.
- 10. Pre measurement for steel work. The following models should be prepared in the laboratory, students should take out measurement from the model, they should enter the measurement in the measurement book and the total quantity of steel required in kg for each item may be arrived. One way slab-size 2.0 m x 2.0 m Main rod 8 mm dia. 15 nos. Distributor 6 mm dia 12 nos.

- 11. Pre measurement for steel work. The following models should be prepared in the laboratory, students should take out measurement from the model, they should enter the measurement in the measurement book and the total quantity of steel required in kg for each item may be arrived. Column and footing Footing size 1.0 m x 1.0 m 10 mm dia 5 nos. each direction Column size 150 mm x 150 mm 4 nos. 10 mm dia
- 12. Pre measurement for steel work. The following models should be prepared in the laboratory, students should take out measurement from the model, they should enter the measurement in the measurement book and the total quantity of steel required in kg for each item may be arrived.
 - a. Beam size 230 mm x 300 mm Length 2.0 m Bottom rod 12 mm 3 nos.
 - b. Top rod 10 mm 2 nos. Stirrups -6 mm 14 nos.

TOTAL: 60PERIODS

COURSE OUTCOMES

At the end of the course the students will be able to

- construct the different types of bonds in brickwork and making different joints.
- calculate the everyday room temperature by setting standard temperature measuring devices.
- practice plastering, painting, varnishing and polishing works.
- practice cutting, hooking, cranking and arrangement of reinforcement.

				`	_	•			_	me Out ,2-Mediı		eak			
~						Prog	gramm	e Outco	omes (P	Os)					
Cos	PO1	1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													
CO1	3	3 3 3 - 1 - 2 3 2													
CO2	3	3	-	-	3	-	1	-	2	-	-		3	2	
CO3	3	3	=	-	3	=	1	=	2	=	=	-	3	2	
CO4	3	3	-	-	3	-	1	-	2	-	-	-	3	2	

- To draw the Plan, Section and elevation of a building.
- To create, analyse and reproduce 2D drawings of buildings in Auto CAD.
- To create, modify and annotate commands using software.
- To draw the basic 3-D view of a simple building.

LIST OF EXPERIMENTS

PART A

- 1. Introduction to Building drawing
- 2. Symbols and sign conventions related to buildings and architecture Structure types components of a typical residential building developing plan, section and elevation of buildings.

PART B (Using standard drafting software)

- 1. Drafting and annotation commands.
- 2. Simple Drawings I
- 3. Simple drawings II.
- 4. Drawings using advanced commands.

PART C (Building Drawings)

Plan, elevation and cross section of

- 1. Single storied residential building
- 2. Multi-storied residential building
- 3. Framed office building
- 4. Institution building
- 5. Industrial building with north light roof truss
- 6. 3D view of a single floor residential building:

TOTAL: 30PERIODS

COURSE OUTCOMES

At the end of this lab course the students will be able to

- Create 2d and 3d views of buildings.
- Understand the different views of the components of a building.
- Familiarize with the standard symbols and sign conventions suitably.
- Create, modify and annotate commands.

TEXT BOOKS

- 1. Sikka V.B., "A Course in Civil Engineering Drawing", 4th edition, S.K.Kataria& Sons, New Delhi, 1998.
- 2. Shah M.G. Kale C.M. &Patki S.Y., "Building Drawing with an Integrated Approach to Built Environment", 4th edition, Tata McGraw Hill Publishing Co. Ltd. New Delhi, 2002.

REFERENCES

- 1. Building drawing Shah.M.G., Tata McGraw-Hill, 1992
- 2. Building planning & Drawing -Kumaraswamy N., KameswaraRao A., Charotar Publishing
- 3. www.iitk.ac.in/cad/
- 4. www.cadl.iiscx.ernet.in/

										me Out ,2-Medi		eak				
						Prog	gramme	e Outco	omes (P	Os)						
Cos	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2														
CO1	1	1 1 - 2 2														
CO2	1	1	1	-	2	=	-	-	-	-	1	1	1	3		
CO3	2	1	2	=	3	=	-	=	-	=	1	1	1	3		
CO4	2	1	2	-	3	-	-	-	-	-	1	1	1	3		

- To understand the concept of energy principles.
- To anlyze the determinate and indeterminate beams.
- To analyze columns and struts.
- To understand the concept of theories of failure and state of stress in three dimensions.
- To understand advanced concepts like unsymmetrical bending, stresses in curved bars and locating shear centre.

UNIT I ENERGY PRINCIPLES

9

Strain energy and strain energy density - strain energy in traction, shear in flexure and torsion - castigliano's theorems - principle of virtual work - application of energy theorems for computing deflections in beams and trusses - Maxwell's reciprocal theorems

UNIT II INDETERMINATE BEAMS

9

Propped cantilever and fixed beams-fixed end moments and reactions for concentrated load (central, non central), uniformly distributed load, triangular load (maximum at centre and maximum at end) - theorem of three moments - analysis of continuous beams - shear force and bending moment diagrams for continuous beams - slope & deflections in continuous beams (qualitative study only)

UNIT III COLUMNS AND CYLINDER

9

Eccentrically loaded short columns - middle third rule - core section - columns of unsymmetrical sections - (angle channel sections) - Euler's theory of long columns - critical loads for prismatic columns with different end conditions; Rankine-Gordon formula for eccentrically loaded columns - thick cylinders - compound cylinders.

UNIT IV STATE OF STRESS IN THREE DIMENSIONS

9

Spherical and deviatory components of stress tensor - determination of principal stresses and principal planes - volumetric strain - dilatation and distortion - theories of failure - principal stress dilatation - principal strain - shear stress - strain energy and distortion energy theories - application in analysis of stress, load carrying capacity and design of members - residual stresses

UNIT V ADVANCED TOPICS IN BENDING OF BEAMS

9

Unsymmetrical bending of beams of symmetrical and unsymmetrical sections - curved beams - Winkler Bach formula - stress concentration - fatigue and fracture.

TOTAL: 45 PERIODS

At the end of the course the student will be able to

- understand energy method for estimating the slope and deflections of beams and trusses.
- analyze the indeterminate beams such as propped cantilever, fixed beams and continuous beams
- formulate the safe load and crippling load on the coumn for different end conditions and also analyze the stress distribution in thick cylinders subjected to fluid pressure.
- analyze the various types of failures of materials by theories of failures and also know stresses in three dimensions.
- apply the concepts in beams subjected to unsymmetrical bending.

TEXT BOOKS

- 1. Egor P Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi 2003
- 2. Rajput R.K. Strength of Materials, S.Chand& company Ltd., New Delhi 2006.
- 3. Bansal R.K, Strength of Materials (Mechanics of Solids), Laxmi publishing PvtLtd,New Delhi, 2012.

REFERENCES

- 1. Kazimi S.M.A, "Solid Mechanics", Tata McGraw-Hill Publishing Co., New Delhi, 2003.
- 2. William A .Nash, "Theory and Problems of Strength of Materials", Schaum's Outline Series, Tata McGraw Hill Publishing company Ltd, 2007.
- 3. Khurmi R.S, Strength of Materials (Mechanics of Solids), S.Chand& Company Ltd., 2010.
- 4. Srinath, L.S. Advanced mechanics and solids, Tata-McGraw Hill publishing company ltd, 2005.
- 5. Punmia B.C, Ashok K. Jain and Arun K. Jain, Mechanics of Structures (SMTS I), Laxmi publishing PvtLtd,New Delhi,2011.
- 6. Punmia B.C, Ashok K. Jain and Arun K. Jain, Theory of Structures (SMTS II), Laxmi publishing PvtLtd,New Delhi,2004.

				`	-	•			_	me Outo		'eak			
						Prog	gramme	e Outco	omes (P	Os)					
Cos	PO1														
CO1	3	3 3 1													
CO2	2														
CO3	2	3	3	2	-	-	-	-	-	-	-	-	3	1	
CO4	2	3	2	2	-	-	-	-	-	-	-	-	3	1	
CO5	3	3	3	2	-	-	-	-	-	-	ı	-	3	1	

CE15403 APPLIED HYDRAULICS & FLUID MACHINES

3003

COURSE OBJECTIVES

- To compute drag and lift coefficients.
- To design channels
- To compute flow profiles in channel transitions and analyse hydraulic transients
- To design the working proportions of hydraulic machines.
- To analyse compressible flow of liquids.

UNIT I UNIFORM OPEN CHANNEL FLOW

9

Types and regimes of open channel flow - Velocity distribution in open channel -Wide open channels; Chezy's& Manning's uniform flow equations -Determination of normal depth - Most economical section.

UNIT II CRITICAL FLOW

9

Specific energy -Specific energy diagram - Alternate depths; Critical flow condition in rectangular, triangular, trapezoidal, and circular channels; Flow through transitions (local bed rise and width contraction).

UNIT III NON-UNIFORM FLOW

9

Dynamic equation of gradually varied flow -Determination of GVF profiles- Direct and standard step methods; Hydraulic jump -Sequent depths -Surge.

UNIT IV TURBINES

9

Impact of jet on flat and curved plates; Classification of turbines - Pelton wheel turbine - Francis turbine-Kaplan turbine; Draft tubes - Cavitation; Case study.

UNIT V PUMPS

9

Centrifugal pump -Single and Multi stage pumps - Reciprocating pump - Indicator diagram- Separation & Cavitation -Air vessel; Other pumps- Case study.

TOTAL: 45PERIODS

COURSE OUTCOMES

At the end of the course the student will be able to

- understand theories those explain behaviour and performance of fluid when it is flowing in an open channel.
- demonstrate critical flow condition in channels
- determine gvf profiles under non-uniform flow

- compare the components, functions and use of different types of turbine
- understand the components, functions and use of different types of pump.

TEXT BOOKS

- 1. K. Subramanya, "Flow in open channels," Tata McGraw-Hill publishing company limited, 2007
- 2. R.K. Bansal, "Fluid mechanics and hydraulic machines," Laxmi Publications (P) Ltd, 2006

REFERENCES

- Rajput R.K.' A text book of Fluid Mechanics and Hydraulic Machines", S.Chand and Co. Pvt. Ltd, New Delhi, 2003.
- 2. V.T. Chow, "Open channel hydraulics," Blackburn Press, 2009
- 3. P.N. Modi& S.M. Seth, "Hydraulics and fluid mechanics including hydraulic machines," Standard book house, 2005.
- 4. K.G. RangaRaju, "Flow through open channel," Tata McGraw-Hill publishing company limited, 1999

WEB LINKS

- 1. ebookbrowsee.net > ap > applied-hydraulic-engineering
- 2. tnupdater.blogspot.com>2013/04> applied-hydraulic-engineering-
- 3. eng.nus.edu.sg > civil > JoiNUS > roles hydraulic

					-	-			_	me Out ,2-Mediı		'eak			
~						Prog	gramme	e Outco	omes (P	POs)					
Cos	PO1														
CO1	2														
CO2	2														
CO3	2	3	1	2	-	-	-	-	-	-	-	-	3	2	
CO4	2	3	1	2	1	1	T	ı	1	-	T	-	3	2	
CO5	2	3	1	2	-	-	-	-	-	-	-	-	3	2	

CE15404 SURVEYING II

COURSE OBJECTIVES

- To study the trignometrical levelling.
- To adjust the error encountered during surveying
- To work with total station
- To understand the concept of GPS
- To know the various types of surveys

UNIT I CONTROL SURVEYING

9

3003

Working from whole to part - Horizontal and vertical control methods - Triangulation - Signals - Base line - Instruments and accessories - Corrections - Satellite station - Reduction to centre; Trignometrical leveling-Single and reciprocal observations - Modern trends - Bench marking

UNIT II SURVEY ADJUSTMENTS

9

Errors - Sources, precautions and corrections - Classification of errors - True and most probable values - weighted observations - Method of equal shifts - Principle of least squares - Normal equation - Correlates - Level nets - Adjustment of simple triangulation networks.

UNIT III TOTAL STATION SURVEYING

9

Basic Principle-classifications-Electro-optical system: Measuring principle, Working principle, Sources of Error, Infrared and Laser total station instruments. Microwave system, measuring principle, working principle, sources of Error, Microwave Total station instruments, Comparison between Electro-optical and Microwave system. Care and maintenance of Total Station instruments; Modern positioning systems-Traversing and Trilateration.

UNIT IV GPS SURVEYING

9

Basic concepts-Different segments- space, control and user segments-satellite configuration- signal structure- orbit determination and representation- anti spoofing and selective availability-Task of control segment- Hand held and Geodetic receivers-data processing-Traversing and triangulation.

UNIT V ADVANCED TOPICS IN SURVEYING

9

Route Surveying-Reconnaissance- Route surveys for highways, railways and waterways; Curve ranging - Horizontal and vertical curves - Simple curves - Setting with chain and tapes, tangential angles by theodolite, double theodolite - Compound and reverse curves - Transition curves - Functions and requirements; Hydrographic surveying- Tides-MSL- Sounding methods- Three-point problem- Strength of fix-Sextants and station pointer; Astronomical Surveying-field observations and determination of Azimuth by altitude and hour angle methods- fundamentals of Photogrammetry and Remote sensing.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of the course the student will be able to

- study the advantages of electronic surveying over conventional surveying meyhods.
- understand the working principles of GPS, its components, signal structure and error sources.
- Understand various GPS surveying methods and processing techniques used in GPS.
- Take observations.
- demonstrate methods of survey in water bodies by hydrographic surveying, basic concepts adopted in photogrammetry.

TEXT BOOKS

- 1. Punmia B.C., Surveying, Vols. I, II and III, Laxmi Publications, 1989.
- 2. Bannister A. and Raymond S., Surveying, ELBS, Sixth Edition, 1992.
- 3. Dr.P.Purushothama Raj, "Surveying-II" Tata Mcgraw-Hill Publishing company Ltd. Newdelhi, 2013.

REFERENCES

- 1. Clark D., Plane and Geodetic Surveying, Vols. I and II, C.B.S. Publishers and Distributors, Delhi, Sixth Edition, 1971.
- James M.Anderson and Edward M.Mikhail, Introduction to Surveying, McGraw-Hill Book Company, 1985.
- 3. Wolf P.R., Elements of Photogrammetry, McGraw-Hill Book Company, Second Edition, 1986.

BOARD OF STUDIES

WEB LINK

1. http://nptel.ac.in

										me Out ,2-Mediı		eak		
~						Prog	gramm	e Outco	omes (P	Os)				
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	1	-	=	-	-	=	-	-	-	3	1
CO2	3	3	2	1	-	-	-	-	-	-	-	-	3	1
CO3	3	2	1	1	-	-	-	-	-	-	-	-	3	1
CO4	3	2	2	2	=	=	=	=	=	=	=	-	3	1
CO5	1	3	2	2	-	-	-	-	-	-	-	-	3	1

CE15405 WATER SUPPLY ENGINEERING

COURSE OBJECTIVES

- To analyze characteristics of water and waste water.
- To estimate the quantity of drinking water and domestic waste water generated.
- To design components of water supply systems.
- To understand the secondary water treatment techniques.
- To realize the principles of water distribution in a city and to a building, also about modern equipment to treat water.

UNIT I PUBLIC WATER SUPPLY PROJECT PLANNING AND FORECASTING 9

Necessary and objectives of public water supply schemes - planning and financing - housing treatment of water; Quantity of water - water requirements - continuous and intermittent supply - rate of demand - variations in rate of demand - its effect on design —design periods and capacities of different components-population growth and forecast — estimating the quantity of water

UNIT II WATER INTAKE AND CONVEYANCE

9

Intakes- types, location, requirements and features; Transportation of water - Types of conduits - relative merits, selection of pipe and joints - hydraulic design and cross connected parallel pipe to increase capacity - laying and testing - Corrosion - theory and prevention; pumps.

UNIT III PRIMARY TREATMENT OF WATER

9

Water characteristics- quality standards Treatment flow charts - Principles of coagulation, flocculation and sedimentation - Design principles of - Flash mixer – Design and drawing (Line sketch) of flocculator and Sedimentation tank; Disinfection - methods and disinfectants - Disinfection devices - Chlorination - advantages - action of chlorine - application - dosage - different methods.

UNIT IV SECONDARY TREATMETN OF WATER

9

Principles of Filtration - Classification, Constructional and operational features of slow sand filters and rapid sand filters - Design criteria; Design and drawing (Line sketch) of slow sand filters and rapid sand filters, Miscellaneous treatment methods - aeration, taste and odour control, iron and manganese removal, water softening, fluoridation and defluoridation and demineralization; Residue Management-treatment plant layouts design - study of treatment plant projects.

UNIT – V DISTRIBUTION OF WATER, PLUMBING AND MODERN EQUIPMENTS FOR TREATING WATER 9

Distribution network - Requirements of distribution system - Analysis by Hardy Cross method-Equivalent Pipe method- Computer application; Service reservoirs - functions, classification - Service reservoir design; Waste detection and prevention - Metered and unmetered water supplies - plumbing in multistory building - one pipe system and two pipe system - modern equipment to treat water in individual homes.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of the course the students will be able to

- plan and select the water sources for the water supply system.
- design the intake structures, transmission mains and pumps.
- select and design the treatment units for various sources of water and sludge.
- prefer the suitable advanced treatment technique for different sources of water.
- choose the appropriate water distribution network for a city and plumbing systems for a building.

TEXT BOOKS

- 1. Garg. S. K., "Water Supply Engineering", Khannah Publishers, Delhi, September 2001.
- 2. Mark J. Hammer, Mark J. Hammer Jr, "Water and Waste Water Technology", Prentice hall of India 2008.
- 3. B.C. Bunmia, "water supply engineering", Lakshmi publications. Delhi, Augest, 2005
- 4. Manual on Water Supply and Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 2003

REFERENCEBOOKS

- 1. Birdie.G.S., "Water Supply and Sanitary Engineering", DhanpatRai and sons, 1985.
- 2. Fair. G. M., Geyer. J. C., "Water Supply and Waste Water disposal", John Wiley & Sons, 1954.
- 3. Babbit. H. E., and Donald. J. J., "Water Supply Engineering", McGraw Hill book Co, 1984
- 4. Steel E. W. et.al, "Water Supply Engineering", McGraw Hill International Book Co, 1984
- 5. Duggal. K.N., "Elements of public Health Engineering", S.Chand and Co,1985.
- 6. http://engineeringtoolbox.com/water-supply-systems-d_477.html
- 7. http://melbournewater.com.au/whatwedo/supply-water/pages/water-supply-syatem.aspx
- 8. http://water.epa.gov/lawregs/rulesregs/sdwa/tcr/distibutionsystems.cfm

				`	_	•			_	me Out ,2-Medii		'eak				
~						Prog	gramm	e Outco	omes (P	POs)						
Cos	PO1															
CO1	-															
CO2	1	- 2 - 3 - - - - - - 2 1 1 1 2 - 2 - 3 - - - - - 2 1														
CO3	1	1	2	-	-	-	3	-	-	-	-	-	2	1		
CO4	-	1	-	-	3	-	3	-	=	-	-	-	2	1		
CO5	3	1	3	2	-	3	-	-	-	-	-	-	2	1		

- To compute drag coefficients.
- To calculate Manning's and Chezy's coefficients for rough and smooth channels.
- To determine energy loss Hydraulic jump and calibrate standing wave flume.
- To test the performace of pumps and turbines.

LIST OF EXPERIMENTS

- 1. Determination of co-efficient of discharge for orifice
- 2. Determination of co-efficient of discharge for notches
- 3. Determination of co-efficient of discharge for venturimeter
- 4. Determination of co-efficient of discharge for orifice meter
- 5. Study of friction losses in pipes
- 6. Study of minor losses in pipes
- 7. Study on performance characteristics of Pelton turbine
- 8. Study on performance characteristics of Francis turbine
- 9. Study on performance characteristics of Kaplan turbine
- 10. Study on performance characteristics of Centrifugal pumps (Constant speed / variable speed)
- 11. Study on performance characteristics of reciprocating pump.

TOTAL: 60 PERIODS

COURSE OUTCOMES

At the end of the course the students will be able to

- determine the flow in pipes and open channels.
- analyze the major and minor losses in pipes.
- understand the impact of jet on vanes and to compute their efficiency.
- select an appropriate pump for a specific application.

	Mapping of course objectives with Programme Outcomes: (1/2/3 indicates strength of correlation) 3- strong,2-Medium, 1-Weak													
		Programme Outcomes (POs)												
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	2	-	-	-	-	-	-	-	-	2	1
CO2	2	2	1	2	-	-	-	-	-	-	-	-	3	1
CO3	2	2	2	2	-	-	1	-	-	-	-	-	3	2
CO4	2	2	2	2	-	-	-	-	-	-	-	-	3	2

- To apply geometric and trigonometric principles of surveying.
- To get practical exposure to different systems of Tacheometry.
- To set out a curve by different methods.
- To gain exposure in modern surveying instruments like GPS and Total station.

LIST OF EXPERIMENTS

- 1. Study of theodolite
- 2. Measurement of horizontal angles by reiteration and repetition and vertical angles
- 3. Theodolite survey traverse
- 4. Heights and distances Triangulation Single plane method.
- 5. Tacheometry Tangential system Stadia system Subtense system.
- 6. Setting out works Foundation marking Simple curve (right/left-handed) Transition curve.
- 7. Field observation for and Calculation of azimuth
- 8. Field work using Total Station.

TOTAL: 60 PERIODS

COURSE OUTCOMES

At the end of the course the student will be able to

- determine the heights, distances, and gradient using trigonometric methods
- calculate the height of an inaccessible point by system of tacheometry.
- apply field procedures in setting out of a curve
- use modern surveying instruments like total station, gps

	Mapping of course objectives with Programme Outcomes: (1/2/3 indicates strength of correlation) 3- strong,2-Medium, 1-Weak													
_		Programme Outcomes (POs)												
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	-	-	2	-	-	-	-	-	-	1	3	-
CO2	2	1	-	-	3	1	-	-	-	-	-	1	3	-
CO3	3	2	ı	ı	2	ı		=	ı		ı	2	3	1
CO4	2	2	-	-	3	-	-	-	-	-	-	2	3	2

- To conduct tesion test on different metals.
- To conduct compression test on Spring and Concrete.
- To conduct flexural and torsion test to determine elastic constants.
- To determine hardness of metals.

LIST OF EXPERIMENTS

- 1. Test involving axial compression to obtain the stress strain curve
- 2. Test involving axial tension to obtain the stress strain curve and the strength
- 3. Test involving torsion to obtain the torque vs. angle of twist and hence the stiffness
- 4. Test involving flexure to obtain the load deflection curve and hence the stiffness
- 5. Tests on springs
- 6. Hardness tests
- 7. Shear test
- 8. Test for impact resistance
- 9. Tests on Cement
- 10. The student should learn the use of deflectometer, extensometer, compressometer and strain gauges.

TOTAL: 60 PERIODS

COURSE OUTCOMES

At the end of the course the student will be able to

- apply the concepts of mechanics for determining stresses and strains from the member forces.
- Solve the problems by knowing the effects of axial loads, bending, shear and torsion on structural components.
- determine the behavior of structural elements such as bars, beams and columns subjected to tension, compression, shear, bending and torsion by means of experiments.
- feel physically the behavior of materials and structural elements including distribution of stresses, strains, deformations and failure modes.

	Mapping of course objectives with Programme Outcomes: (1/2/3 indicates strength of correlation) 3- strong,2-Medium, 1-Weak													
Cos	PO1	PO2	PO3	PO4	PO5		ramme PO7	PO8	PO9	Os) PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	=	3	=	-	=.	-	-	-	-	-	2	1
CO2	3	2	-	3	-	-	-	-	-	-	-	-	3	1
CO3	3	2	-	3	-	-	-	-	-	-	-	-	3	2
CO4	3	2	-	3	-	-	-	-	-	-	-	-	3	2

9.	Turbine	
	(i) Impulse turbine assembly with fittings & accessories	1 Unit
	(ii) Francis turbine assembly with fittings & accessories	1 Unit
	(iii) Kaplan turbine assembly with fittings & accessories	1 Unit

SURVEY PRACTICAL II

LTPC 0 0 4 2

TOTAL: 60 PERIODS

OBJECTIVES:

• At the end of the course the student will posses knowledge about Survey field techniques.

LIST OF EXPERIMENTS:

- 1. Study of theodolite
- 2. Measurement of horizontal angles by reiteration and repetition and vertical angles
- 3. Theodolite survey traverse
- 4. Heights and distances Triangulation Single plane method.
- 5. Tacheometry Tangential system Stadia system Subtense system.
- 6. Setting out works Foundation marking Simple curve (right/left-handed) Transition curve.
- 7. Field observation for and Calculation of azimuth
- 8. Field work using Total Station.

OUTCOMES:

• Students completing this course would have acquired practical knowledge on handling survey instruments like Theodolite, Tacheometery and Total station and have adequate knowledge to carryout Triangulation and Astronomical surveying including general field marking for various engineering projects and curves setting.

REFERENCES:

- 1. James M. Anderson and Edward M. Mikhail, Surveying, Theory and Practice, 7th Edition, McGraw Hill, 2001.
- 2. Bannister and S. Raymond, "Surveying", 7th Edition, Longman, 2004.
- 3. Roy S.K., "Fundamentals of Surveying", 2nd Edition, Prentice Hall of India, 2004.
- 4. Arora K.R., Surveying Vol I & II, Standard Book house, 10th Edition, 2008

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI. No.	Description of Equipment	Quantity				
1.	Total Station	3 Nos				
2.	Theodolites	Atleast 1 for every 5 students				
3.	Dumpy level	Atleast 1 for every 5 students				
4.	Plane table	Atleast 1 for every 5 students				
5.	Pocket stereoscope	1				
6.	Ranging rods					
7.	Levelling staff					
8.	Cross staff	1 for a set of 5 students				
9.	Chains	Tion a set of 5 students				
10.	Tapes					
11.	Arrows					
12.	Hand held GPS	3 Nos				

STRUCTURAL ANALYSIS I

LTPC 3104

OBJECTIVES:

 To introduce the students to basic theory and concepts of structural analysis and the classical methods for the analysis of buildings.

UNIT I INDETERMINATE FRAMES

9

Degree of static and kinematic indeterminacies for plane frames - analysis of indeterminate pin-jointed frames - rigid frames (Degree of statical indeterminacy up to two) - Energy and consistent deformation methods.

UNIT II MOVING LOADS AND INFLUENCE LINES

C

Influence lines for reactions in statically determinate structures – influence lines for member forces in pin-jointed frames – Influence lines for shear force and bending moment in beam sections – Calculation of critical stress resultants due to concentrated and distributed moving loads.

Muller Breslau's principle – Influence lines for continuous beams and single storey rigid frames – Indirect model analysis for influence lines of indeterminate structures – Beggs deformeter

UNIT III ARCHES

9

Arches as structural forms – Examples of arch structures – Types of arches – Analysis of three hinged, two hinged and fixed arches, parabolic and circular arches – Settlement and temperature effects.

UNIT IV SLOPE DEFLECTION METHOD

9

Continuous beams and rigid frames (with and without sway) – Symmetry and antisymmetry – Simplification for hinged end – Support displacements

UNIT V MOMENT DISTRIBUTION METHOD

9

Distribution and carryover of moments – Stiffness and carry over factors – Analysis of continuous beams – Plane rigid frames with and without sway – Neylor's simplification.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Students will be able to

- analysis trusses, frames and arches
- analyse structures for moving loads and
- will be conversant with classical methods of analysis.

TEXTBOOKS:

- 1. Vaidyanadhan, R and Perumal, P, "Comprehensive Structural Analysis Vol. 1 & Vol. 2", Laxmi Publications Pvt. Ltd, New Delhi, 2003.
- 2. L.S. Negi & R.S. Jangid, "Structural Analysis", Tata McGraw Hill Publications, New Delhi, 6th Edition, 2003.
- 3. Punmia.B.C, Ashok Kumar Jain and Arun Kumar Jain, "Theory of structures", Laxmi Publications Pvt. Ltd., New Delhi, 2004
- 4. Reddy. C.S., "Basic Structural Analysis", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2013.
- 5. BhavaiKatti, S.S, "Structural Analysis Vol. 1 & Vol. 2", Vikas Publishing Pvt Ltd., New Delhi, 2008

REFERENCES:

- 1. Wang C.K., "Indeterminate Structural Analysis", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2010
- 2. Devadas Menon, "Structural Analysis", Narosa Publishing House, 2008
- 3. Ghali.A., Nebille and Brown. T.G., "Structural Analysis A unified classical and matrix approach" Sixth Edition, SPON press, New York, 2013.
- 4. Gambhir. M.L., "Fundamentals of Structural Mechanics and Analysis"., PHI Learning Pvt. Ltd., New Delhi, 2011.

STRUCTURAL ANALYSIS I

LTPC 3104

OBJECTIVES:

 To introduce the students to basic theory and concepts of structural analysis and the classical methods for the analysis of buildings.

UNIT I INDETERMINATE FRAMES

9

Degree of static and kinematic indeterminacies for plane frames - analysis of indeterminate pin-jointed frames - rigid frames (Degree of statical indeterminacy up to two) - Energy and consistent deformation methods.

UNIT II MOVING LOADS AND INFLUENCE LINES

C

Influence lines for reactions in statically determinate structures – influence lines for member forces in pin-jointed frames – Influence lines for shear force and bending moment in beam sections – Calculation of critical stress resultants due to concentrated and distributed moving loads.

Muller Breslau's principle – Influence lines for continuous beams and single storey rigid frames – Indirect model analysis for influence lines of indeterminate structures – Beggs deformeter

UNIT III ARCHES

9

Arches as structural forms – Examples of arch structures – Types of arches – Analysis of three hinged, two hinged and fixed arches, parabolic and circular arches – Settlement and temperature effects.

UNIT IV SLOPE DEFLECTION METHOD

9

Continuous beams and rigid frames (with and without sway) – Symmetry and antisymmetry – Simplification for hinged end – Support displacements

UNIT V MOMENT DISTRIBUTION METHOD

9

Distribution and carryover of moments – Stiffness and carry over factors – Analysis of continuous beams – Plane rigid frames with and without sway – Neylor's simplification.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Students will be able to

- analysis trusses, frames and arches
- analyse structures for moving loads and
- will be conversant with classical methods of analysis.

TEXTBOOKS:

- 1. Vaidyanadhan, R and Perumal, P, "Comprehensive Structural Analysis Vol. 1 & Vol. 2", Laxmi Publications Pvt. Ltd, New Delhi, 2003.
- 2. L.S. Negi & R.S. Jangid, "Structural Analysis", Tata McGraw Hill Publications, New Delhi, 6th Edition, 2003.
- 3. Punmia.B.C, Ashok Kumar Jain and Arun Kumar Jain, "Theory of structures", Laxmi Publications Pvt. Ltd., New Delhi, 2004
- 4. Reddy. C.S., "Basic Structural Analysis", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2013.
- 5. BhavaiKatti, S.S, "Structural Analysis Vol. 1 & Vol. 2", Vikas Publishing Pvt Ltd., New Delhi, 2008

REFERENCES:

- 1. Wang C.K., "Indeterminate Structural Analysis", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2010
- 2. Devadas Menon, "Structural Analysis", Narosa Publishing House, 2008
- 3. Ghali.A., Nebille and Brown. T.G., "Structural Analysis A unified classical and matrix approach" Sixth Edition, SPON press, New York, 2013.
- 4. Gambhir. M.L., "Fundamentals of Structural Mechanics and Analysis"., PHI Learning Pvt. Ltd., New Delhi, 2011.

FOUNDATION ENGINEERING

LTPC 3003

OBJECTIVES:

• To impart knowledge on common method of sub soil investigation and design of foundation. At the end of this course student acquires the capacity to investigate the soil condition and to select and design a suitable foundation.

UNIT I SITE INVESTIGATION AND SELECTION OF FOUNDATION

9

Scope and objectives - Methods of exploration - auguring and boring - Wash boring and rotary drilling - Depth of boring - Spacing of bore hole - Sampling techniques - Representative and undisturbed sampling - methods - Split spoon sampler, Thin wall sampler, Stationery piston sampler - Penetration tests (SPT and SCPT) - Bore log report - Data interpretation - strength parameters and Liquefaction potential - Selection of foundation based on soil condition.

UNIT II SHALLOW FOUNDATION

9

Introduction – Location and depth of foundation – Codal provisions – bearing capacity of shallow foundation on homogeneous deposits – Terzaghi's formula and BIS formula – factors affecting bearing capacity – problems – Bearing capacity from in-situ tests (SPT, SCPT and plate load)Allowable bearing pressure – Seismic considerations in bearing capacity evaluation. Determination of Settlement of foundations on granular and clay deposits – Total and differential settlement – Allowable settlements – Codal provision – Methods of minimizing total and differential settlements.

UNIT III FOOTINGS AND RAFTS

9

Types of footings – Contact pressure distribution: Isolated footing – Combined footings – Types and proportioning – Mat foundation – Types and applications – Proportioning – Floating foundation – Seismic force consideration – Codal Provision.

UNIT IV PILE FOUNDATION

9

Types of piles and their function – Factors influencing the selection of pile – Carrying capacity of single pile in granular and cohesive soil – static formula – dynamic formulae (Engineering news and Hileys) – Capacity from insitu tests (SPT and SCPT) – Negative skin friction – uplift capacity-Group capacity by different methods (Feld's rule, Converse – Labarra formula and block failure criterion) – Settlement of pile groups – Interpretation of pile load test (routine test only) – Under reamed piles – Capacity under compression and uplift.

UNIT V RETAINING WALLS

9

Plastic equilibrium in soils – active and passive states – Rankine's theory – cohesionless and cohesive soil – Coulomb's wedge theory – Condition for critical failure plane – Earth pressure on retaining walls of simple configurations – Culmann Graphical method – pressure on the wall due to line load – Stability analysis of retaining walls.

TOTAL: 45 PERIODS

OUTCOMES:

• Students will have the ability to select type of foundation required for the soil at a place and able to design shallow, foundation, deep foundation and retaining structures.

TEXTBOOKS:

- 1. Murthy, V.N.S., "Soil Mechanics and Foundation Engineering", CBS Publishers and Distributers Ltd., New Delhi, 2007.
- 2. Gopal Ranjan and Rao A.S.R. "Basic and Applied soil mechanics", New Age InternationalPvt. Ltd. New Delhi, 2005.
- 3. Purushothama Raj. P., "Soil Mechanics and Foundation Engineering", 2nd Edition, Pearson Education, 2013
- 4. Varghese, P.C., "Foundation Engineering", Prentice Hall of India Private Limited, New Delhi, 2005.

REFERENCES:

- 1. Das, B.M. "Principles of Foundation Engineering" 5th edition, Thompson Asia Pvt. Ltd., Singapore, 2003.
- 2. Kaniraj, S.R. "Design aids in Soil Mechanics and Foundation Engineering", Tata McGrawHill Publishing company Ltd., New Delhi, 2002.
- 3. Punmia, B.C. "Soil Mechanics and Foundations", Laxmi Publications Pvt.Ltd., New Delhi,2005
- 4. Venkatramaiah, C. "Geotechnical Engineering", New Age International Publishers, New Delhi, 2007 (Reprint)
- 5. Arora K.R. "Soil Mechanics and Foundation Engineering", Standard Publishers and Distributors, New Delhi, 2005.
- 6. IS 6403 : 1981 (Reaffirmed 1997) "Breaking capacity of shallow foundation", Bureau of Indian Standards, New Delhi, 1998
- 7. IS8009 (Part1):1976 (Reaffirmed 1998) "Shallow foundations subjected to symmetrical static vertical loads", Bureau of Indian Standards, New Delhi, 1999
- 8. IS8009 (Part2):1980 (Reaffirmed 1995) "Deep foundations subjected to symmetrical static vertical loading", Bureau of Indian Standards, New Delhi, 1992
- 9. IS2911(Part1):1979 (Reaffirmed 1997) "Concrete Piles" Bureau of Indian Standards, New Delhi, 1994
- 10. IS2911(Part2):1979 (Reaffirmed 1997) "Timber Piles", Bureau of Indian Standards, New Delhi, 2007
- 11. IS2911(Part 3):1979 (Reaffirmed 1997) "Under Reamed Piles", Bureau of Indian Standards, New Delhi, 1998
- 12. IS2911 (Part 4):1979 (Reaffirmed 1997) "Load Test on Piles", Bureau of Indian Standards, New Delhi, 1997

CE6503

ENVIRONMENTAL ENGINEERING I

LTPC 3003

OBJECTIVES:

 To make the students conversant with principles of water supply, treatment and distribution

UNIT I PLANNING FOR WATER SUPPLY SYSTEM

8

Public water supply system -Planning - Objectives -Design period - Population forecasting -Water demand -Sources of water and their characteristics -Surface and Groundwater- Impounding Reservoir Well hydraulics -Development and selection of source - Water quality - Characterization and standards- Impact of climate change.

UNIT II CONVEYANCE SYSTEM

1

Water supply -intake structures -Functions and drawings -Pipes and conduits for water- Pipe materials - Hydraulics of flow in pipes -Transmission main design -Laying, jointing and testing of pipes - Drawings appurtenances - Types and capacity of pumps -Selection of pumps and pipe materials.

UNIT III WATER TREATMENT

12

Objectives - Unit operations and processes - Principles, functions design and drawing of Chemical feeding, Flash mixers, flocculators, sedimentation tanks and sand filters - Disinfection- Residue Management - Construction and Operation & Maintenance aspects of Water Treatment Plants.

UNIT IV ADVANCED WATER TREATMENT

9

Principles and functions of Aeration - Iron and manganese removal, Defluoridation and demineralization - Water softening - Desalination - Membrane Systems - Recent advances.

UNITY WATER DISTRIBUTION AND SUPPLY TO BUILDINGS

9

Requirements of water distribution -Components -Service reservoirs -Functions and drawings - Network design -Economics -Computer applications -Analysis of distribution networks - Appurtenances -operation and maintenance -Leak detection, Methods. Principles of design of water supply in buildings -House service connection -Fixtures and fittings -Systems of plumbing and drawings of types of plumbing.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will have

- an insight into the structure of drinking water supply systems, including water transport, treatment and distribution
- an understanding of water quality criteria and standards, and their relation to public health,
- the ability to design and evaluate water supply project alternatives on basis of chosen selection criteria

TEXTBOOKS:

- 1. Garg, S.K., "Environmental Engineering", Vol.1 Khanna Publishers, New Delhi, 2005.
- 2. Modi, P.N. "Water Supply Engineering", Vol. I Standard Book House, New Delhi, 2005.
- 3. Punmia, B.C., Ashok K Jain and Arun K Jain, "Water Supply Engineering", Laxmi Publications Pvt. Ltd., New Delhi, 2005

REFERENCES:

- 1. Government of India, "Manual on Water Supply and Treatment", CPHEEO, Ministry of Urban Development, New Delhi, 2003
- 2. Syed R. Qasim and Edward M. Motley Guang Zhu, "Water Works Engineering Planning", Design and Operation, Prentice Hall of India Private Limited, New Delhi, 2006.

CE6504

HIGHWAY ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

 To give an overview about the highway engineering with respect to, planning, design, construction and maintenance of highways as per IRC standards, specifications and methods.

UNIT I HIGHWAY PLANNING AND ALIGNMENT

8

Significance of highway planning – Modal limitations towards sustainability - History of road development in India – Classification of highways – Locations and functions – Factors influencing highway alignment – Soil suitability analysis - Road ecology - Engineering surveys for alignment, objectives, conventional and modern methods.

UNIT II GEOMETRIC DESIGN OF HIGHWAYS

12

Typical cross sections of Urban and Rural roads — Cross sectional elements - Sight distances – Horizontal curves, Super elevation, transition curves, widening at curves — Vertical curves - Gradients, Special consideration for hill roads - Hairpin bends — Lateral and vertical clearance at underpasses.

UNIT III DESIGN OF FLEXIBLE AND RIGID PAVEMENTS

9

Design principles – pavement components and their role - Design practice for flexible and rigid Pavements (IRC methods only) - Embankments .

UNIT IV HIGHWAY CONSTRUCTION MATERIALS AND PRACTICE

8

Highway construction materials, properties, testing methods – CBR Test for subgrade - tests on aggregate & bitumen – Construction practice including modern materials and methods, Bituminous and Concrete road construction, Polymer modified bitumen, Recycling, Different materials – Glass, Fiber, Plastic, Geo-Textiles, Geo-Membrane (problem not included) - Quality control measures - Highway drainage — Construction machineries.

UNITY WATER DISTRIBUTION AND SUPPLY TO BUILDINGS

9

Requirements of water distribution -Components -Service reservoirs -Functions and drawings - Network design -Economics -Computer applications -Analysis of distribution networks - Appurtenances -operation and maintenance -Leak detection, Methods. Principles of design of water supply in buildings -House service connection -Fixtures and fittings -Systems of plumbing and drawings of types of plumbing.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will have

- an insight into the structure of drinking water supply systems, including water transport, treatment and distribution
- an understanding of water quality criteria and standards, and their relation to public health,
- the ability to design and evaluate water supply project alternatives on basis of chosen selection criteria

TEXTBOOKS:

- 1. Garg, S.K., "Environmental Engineering", Vol.1 Khanna Publishers, New Delhi, 2005.
- 2. Modi, P.N. "Water Supply Engineering", Vol. I Standard Book House, New Delhi, 2005.
- 3. Punmia, B.C., Ashok K Jain and Arun K Jain, "Water Supply Engineering", Laxmi Publications Pvt. Ltd., New Delhi, 2005

REFERENCES:

- 1. Government of India, "Manual on Water Supply and Treatment", CPHEEO, Ministry of Urban Development, New Delhi, 2003
- 2. Syed R. Qasim and Edward M. Motley Guang Zhu, "Water Works Engineering Planning", Design and Operation, Prentice Hall of India Private Limited, New Delhi, 2006.

CE6504

HIGHWAY ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

 To give an overview about the highway engineering with respect to, planning, design, construction and maintenance of highways as per IRC standards, specifications and methods.

UNIT I HIGHWAY PLANNING AND ALIGNMENT

8

Significance of highway planning – Modal limitations towards sustainability - History of road development in India – Classification of highways – Locations and functions – Factors influencing highway alignment – Soil suitability analysis - Road ecology - Engineering surveys for alignment, objectives, conventional and modern methods.

UNIT II GEOMETRIC DESIGN OF HIGHWAYS

12

Typical cross sections of Urban and Rural roads — Cross sectional elements - Sight distances – Horizontal curves, Super elevation, transition curves, widening at curves — Vertical curves - Gradients, Special consideration for hill roads - Hairpin bends — Lateral and vertical clearance at underpasses.

UNIT III DESIGN OF FLEXIBLE AND RIGID PAVEMENTS

9

Design principles – pavement components and their role - Design practice for flexible and rigid Pavements (IRC methods only) - Embankments .

UNIT IV HIGHWAY CONSTRUCTION MATERIALS AND PRACTICE

8

Highway construction materials, properties, testing methods – CBR Test for subgrade - tests on aggregate & bitumen – Construction practice including modern materials and methods, Bituminous and Concrete road construction, Polymer modified bitumen, Recycling, Different materials – Glass, Fiber, Plastic, Geo-Textiles, Geo-Membrane (problem not included) - Quality control measures - Highway drainage — Construction machineries.

UNIT V **EVALUATION AND MAINTENANCE OF PAVEMENTS**

Pavement distress in flexible and rigid pavements - Pavement Management Systems -

Pavement evaluation, roughness, present serviceability index, skid resistance, structural evaluation, evaluation by deflection measurements - Strengthening of pavements - Types of maintenance – Highway Project formulation.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing this course would have acquired knowledge on planning, design, construction and maintenance of highways as per IRC standards and other methods.

TEXTBOOKS:

- 1. Khanna.S. K., Justo.C.E.G and Veeraragavan A. "Highway Engineering", Nemchand Publishers, 2014.
- 2. Subramanian K.P., "Highways, Railways, Airport and Harbour Engineering", Scitech Publications (India), Chennai, 2010
- 3. Indian Road Congress (IRC), Guidelines and Special Publications of Planning and Design.

REFERENCES:

- 1. Kadiyali.L.R. "Principles and Practice of Highway Engineering", Khanna Technical Publications, 8th edition Delhi, 2013.
- 2. Yang H. Huang, "Pavement Analysis and Design", Pearson Education Inc, Nineth Impression, South Asia, 2012
- 3. Ian D. Walsh, "ICE manual of highway design and management", ICE Publishers, Ist Edition, USA, 2011
- 4. Fred L. Mannering, Scott S. Washburn and Walter P.Kilareski, "Principles of Highway Engineering and Traffic Analysis", Wiley India Pvt. Ltd., New Delhi, 2011
- 5. Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning, New Delhi, 2010
- 6. O'Flaherty.C.A "Highways, Butterworth Heinemann, Oxford, 2006

DESIGN OF REINFORCED CONCRETE ELEMENTS CE6505

LTPC 3 0 0 3

OBJECTIVES:

To introduce the different types of philosophies related to design of basic structural elements such as slab, beam, column and footing which form part of any structural system with reference to Indian standard code of practice.

METHODS OF DESIGN OF CONCRETE STRUCTURES

Concept of Elastic method, ultimate load method and limit state method - Advantages of Limit State Method over other methods - Design codes and specification - Limit State philosophy as detailed in IS code – Design of beams and slabs by working stress method.

LIMIT STATE DESIGN FOR FLEXURE

9

Analysis and design of singly and doubly reinforced rectangular and flanged beams - Analysis and design of one way, two way and continuous slabs subjected to uniformly distributed load for various boundary conditions.

UNIT III LIMIT STATE DESIGN FOR BOND, ANCHORAGE SHEAR & TORSION Behaviour of RC members in bond and Anchorage - Design requirements as per current code -Behaviour of RC beams in shear and torsion - Design of RC members for combined bending shear and torsion.

UNIT V **EVALUATION AND MAINTENANCE OF PAVEMENTS**

Pavement distress in flexible and rigid pavements - Pavement Management Systems -

Pavement evaluation, roughness, present serviceability index, skid resistance, structural evaluation, evaluation by deflection measurements - Strengthening of pavements - Types of maintenance – Highway Project formulation.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing this course would have acquired knowledge on planning, design, construction and maintenance of highways as per IRC standards and other methods.

TEXTBOOKS:

- 1. Khanna.S. K., Justo.C.E.G and Veeraragavan A. "Highway Engineering", Nemchand Publishers, 2014.
- 2. Subramanian K.P., "Highways, Railways, Airport and Harbour Engineering", Scitech Publications (India), Chennai, 2010
- 3. Indian Road Congress (IRC), Guidelines and Special Publications of Planning and Design.

REFERENCES:

- 1. Kadiyali.L.R. "Principles and Practice of Highway Engineering", Khanna Technical Publications, 8th edition Delhi, 2013.
- 2. Yang H. Huang, "Pavement Analysis and Design", Pearson Education Inc, Nineth Impression, South Asia, 2012
- 3. Ian D. Walsh, "ICE manual of highway design and management", ICE Publishers, Ist Edition, USA, 2011
- 4. Fred L. Mannering, Scott S. Washburn and Walter P.Kilareski, "Principles of Highway Engineering and Traffic Analysis", Wiley India Pvt. Ltd., New Delhi, 2011
- 5. Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning, New Delhi, 2010
- 6. O'Flaherty.C.A "Highways, Butterworth Heinemann, Oxford, 2006

DESIGN OF REINFORCED CONCRETE ELEMENTS CE6505

LTPC 3 0 0 3

OBJECTIVES:

To introduce the different types of philosophies related to design of basic structural elements such as slab, beam, column and footing which form part of any structural system with reference to Indian standard code of practice.

METHODS OF DESIGN OF CONCRETE STRUCTURES

Concept of Elastic method, ultimate load method and limit state method - Advantages of Limit State Method over other methods - Design codes and specification - Limit State philosophy as detailed in IS code – Design of beams and slabs by working stress method.

LIMIT STATE DESIGN FOR FLEXURE

9

Analysis and design of singly and doubly reinforced rectangular and flanged beams - Analysis and design of one way, two way and continuous slabs subjected to uniformly distributed load for various boundary conditions.

UNIT III LIMIT STATE DESIGN FOR BOND, ANCHORAGE SHEAR & TORSION Behaviour of RC members in bond and Anchorage - Design requirements as per current code -Behaviour of RC beams in shear and torsion - Design of RC members for combined bending shear and torsion.

UNIT IV LIMIT STATE DESIGN OF COLUMNS

9

Types of columns – Braced and unbraced columns – Design of short Rectangular and circular columns for axial, uniaxial and biaxial bending.

UNIT V LIMIT STATE DESIGN OF FOOTING

9

Design of wall footing – Design of axially and eccentrically loaded rectangular pad and sloped footings – Design of combined rectangular footing for two columns only.

TOTAL: 45 PERIODS

OUTCOMES:

• The student shall be in a position to design the basic elements of reinforced concrete structures.

TEXTBOOKS:

- 1. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, Pvt. Ltd., New Delhi, 2002.
- 2. Gambhir.M.L., "Fundamentals of Reinforced Concrete Design", Prentice Hall of India Private Limited, New Delhi, 2006.
- 3. Subramanian, N., "Design of Reinforced Concrete Structures", Oxford University Press, New Delhi, 2013.

REFERENCES:

- 1. Jain, A.K., "Limit State Design of RC Structures", Nemchand Publications, Roorkee, 1998
- 2. Sinha, S.N., "Reinforced Concrete Design", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2002
- 3. Unnikrishna Pillai, S., Devdas Menon, "Reinforced Concrete Design", Tata McGraw Hill Publishing Company Ltd., 2009
- 4. Punmia.B.C., Ashok Kumar Jain, Arun Kumar Jain, "Limit State Design of Reinforced Concrete", Laxmi Publication Pvt. Ltd., New Delhi, 2007.
- 5. Bandyopadhyay. J.N., "Design of Concrete Structures"., Prentice Hall of India Pvt. Ltd., New Delhi, 2008.
- 6. IS456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2000
- 7. SP16, IS456:1978 "Design Aids for Reinforced Concrete to Bureau of Indian Standards, New Delhi, 1999
- 8. Shah V L Karve S R., "Limit State Theory and Design of Reinforced Concrete", Structures Publications, Pune, 2013

CE6506 CONSTRUCTION TECHNIQUES, EQUIPMENT AND PRACTICE

LTPC 3003

OBJECTIVES:

• The main objective of this course is to make the student aware of the various construction techniques, practices and the equipment needed for different types of construction activities. At the end of this course the student shall have a reasonable knowledge about the various construction procedures for sub to super structure and also the equipment needed for construction of various types of structures from foundation to super structure.

UNIT I CONCRETE TECHNOLOGY

9

Cements – Grade of cements - concrete chemicals and Applications – Grade of concrete - manufacturing of concrete – Batching – mixing – transporting – placing – compaction of concrete – curing and finishing - Testing of fresh and hardened concrete – quality of concrete – Extreme Weather Concreting - Ready Mix Concrete – Non-destructive testing.

UNIT IV LIMIT STATE DESIGN OF COLUMNS

9

Types of columns – Braced and unbraced columns – Design of short Rectangular and circular columns for axial, uniaxial and biaxial bending.

UNIT V LIMIT STATE DESIGN OF FOOTING

9

Design of wall footing – Design of axially and eccentrically loaded rectangular pad and sloped footings – Design of combined rectangular footing for two columns only.

TOTAL: 45 PERIODS

OUTCOMES:

• The student shall be in a position to design the basic elements of reinforced concrete structures.

TEXTBOOKS:

- 1. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, Pvt. Ltd., New Delhi, 2002.
- 2. Gambhir.M.L., "Fundamentals of Reinforced Concrete Design", Prentice Hall of India Private Limited, New Delhi, 2006.
- 3. Subramanian, N., "Design of Reinforced Concrete Structures", Oxford University Press, New Delhi, 2013.

REFERENCES:

- 1. Jain, A.K., "Limit State Design of RC Structures", Nemchand Publications, Roorkee, 1998
- 2. Sinha, S.N., "Reinforced Concrete Design", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2002
- 3. Unnikrishna Pillai, S., Devdas Menon, "Reinforced Concrete Design", Tata McGraw Hill Publishing Company Ltd., 2009
- 4. Punmia.B.C., Ashok Kumar Jain, Arun Kumar Jain, "Limit State Design of Reinforced Concrete", Laxmi Publication Pvt. Ltd., New Delhi, 2007.
- 5. Bandyopadhyay. J.N., "Design of Concrete Structures"., Prentice Hall of India Pvt. Ltd., New Delhi, 2008.
- 6. IS456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2000
- 7. SP16, IS456:1978 "Design Aids for Reinforced Concrete to Bureau of Indian Standards, New Delhi, 1999
- 8. Shah V L Karve S R., "Limit State Theory and Design of Reinforced Concrete", Structures Publications, Pune, 2013

CE6506 CONSTRUCTION TECHNIQUES, EQUIPMENT AND PRACTICE

LTPC 3003

OBJECTIVES:

• The main objective of this course is to make the student aware of the various construction techniques, practices and the equipment needed for different types of construction activities. At the end of this course the student shall have a reasonable knowledge about the various construction procedures for sub to super structure and also the equipment needed for construction of various types of structures from foundation to super structure.

UNIT I CONCRETE TECHNOLOGY

9

Cements – Grade of cements - concrete chemicals and Applications – Grade of concrete - manufacturing of concrete – Batching – mixing – transporting – placing – compaction of concrete – curing and finishing - Testing of fresh and hardened concrete – quality of concrete – Extreme Weather Concreting - Ready Mix Concrete – Non-destructive testing.

UNIT II CONSTRUCTION PRACTICES

9

Specifications, details and sequence of activities and construction co-ordination – Site Clearance – Marking – Earthwork - masonry – stone masonry – Bond in masonry - concrete hollow block masonry – flooring – damp proof courses – construction joints – movement and expansion joints – pre cast pavements – Building foundations – basements – temporary shed – centering and shuttering – slip forms – scaffoldings – de-shuttering forms – Fabrication and erection of steel trusses – frames – braced domes – laying brick — weather and water proof – roof finishes – acoustic and fire protection.

UNIT III SUB STRUCTURE CONSTRUCTION

9

Techniques of Box jacking – Pipe Jacking -under water construction of diaphragm walls and basement-Tunneling techniques – Piling techniques - well and caisson - sinking cofferdam - cable anchoring and grouting-driving diaphragm walls, sheet piles - shoring for deep cutting - well points +Dewatering and stand by Plant equipment for underground open excavation.

UNIT IV SUPER STRUCTURE CONSTRUCTION

g

Launching girders, bridge decks, off shore platforms – special forms for shells - techniques for heavy decks – in-situ pre-stressing in high rise structures, Material handling - erecting light weight components on tall structures - Support structure for heavy Equipment and conveyors - Erection of articulated structures, braced domes and space decks.

UNIT V CONSTRUCTION EQUIPMENT

9

Selection of equipment for earth work - earth moving operations - types of earthwork equipment - tractors, motor graders, scrapers, front end waders, earth movers - Equipment for foundation and pile driving. Equipment for compaction, batching and mixing and concreting - Equipment for material handling and erection of structures - Equipment for dredging, trenching, tunneling,

TOTAL: 45 PERIODS

OUTCOMES:

 Students completing the course will have understanding of different construction techniques, practices and equipments. They will be able to plan the requirements for substructure and superstructure a construction.

TEXTBOOKS:

- 1. Peurifoy, R.L., Ledbetter, W.B. and Schexnayder, C., "Construction Planning, Equipment and Methods", 5th Edition, McGraw Hill, Singapore, 1995.
- 2. Arora S.P. and Bindra S.P., "Building Construction, Planning Techniques and Method of Construction", Dhanpat Rai and Sons, 1997.
- 3. Varghese, P.C. "Building construction", Prentice Hall of India Pvt. Ltd, New Delhi, 2007.
- 4. Shetty, M.S, "Concrete Technology, Theory and Practice", S. Chand and Company Ltd, New Delhi, 2008.

- 1. Jha J and Sinha S.K., "Construction and Foundation Engineering", Khanna Publishers, 1999.
- 2. Sharma S.C. "Construction Equipment and Management", Khanna Publishers New Delhi, 2002
- 3. Deodhar, S.V. "Construction Equipment and Job Planning", Khanna Publishers, New Delhi, 2012.
- 4. Dr. Mahesh Varma, "Construction Equipment and its Planning and Application", Metropolitan Book Company, New Delhi, 1983.
- 5. Gambhir, M.L, "Concrete Technology", Tata McGraw Hill Publishing Company Ltd, New Delhi, 2004

OUTCOMES:

At the end of the course, learners should be able to

- Take international examination such as IELTS and TOEFL
- Make presentations and Participate in Group Discussions.
- Successfully answer questions in interviews.

REFERENCES:

- 1. Business English Certificate Materials, Cambridge University Press.
- 2. **Graded Examinations in Spoken English and Spoken English for Work** downloadable materials from Trinity College, London.
- 3. International English Language Testing System Practice Tests, Cambridge University Press.
- 4. Interactive Multimedia Programs on Managing Time and Stress.
- 5. Personality Development (CD-ROM), Times Multimedia, Mumbai.
- 6. Robert M Sherfield and et al. "**Developing Soft Skills**" 4th edition, New Delhi: Pearson Education, 2009.

Web Sources:

http://www.slideshare.net/rohitjsh/presentation-on-group-discussion

http://www.washington.edu/doit/TeamN/present_tips.html

http://www.oxforddictionaries.com/words/writing-job-applications

http://www.kent.ac.uk/careers/cv/coveringletters.htm

http://www.mindtools.com/pages/article/newCDV_34.htm

CE6511

SOIL MECHANICS LABORATORY

LT PC 0 04 2

OBJECTIVES:

 At the end of the course student attains adequate knowledge in assessing both Physical and Engineering behaviour of soils through laboratory testing procedures.

LIST OF EXPERIMENTS:

1. DETERMINATION OF INDEX PROPERTIES

22

8

- a. Special gravity of soil solids
- b. Grain size distribution Sieve analysis
- c. Grain size distribution Hydrometer analysis
- d. Liquid limit and Plastic limit tests
- e. Shrinkage limit and Differential free swell tests

2. DETERMINATION OF INSITU DENSITY AND COMPACTION CHARACTERISTICS

- a. Field density Test (Sand replacement method)
- b. Determination of moisture density relationship using standard Proctor compaction test.

3. DETERMINATION OF ENGINEERING PROPERTIES

30

TOTAL: 60 PERIODS

- a. Permeability determination (constant head and falling head methods)
- b. One dimensional consolidation test (Determination of co-efficient of consolidation only)
- c. Direct shear test in cohesion-less soil
- d. Unconfined compression test in cohesive soil
- e. Laboratory vane Shear test in cohesive soil
- f. Tri-axial compression test in cohesion-less soil (Demonstration only)
- g. California Bearing Ratio Test

OUTCOMES:

• Students know the techniques to determine index properties and engineering properties such as shear strength, compressibility and permeability by conducting appropriate tests.

REFERENCES:

- 1. "Soil Engineering Laboratory Instruction Manual" published by Engineering College Cooperative Society, Anna University, Chennai, 1996.
- 2. Saibaba Reddy, E. Ramasastri, K. "Measurement of Engineering Properties of Soils", New age International (P) Limited Publishers, New Delhi, 2002.
- 3. Lambe T.W., "Soil Testing for Engineers", John Wiley and Sons, New York, 1990.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No.	Description of Equipment	Quantity
1.	Sieves	2 sets
2.	Hydrometer	2 sets
3.	Liquid and plastic limit apparatus	2 sets
4.	Shinkage limit apparatus	3 sets
5.	Proctor compaction apparatus	2 sets
6.	UTM of minimum of 20KN capacity	1
7.	Direct shear apparatus	1
8.	Thermeometer	2
9.	Field density measuring device	2
10.	Triaxial shear apparatus	1
11.	Three gang consolidation test device	1

CE6512 SURVEY CAMP L T P C (During IV Semester Summer Vacation) (2 Weeks) - - - 1

Two weeks Survey Camp will be conducted during summer vacation in the following activities:

- 1. Triangulation
- 2. Trilateration and
- 3. Rectangulation

CE6601

DESIGN OF REINFORCED CONCRETE & BRICK MASONRY STRUCTURES

LT P C 3 0 0 3

OBJECTIVES:

• To give an exposure to the design of continuous beams, slabs, staircases, walls and brick masonry structures and to introduce yield line theory.

3. DETERMINATION OF ENGINEERING PROPERTIES

30

TOTAL: 60 PERIODS

- a. Permeability determination (constant head and falling head methods)
- b. One dimensional consolidation test (Determination of co-efficient of consolidation only)
- c. Direct shear test in cohesion-less soil
- d. Unconfined compression test in cohesive soil
- e. Laboratory vane Shear test in cohesive soil
- f. Tri-axial compression test in cohesion-less soil (Demonstration only)
- g. California Bearing Ratio Test

OUTCOMES:

• Students know the techniques to determine index properties and engineering properties such as shear strength, compressibility and permeability by conducting appropriate tests.

REFERENCES:

- 1. "Soil Engineering Laboratory Instruction Manual" published by Engineering College Cooperative Society, Anna University, Chennai, 1996.
- 2. Saibaba Reddy, E. Ramasastri, K. "Measurement of Engineering Properties of Soils", New age International (P) Limited Publishers, New Delhi, 2002.
- 3. Lambe T.W., "Soil Testing for Engineers", John Wiley and Sons, New York, 1990.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No.	Description of Equipment	Quantity
1.	Sieves	2 sets
2.	Hydrometer	2 sets
3.	Liquid and plastic limit apparatus	2 sets
4.	Shinkage limit apparatus	3 sets
5.	Proctor compaction apparatus	2 sets
6.	UTM of minimum of 20KN capacity	1
7.	Direct shear apparatus	1
8.	Thermeometer	2
9.	Field density measuring device	2
10.	Triaxial shear apparatus	1
11.	Three gang consolidation test device	1

CE6512 SURVEY CAMP L T P C (During IV Semester Summer Vacation) (2 Weeks) - - - 1

Two weeks Survey Camp will be conducted during summer vacation in the following activities:

- 1. Triangulation
- 2. Trilateration and
- 3. Rectangulation

CE6601

DESIGN OF REINFORCED CONCRETE & BRICK MASONRY STRUCTURES

LT P C 3 0 0 3

OBJECTIVES:

• To give an exposure to the design of continuous beams, slabs, staircases, walls and brick masonry structures and to introduce yield line theory.

UNIT I RETAINING WALLS

Design of Cantilever and Counterfort Retaining walls

UNIT II WATER TANKS

9

9

Design of rectangular and circular water tanks both below and above ground level - Design of circular slab.

UNIT III SELECTED TOPICS

9

Design of staircases (ordinary and doglegged) – Design of flat slabs – Principles of design of mat foundation, box culvert and road bridges

UNIT IV YIELD LINE THEORY

9

Assumptions - Characteristics of yield line - Determination of collapse load / plastic moment - Application of virtual work method - square, rectangular, circular and triangular slabs - Design problems

UNIT V BRICK MASONRY

9

Introduction, Classification of walls, Lateral supports and stability, effective height of wall and columns, effective length of walls, design loads, load dispersion, permissible stresses, design of axially and eccentrically loaded brick walls

OUTCOMES:

TOTAL: 45 PERIODS

 The student shall have a comprehensive design knowledge related to various structural systems.

TEXTBOOKS:

- 1. Gambhir.M.L., "Design of Reinforced Concrete Structures", Prentice Hall of India Private Limited, 2012.
- 2. Dayaratnam, P., "Brick and Reinforced Brick Structures", Oxford & IBH Publishing House, 1997
- 3. Punmia B.C, Ashok Kumar Jain, Arun K.Jain, "R.C.C. Designs Reinforced Concrete Structures", Laxmi Publications Pvt. Ltd., New Delhi, 2006.
- 4. Varghese.P.C., "Advanced Reinforced Concrete Design", Prentice Hall of India Pvt. Ltd., New Delhi, 2012.

REFERENCES:

- 1. Mallick, D.K. and Gupta A.P., "Reinforced Concrete", Oxford and IBH Publishing Company,1997
- 2. Syal, I.C. and Goel, A.K., "Reinforced Concrete Structures", A.H. Wheelers & Co. Pvt. Ltd., 1998
- 3. Ram Chandra.N. and Virendra Gehlot, "Limit State Design", Standard Book House, 2004.
- 4. Subramanian. N., "Design of Reinforced Concrete Structures", Oxford University, New Delhi, 2013.
- 5. IS456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2007
- 6. IS1905:1987, Code of Practice for Structural use of Unreinforced Masonry Bureau of Indian Standards, New Delhi, 2002

CE6602

STRUCTURAL ANALYSIS II

LTPC 3 1 0 4

OBJECTIVES:

 To introduce the students to advanced methods of analysis like matrix methods, Plastic analysis and FE method and also analysis of space structures.

3. DETERMINATION OF ENGINEERING PROPERTIES

30

TOTAL: 60 PERIODS

- a. Permeability determination (constant head and falling head methods)
- b. One dimensional consolidation test (Determination of co-efficient of consolidation only)
- c. Direct shear test in cohesion-less soil
- d. Unconfined compression test in cohesive soil
- e. Laboratory vane Shear test in cohesive soil
- f. Tri-axial compression test in cohesion-less soil (Demonstration only)
- g. California Bearing Ratio Test

OUTCOMES:

• Students know the techniques to determine index properties and engineering properties such as shear strength, compressibility and permeability by conducting appropriate tests.

REFERENCES:

- 1. "Soil Engineering Laboratory Instruction Manual" published by Engineering College Cooperative Society, Anna University, Chennai, 1996.
- 2. Saibaba Reddy, E. Ramasastri, K. "Measurement of Engineering Properties of Soils", New age International (P) Limited Publishers, New Delhi, 2002.
- 3. Lambe T.W., "Soil Testing for Engineers", John Wiley and Sons, New York, 1990.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No.	Description of Equipment	Quantity
1.	Sieves	2 sets
2.	Hydrometer	2 sets
3.	Liquid and plastic limit apparatus	2 sets
4.	Shinkage limit apparatus	3 sets
5.	Proctor compaction apparatus	2 sets
6.	UTM of minimum of 20KN capacity	1
7.	Direct shear apparatus	1
8.	Thermeometer	2
9.	Field density measuring device	2
10.	Triaxial shear apparatus	1
11.	Three gang consolidation test device	1

CE6512 SURVEY CAMP L T P C (During IV Semester Summer Vacation) (2 Weeks) - - - 1

Two weeks Survey Camp will be conducted during summer vacation in the following activities:

- 1. Triangulation
- 2. Trilateration and
- 3. Rectangulation

CE6601

DESIGN OF REINFORCED CONCRETE & BRICK MASONRY STRUCTURES

LT P C 3 0 0 3

OBJECTIVES:

• To give an exposure to the design of continuous beams, slabs, staircases, walls and brick masonry structures and to introduce yield line theory.

UNIT I RETAINING WALLS

Design of Cantilever and Counterfort Retaining walls

UNIT II WATER TANKS

9

9

Design of rectangular and circular water tanks both below and above ground level - Design of circular slab.

UNIT III SELECTED TOPICS

9

Design of staircases (ordinary and doglegged) – Design of flat slabs – Principles of design of mat foundation, box culvert and road bridges

UNIT IV YIELD LINE THEORY

9

Assumptions - Characteristics of yield line - Determination of collapse load / plastic moment - Application of virtual work method - square, rectangular, circular and triangular slabs - Design problems

UNIT V BRICK MASONRY

9

Introduction, Classification of walls, Lateral supports and stability, effective height of wall and columns, effective length of walls, design loads, load dispersion, permissible stresses, design of axially and eccentrically loaded brick walls

TOTAL: 45 PERIODS

OUTCOMES:

The student shall have a comprehensive design knowledge related to various structural systems.

TEXTBOOKS:

- 1. Gambhir.M.L., "Design of Reinforced Concrete Structures", Prentice Hall of India Private Limited, 2012.
- 2. Dayaratnam, P., "Brick and Reinforced Brick Structures", Oxford & IBH Publishing House, 1997
- 3. Punmia B.C, Ashok Kumar Jain, Arun K.Jain, "R.C.C. Designs Reinforced Concrete Structures", Laxmi Publications Pvt. Ltd., New Delhi, 2006.
- 4. Varghese.P.C., "Advanced Reinforced Concrete Design", Prentice Hall of India Pvt. Ltd., New Delhi, 2012.

REFERENCES:

- 1. Mallick, D.K. and Gupta A.P., "Reinforced Concrete", Oxford and IBH Publishing Company,1997
- 2. Syal, I.C. and Goel, A.K., "Reinforced Concrete Structures", A.H. Wheelers & Co. Pvt. Ltd., 1998
- 3. Ram Chandra.N. and Virendra Gehlot, "Limit State Design", Standard Book House, 2004.
- 4. Subramanian. N., "Design of Reinforced Concrete Structures", Oxford University, New Delhi, 2013.
- 5. IS456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2007
- 6. IS1905:1987, Code of Practice for Structural use of Unreinforced Masonry Bureau of Indian Standards, New Delhi, 2002

CE6602

STRUCTURAL ANALYSIS II

LTPC 3 1 0 4

OBJECTIVES:

 To introduce the students to advanced methods of analysis like matrix methods, Plastic analysis and FE method and also analysis of space structures.

UNIT I RETAINING WALLS

Design of Cantilever and Counterfort Retaining walls

UNIT II WATER TANKS

9

9

Design of rectangular and circular water tanks both below and above ground level - Design of circular slab.

UNIT III SELECTED TOPICS

9

Design of staircases (ordinary and doglegged) – Design of flat slabs – Principles of design of mat foundation, box culvert and road bridges

UNIT IV YIELD LINE THEORY

9

Assumptions - Characteristics of yield line - Determination of collapse load / plastic moment - Application of virtual work method - square, rectangular, circular and triangular slabs - Design problems

UNIT V BRICK MASONRY

9

Introduction, Classification of walls, Lateral supports and stability, effective height of wall and columns, effective length of walls, design loads, load dispersion, permissible stresses, design of axially and eccentrically loaded brick walls

OUTCOMES:

TOTAL: 45 PERIODS

 The student shall have a comprehensive design knowledge related to various structural systems.

TEXTBOOKS:

- 1. Gambhir.M.L., "Design of Reinforced Concrete Structures", Prentice Hall of India Private Limited, 2012.
- 2. Dayaratnam, P., "Brick and Reinforced Brick Structures", Oxford & IBH Publishing House, 1997
- 3. Punmia B.C, Ashok Kumar Jain, Arun K.Jain, "R.C.C. Designs Reinforced Concrete Structures", Laxmi Publications Pvt. Ltd., New Delhi, 2006.
- 4. Varghese.P.C., "Advanced Reinforced Concrete Design", Prentice Hall of India Pvt. Ltd., New Delhi, 2012.

REFERENCES:

- 1. Mallick, D.K. and Gupta A.P., "Reinforced Concrete", Oxford and IBH Publishing Company,1997
- 2. Syal, I.C. and Goel, A.K., "Reinforced Concrete Structures", A.H. Wheelers & Co. Pvt. Ltd., 1998
- 3. Ram Chandra.N. and Virendra Gehlot, "Limit State Design", Standard Book House, 2004.
- 4. Subramanian. N., "Design of Reinforced Concrete Structures", Oxford University, New Delhi, 2013.
- 5. IS456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2007
- 6. IS1905:1987, Code of Practice for Structural use of Unreinforced Masonry Bureau of Indian Standards, New Delhi, 2002

CE6602

STRUCTURAL ANALYSIS II

LTPC 3 1 0 4

OBJECTIVES:

 To introduce the students to advanced methods of analysis like matrix methods, Plastic analysis and FE method and also analysis of space structures.

UNIT I FLEXIBILITY METHOD

Equilibrium and compatibility – Determinate vs Indeterminate structures – Indeterminacy - Primary structure – Compatibility conditions – Analysis of indeterminate pin-jointed plane frames, continuous beams, rigid jointed plane frames (with redundancy restricted to two).

UNIT II STIFFNESS MATRIX METHOD

9

Element and global stiffness matrices – Analysis of continuous beams – Co-ordinate transformations – Rotation matrix – Transformations of stiffness matrices, load vectors and displacements vectors – Analysis of pin-jointed plane frames and rigid frames (with redundancy limited to two)

UNIT III FINITE ELEMENT METHOD

9

Introduction – Discretisation of a structure – Displacement functions – Truss element – Beam element – Plane stress and plane strain - Triangular elements

UNIT IV PLASTIC ANALYSIS OF STRUCTURES

9

Statically indeterminate axial problems – Beams in pure bending – Plastic moment of resistance – Plastic modulus – Shape factor – Load factor – Plastic hinge and mechanism – Plastic analysis of indeterminate beams and frames – Upper and lower bound theorems

UNIT V SPACE AND CABLE STRUCTURES

9

Analysis of Space trusses using method of tension coefficients — Beams curved in plan Suspension cables — suspension bridges with two and three hinged stiffening girders

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

 The student will have the knowledge on advanced methods of analysis of structures including space and cable structures.

TEXTBOOKS:

- 1. Punmia.B.C., Ashok Kumar Jain and Arun Kumar Jain, "Theory of Structures", Laxmi Publications, 2004.
- 2. Vaidyanathan, R. and Perumal, P., "Comprehensive structural Analysis Vol. I & II", Laxmi Publications, New Delhi, 2003
- 3. Negi L.S. & Jangid R.S., "Structural Analysis", Tata McGraw Hill Publications, New Delhi, 2003.
- 4. BhavaiKatti, S.S, "Structural Analysis Vol. 1 Vol. 2", Vikas Publishing House Pvt. Ltd., New Delhi, 2008

- 1. Ghali.A, Nebille,A.M. and Brown,T.G. "Structural Analysis" A unified classical and Matrix approach" 6th edition. Spon Press, London and New York, 2013.
- 2. Coates R.C, Coutie M.G. and Kong F.K., "Structural Analysis", ELBS and Nelson, 1990
- 3. Pandit G.S. & Gupta S.P. "Structural Analysis A Matrix Approach", Tata McGraw Hill
- 4. William Weaver Jr. & James M. Gere, "Matrix Analysis of Framed Structures", CBS Publishers and Distributors, Delhi, 2004
- 5. Gambhir. M.L., "Fundamentals of Structural Mechanics and Analysis"., PHI Learning Pvt. Ltd., New Delhi, 2011.

UNIT I FLEXIBILITY METHOD

Equilibrium and compatibility – Determinate vs Indeterminate structures – Indeterminacy - Primary structure – Compatibility conditions – Analysis of indeterminate pin-jointed plane frames, continuous beams, rigid jointed plane frames (with redundancy restricted to two).

UNIT II STIFFNESS MATRIX METHOD

9

Element and global stiffness matrices – Analysis of continuous beams – Co-ordinate transformations – Rotation matrix – Transformations of stiffness matrices, load vectors and displacements vectors – Analysis of pin-jointed plane frames and rigid frames (with redundancy limited to two)

UNIT III FINITE ELEMENT METHOD

9

Introduction – Discretisation of a structure – Displacement functions – Truss element – Beam element – Plane stress and plane strain - Triangular elements

UNIT IV PLASTIC ANALYSIS OF STRUCTURES

9

Statically indeterminate axial problems – Beams in pure bending – Plastic moment of resistance – Plastic modulus – Shape factor – Load factor – Plastic hinge and mechanism – Plastic analysis of indeterminate beams and frames – Upper and lower bound theorems

UNIT V SPACE AND CABLE STRUCTURES

9

Analysis of Space trusses using method of tension coefficients — Beams curved in plan Suspension cables — suspension bridges with two and three hinged stiffening girders

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

 The student will have the knowledge on advanced methods of analysis of structures including space and cable structures.

TEXTBOOKS:

- 1. Punmia.B.C., Ashok Kumar Jain and Arun Kumar Jain, "Theory of Structures", Laxmi Publications, 2004.
- 2. Vaidyanathan, R. and Perumal, P., "Comprehensive structural Analysis Vol. I & II", Laxmi Publications, New Delhi, 2003
- 3. Negi L.S. & Jangid R.S., "Structural Analysis", Tata McGraw Hill Publications, New Delhi, 2003.
- 4. BhavaiKatti, S.S, "Structural Analysis Vol. 1 Vol. 2", Vikas Publishing House Pvt. Ltd., New Delhi, 2008

- 1. Ghali.A, Nebille,A.M. and Brown,T.G. "Structural Analysis" A unified classical and Matrix approach" 6th edition. Spon Press, London and New York, 2013.
- 2. Coates R.C, Coutie M.G. and Kong F.K., "Structural Analysis", ELBS and Nelson, 1990
- 3. Pandit G.S. & Gupta S.P. "Structural Analysis A Matrix Approach", Tata McGraw Hill
- 4. William Weaver Jr. & James M. Gere, "Matrix Analysis of Framed Structures", CBS Publishers and Distributors, Delhi, 2004
- 5. Gambhir. M.L., "Fundamentals of Structural Mechanics and Analysis"., PHI Learning Pvt. Ltd., New Delhi, 2011.

DESIGN OF STEEL STRUCTURES

LT P C 3 1 0 4

OBJECTIVES:

 To introduce the students to limit state design of structural steel members subjected to compressive, tensile and bending loads, including connections. Design of structural systems such as roof trusses, gantry girders as per provisions of current code (IS 800 -2007) of practice.

UNIT I INTRODUCTION

9

Properties of steel – Structural steel sections – Limit State Design Concepts – Loads on Structures – Connections using rivets, welding, bolting – Design of bolted and welded joints – Eccentric connections - Efficiency of joints.

UNIT II TENSION MEMBERS

6

Types of sections – Net area – Net effective sections for angles and Tee in tension – Design of connections in tension members – Use of lug angles – Design of tension splice – Concept of shear lag

UNIT III COMPRESSION MEMBERS

12

Types of compression members – Theory of columns – Basis of current codal provision for compression member design – Slenderness ratio – Design of single section and compound section compression members – Design of laced and battened type columns – Design of column bases – Gusseted base

UNIT IV BEAMS

0

Design of laterally supported and unsupported beams – Built up beams – Beams subjected to uniaxial and biaxial bending – Design of plate girders - Intermediate and bearing stiffeners – Flange and web splices.

UNIT V ROOF TRUSSES AND INDUSTRIAL STRUCTURES

9

Roof trusses – Roof and side coverings – Design of purlin and elements of truss; end bearing – Design of gantry girder.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

 The students would have knowledge on the design of structural steel members subjected to compressive, tensile and bending forces, as per current code and also know to design structural systems such as roof trusses and gantry girders.

TEXTBOOKS:

- 1. Gambhir. M.L., "Fundamentals of Structural Steel Design", McGraw Hill Education India Pvt. Ltd., 2013
- 2. Shiyekar. M.R., "Limit State Design in Structural Steel", Prentice Hall of India Pvt. Ltd, Learning Pvt. Ltd., 2nd Edition, 2013.
- 3. Subramanian.N, "Design of Steel Structures", Oxford University Press, New Delhi, 2013.

- 1. Narayanan.R.et.al. "Teaching Resource on Structural Steel Design", INSDAG, Ministry of Steel Publications, 2002
- 2. Duggal. S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing Company, 2005
- 3. Bhavikatti.S.S, "Design of Steel Structures" By Limit State Method as per IS:800–2007, IK International Publishing House Pvt. Ltd., 2009
- 4. Shah.V.L. and Veena Gore, "Limit State Design of Steel Structures", IS 800–2007 Structures Publications, 2009.
- 5. IS800:2007, General Construction In Steel Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi, 2007

DESIGN OF STEEL STRUCTURES

LT P C 3 1 0 4

OBJECTIVES:

 To introduce the students to limit state design of structural steel members subjected to compressive, tensile and bending loads, including connections. Design of structural systems such as roof trusses, gantry girders as per provisions of current code (IS 800 -2007) of practice.

UNIT I INTRODUCTION

9

Properties of steel – Structural steel sections – Limit State Design Concepts – Loads on Structures – Connections using rivets, welding, bolting – Design of bolted and welded joints – Eccentric connections - Efficiency of joints.

UNIT II TENSION MEMBERS

6

Types of sections – Net area – Net effective sections for angles and Tee in tension – Design of connections in tension members – Use of lug angles – Design of tension splice – Concept of shear lag

UNIT III COMPRESSION MEMBERS

12

Types of compression members – Theory of columns – Basis of current codal provision for compression member design – Slenderness ratio – Design of single section and compound section compression members – Design of laced and battened type columns – Design of column bases – Gusseted base

UNIT IV BEAMS

0

Design of laterally supported and unsupported beams – Built up beams – Beams subjected to uniaxial and biaxial bending – Design of plate girders - Intermediate and bearing stiffeners – Flange and web splices.

UNIT V ROOF TRUSSES AND INDUSTRIAL STRUCTURES

9

Roof trusses – Roof and side coverings – Design of purlin and elements of truss; end bearing – Design of gantry girder.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

 The students would have knowledge on the design of structural steel members subjected to compressive, tensile and bending forces, as per current code and also know to design structural systems such as roof trusses and gantry girders.

TEXTBOOKS:

- 1. Gambhir. M.L., "Fundamentals of Structural Steel Design", McGraw Hill Education India Pvt. Ltd., 2013
- 2. Shiyekar. M.R., "Limit State Design in Structural Steel", Prentice Hall of India Pvt. Ltd, Learning Pvt. Ltd., 2nd Edition, 2013.
- 3. Subramanian.N, "Design of Steel Structures", Oxford University Press, New Delhi, 2013.

- 1. Narayanan.R.et.al. "Teaching Resource on Structural Steel Design", INSDAG, Ministry of Steel Publications, 2002
- 2. Duggal. S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing Company, 2005
- 3. Bhavikatti.S.S, "Design of Steel Structures" By Limit State Method as per IS:800–2007, IK International Publishing House Pvt. Ltd., 2009
- 4. Shah.V.L. and Veena Gore, "Limit State Design of Steel Structures", IS 800–2007 Structures Publications, 2009.
- 5. IS800:2007, General Construction In Steel Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi, 2007

RAILWAYS, AIRPORTS AND HARBOUR ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

• To expose the students to Railway planning, design, construction and maintenance and planning and design principles of Airports and Harbours.

UNIT I RAILWAY PLANNING

10

Significance of Road, Rail, Air and Water transports - Coordination of all modes to achieve sustainability - Elements of permanent way - Rails, Sleepers, Ballast, rail fixtures and fastenings, - Track Stress, coning of wheels, creep in rails, defects in rails - Route alignment surveys, conventional and modern methods- - Soil suitability analysis - Geometric design of railways, gradient, super elevation, widening of gauge on curves- Points and Crossings.

UNIT II RAILWAY CONSTRUCTION AND MAINTENANCE

9

Earthwork – Stabilization of track on poor soil — Tunneling Methods, drainage and ventilation — Calculation of Materials required for track laying - Construction and maintenance of tracks – Modern methods of construction & maintenance - Railway stations and yards and passenger amenities- Urban rail – Infrastructure for Metro, Mono and underground railways.

UNIT III AIRPORT PLANNING

8

Air transport characteristics-airport classification-air port planning: objectives, components, layout characteristics, socio-economic characteristics of the Catchment area, criteria for airport site selection and ICAO stipulations, Typical airport layouts, Case studies, Parking and circulation area.

UNIT IV AIRPORT DESIGN

8

Runway Design: Orientation, Wind Rose Diagram - Runway length - Problems on basic and Actual Length, Geometric design of runways, Configuration and Pavement Design Principles - Elements of Taxiway Design - Airport Zones - Passenger Facilities and Services - Runway and Taxiway Markings and lighting.

UNIT V HARBOUR ENGINEERING

10

Definition of Basic Terms: Harbor, Port, Satellite Port, Docks, Waves and Tides – Planning and Design of Harbours: Requirements, Classification, Location and Design Principles – Harbour Layout and Terminal Facilities – Coastal Structures: Piers, Break waters, Wharves, Jetties, Quays, Spring Fenders, Dolphins and Floating Landing Stage – Inland Water Transport – Wave action on Coastal Structures and Coastal Protection Works – Environmental concern of Port Operations – Coastal Regulation Zone, 2011.

OUTCOMES:

TOTAL: 45 PERIODS

• On completing the course, the students will have the ability to Plan and Design various civil Engineering aspects of Railways, Airports and Harbour.

TEXTBOOKS:

- 1. Saxena Subhash C and Satyapal Arora, "A Course in Railway Engineering", Dhanpat Rai and Sons, Delhi, 2003
- 2. Satish Chandra and Agarwal M.M, "Railway Engineering", 2nd Edition, Oxford University Press. New Delhi. 2013.
- 3. Khanna S K, Arora M G and Jain S S, "Airport Planning and Design", Nemchand and Brothers, Roorkee, 2012.
- 4. Bindra S P, "A Course in Docks and Harbour Engineering", Dhanpat Rai and Sons, New Delhi, 2013

- 1. Rangwala, "Railway Engineering", Charotar Publishing House, 2013.
- 2. Rangwala, "Airport Engineering", Charotar Publishing House, 2013.
- 3. Rangwala, "Harbor Engineering", Charotar Publishing House, 2013.

RAILWAYS, AIRPORTS AND HARBOUR ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

• To expose the students to Railway planning, design, construction and maintenance and planning and design principles of Airports and Harbours.

UNIT I RAILWAY PLANNING

10

Significance of Road, Rail, Air and Water transports - Coordination of all modes to achieve sustainability - Elements of permanent way - Rails, Sleepers, Ballast, rail fixtures and fastenings, - Track Stress, coning of wheels, creep in rails, defects in rails - Route alignment surveys, conventional and modern methods- - Soil suitability analysis - Geometric design of railways, gradient, super elevation, widening of gauge on curves- Points and Crossings.

UNIT II RAILWAY CONSTRUCTION AND MAINTENANCE

9

Earthwork – Stabilization of track on poor soil — Tunneling Methods, drainage and ventilation — Calculation of Materials required for track laying - Construction and maintenance of tracks – Modern methods of construction & maintenance - Railway stations and yards and passenger amenities- Urban rail – Infrastructure for Metro, Mono and underground railways.

UNIT III AIRPORT PLANNING

8

Air transport characteristics-airport classification-air port planning: objectives, components, layout characteristics, socio-economic characteristics of the Catchment area, criteria for airport site selection and ICAO stipulations, Typical airport layouts, Case studies, Parking and circulation area.

UNIT IV AIRPORT DESIGN

8

Runway Design: Orientation, Wind Rose Diagram - Runway length - Problems on basic and Actual Length, Geometric design of runways, Configuration and Pavement Design Principles - Elements of Taxiway Design - Airport Zones - Passenger Facilities and Services - Runway and Taxiway Markings and lighting.

UNIT V HARBOUR ENGINEERING

10

Definition of Basic Terms: Harbor, Port, Satellite Port, Docks, Waves and Tides – Planning and Design of Harbours: Requirements, Classification, Location and Design Principles – Harbour Layout and Terminal Facilities – Coastal Structures: Piers, Break waters, Wharves, Jetties, Quays, Spring Fenders, Dolphins and Floating Landing Stage – Inland Water Transport – Wave action on Coastal Structures and Coastal Protection Works – Environmental concern of Port Operations – Coastal Regulation Zone, 2011.

OUTCOMES:

TOTAL: 45 PERIODS

• On completing the course, the students will have the ability to Plan and Design various civil Engineering aspects of Railways, Airports and Harbour.

TEXTBOOKS:

- 1. Saxena Subhash C and Satyapal Arora, "A Course in Railway Engineering", Dhanpat Rai and Sons, Delhi, 2003
- 2. Satish Chandra and Agarwal M.M, "Railway Engineering", 2nd Edition, Oxford University Press. New Delhi. 2013.
- 3. Khanna S K, Arora M G and Jain S S, "Airport Planning and Design", Nemchand and Brothers, Roorkee, 2012.
- 4. Bindra S P, "A Course in Docks and Harbour Engineering", Dhanpat Rai and Sons, New Delhi, 2013

- 1. Rangwala, "Railway Engineering", Charotar Publishing House, 2013.
- 2. Rangwala, "Airport Engineering", Charotar Publishing House, 2013.
- 3. Rangwala, "Harbor Engineering", Charotar Publishing House, 2013.

- 4. Oza.H.P. and Oza.G.H., "A course in Docks & Harbour Engineering". Charotar Publishing Co., 2013
- 5. Mundrey J.S. "A course in Railway Track Engineering". Tata McGraw Hill, 2007.
- 6. Srinivasan R. Harbour, "Dock and Tunnel Engineering", 26th Edition 2013

ENVIRONMENTAL ENGINEERING II

LTPC 3 0 0 3

OBJECTIVES:

• To educate the students on the principles and design of Sewage Collection, Conveyance, treatment and disposal.

UNIT I PLANNING FOR SEWERAGE SYSTEMS

7

Sources of wastewater generation – Effects – Estimation of sanitary sewage flow – Estimation of storm runoff – Factors affecting Characteristics and composition of sewage and their significance – Effluent standards – Legislation requirements.

UNIT II SEWER DESIGN

Ω

Sewerage – Hydraulics of flow in sewers – Objectives – Design period - Design of sanitary and storm sewers – Small bore systems - Computer applications – Laying, joining & testing of sewers – appurtenances – Pumps – selection of pumps and pipe Drainage -. Plumbing System for Buildings – One pipe and two pipe system.

UNIT III PRIMARY TREATMENT OF SEWAGE

9

Objective – Selection of treatment processes – Principles, Functions, Design and Drawing of Units - Onsite sanitation - Septic tank with dispersion - Grey water harvesting – Primary treatment – Principles, functions design and drawing of screen, grit chambers and primary sedimentation tanks – Construction, operation and Maintenance aspects.

UNIT IV SECONDARY TREATMENT OF SEWAGE

12

Objective – Selection of Treatment Methods – Principles, Functions, Design and Drawing of Units - Activated Sludge Process and Trickling filter – Oxidation ditches, UASB – Waste Stabilization Ponds – Reclamation and Reuse of sewage - sewage recycle in residential complex - Recent Advances in Sewage Treatment – Construction and Operation & Maintenance of Sewage Treatment Plants.

UNIT V DISPOSAL OF SEWAGE AND SLUDGE MANAGEMENT

9

Standards for Disposal - Methods - dilution - Self purification of surface water bodies - Oxygen sag curve - Land disposal - Sludge characterization - Thickening - Sludge digestion - Biogas recovery - Sludge Conditioning and Dewatering - disposal - Advances in Sludge Treatment and disposal.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will have

- ability to estimate sewage generation and design sewer system including sewage pumping stations
- required understanding on the characteristics and composition of sewage, self purification of streams
- ability to perform basic design of the unit operations and processes that are used in sewage treatment

TEXTBOOKS:

- 1. Garg, S.K., "Environmental Engineering" Vol. II, Khanna Publishers, New Delhi, 2003.
- 2. Punmia, B.C., Jain, A.K., and Jain. A., "Environmental Engineering", Vol.II, Lakshmi Publications, News letter, 2005.

REFERENCES:

- 1. "Manual on Sewerage and Sewage Treatment", CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 1997.
- 2. Metcalf & Eddy, "Wastewater Engineering" Treatment and Reuse, Tata McGraw Hill Company, New Delhi, 2003.
- 3. Karia G L & Christian R A, "Wastewater Treatment", Prentice Hall of India, New Delhi, 2013.

CE6611

ENVIRONMENTAL ENGINEERING LABORATORY

L T P C 0 0 3 2

TOTAL: 45 PERIODS

OBJECTIVES:

• To understand the sampling and preservation methods and significance of characterization of wastewater.

LIST OF EXPERIMENTS:

- 1. Determination of Ammonia Nitrogen in wastewater.
- 2. Coagulation and Precipitation process for treating waste water
- 3. Determination of suspended, volatile, fixed and settleable solids in wastewater.
- 4. B.O.D. test
- 5. C.O.D. test
- 6. Nitrate in wastewater.
- 7. Phosphate in wastewater.
- 8. Determination of Calcium, Potassium and Sodium.
- 9. Heavy metals determination Chromium, Lead and Zinc. (Demonstration only)

OUTCOMES:

• The students completing the course will be able to characterize wastewater and conduct treatability studies.

REFERENCE:

1. Standards Methods for the Examination of Water and Wastewater, 17th Edition, WPCF, APHA and AWWA, USA, 1989.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.	Description of Equipment	Quantity
No.		
1.	Oxygen analyzer	1
2.	Spectrophotometer	1
3.	Ion – selective electrode	1
4.	Sodium Potassium Analyzer – Flame Photometer	1
5.	Gas Chromatography	1
6.	Atomic absorption spectroscopy (Ni, Zn, Pb)	1
7.	Nephlo - turbidity meter	1
8.	BOD Analyser	1
9.	COD Analyser	1
10.	Jar Test Apparatus	1

OBJECTIVES:

• To learn the principles and procedures of testing Concrete and Highway materials and to get hands on experience by conducting the tests and evolving inferences.

LIST OF EXPERIMENTS

I. TESTS ON FRESH CONCRETE

- 1. Slump cone test
- 2. Flow table
- 3. Compaction factor
- 4. Vee bee test.

II. TESTS ON HARDENED CONCRETE

- 1. Compressive strength Cube & Cylinder
- 2. Flexure test
- 3. Modulus of Elasticity

III. TESTS ON AGGREGATES

- 1. Specific Gravity
- 2. Gradation of Aggregate
- 3. Crushing Strength
- 4. Abrasion Value
- 5. Impact Value
- 6. Water Absorption
- 7. Flakiness and Elongation Indices

IV. TESTS ON BITUMEN

- 1. Penetration
- 2. Softening Point
- 3. Ductility
- 4. Flash and fire points.
- 5. Viscosity

V. TESTS ON BITUMINOUS MIXES

- 1. Determination of Binder Content
- 2. Marshall Stability and Flow values
- 3. Density

OUTCOMES:

 Student knows the techniques to characterize various pavement materials through relevant tests.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No	Description of Equipment	Quantity
1.	Concrete cube moulds	6
2.	Concrete cylinder moulds	3
3.	Concrete Prism moulds	3
4.	Sieves	1set
5.	Concrete Mixer	1
6.	Slump cone	3
7.	Flow table	1
8.	Vibrator	1
9.	Trovels and planers	1 set
10.	UTM – 400 kN capacity	1
11.	Vee Bee Consistometer	1
12.	Aggregate impact testing machine	1
13.	CBR Apparatus	1

OBJECTIVES:

• To learn the principles and procedures of testing Concrete and Highway materials and to get hands on experience by conducting the tests and evolving inferences.

LIST OF EXPERIMENTS

I. TESTS ON FRESH CONCRETE

- 1. Slump cone test
- 2. Flow table
- 3. Compaction factor
- 4. Vee bee test.

II. TESTS ON HARDENED CONCRETE

- 1. Compressive strength Cube & Cylinder
- 2. Flexure test
- 3. Modulus of Elasticity

III. TESTS ON AGGREGATES

- 1. Specific Gravity
- 2. Gradation of Aggregate
- 3. Crushing Strength
- 4. Abrasion Value
- 5. Impact Value
- 6. Water Absorption
- 7. Flakiness and Elongation Indices

IV. TESTS ON BITUMEN

- 1. Penetration
- 2. Softening Point
- 3. Ductility
- 4. Flash and fire points.
- 5. Viscosity

V. TESTS ON BITUMINOUS MIXES

- 1. Determination of Binder Content
- 2. Marshall Stability and Flow values
- 3. Density

OUTCOMES:

 Student knows the techniques to characterize various pavement materials through relevant tests.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI.No	Description of Equipment	Quantity
1.	Concrete cube moulds	6
2.	Concrete cylinder moulds	3
3.	Concrete Prism moulds	3
4.	Sieves	1set
5.	Concrete Mixer	1
6.	Slump cone	3
7.	Flow table	1
8.	Vibrator	1
9.	Trovels and planers	1 set
10.	UTM – 400 kN capacity	1
11.	Vee Bee Consistometer	1
12.	Aggregate impact testing machine	1
13.	CBR Apparatus	1

14.	Blains Apparatus	1
15.	Los - Angeles abrasion testing machine	1
16.	Marshall Stability Apparatus	1

CE6701 STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

 The main objective of the course is to introduce dynamic loading and the dynamic performance of the structures to the students. Different types of dynamic loading also to be discussed. The detailed study on the performance of structures under earthquake loading is also one of the focus of the course.

UNIT I THEORY OF VIBRATIONS

9

Difference between static loading and dynamic loading – Degree of freedom – idealisation of structure as single degree of freedom system – Formulation of Equations of motion of SDOF system - D'Alemberts principles – effect of damping – free and forced vibration of damped and undamped structures – Response to harmonic and periodic forces.

UNIT II MULTIPLE DEGREE OF FREEDOM SYSTEM

9

Two degree of freedom system – modes of vibrations – formulation of equations of motion of multi degree of freedom (MDOF) system - Eigen values and Eigen vectors – Response to free and forced vibrations - damped and undamped MDOF system – Modal superposition methods.

UNIT III ELEMENTS OF SEISMOLOGY

9

Elements of Engineering Seismology - Causes of Earthquake - Plate Tectonic theory - Elastic rebound Theory - Characteristic of earthquake - Estimation of earthquake parameters - Magnitude and intensity of earthquakes - Spectral Acceleration.

UNIT IV RESPONSE OF STRUCTURES TO EARTHQUAKE

g

Effect of earthquake on different type of structures — Behaviour of Reinforced Cement Concrete, Steel and Prestressed Concrete Structure under earthquake loading — Pinching effect — Bouchinger Effects — Evaluation of earthquake forces as per IS:1893 — 2002 - Response Spectra — Lessons learnt from past earthquakes.

UNIT V DESIGN METHODOLOGY

9

Causes of damage – Planning considerations / Architectural concepts as per IS:4326 – 1993 – Guidelines for Earthquake resistant design – Earthquake resistant design for masonry and Reinforced Cement Concrete buildings – Later load analysis – Design and detailing as per IS:13920 – 1993.

OUTCOMES:

TOTAL: 45 PERIODS

• At the end of the course, student will have the knowledge to analyse structures subjected to dynamic loading and to design the structures for seismic loading as per code provisions.

TEXTBOOKS:

- 1. Chopra, A.K., "Dynamics of Structures Theory and Applications to Earthquake Engineering", 4th Edition, Pearson Education, 2011.
- 2. Agarwal. P and Shrikhande. M., "Earthquake Resistant Design of Structures", Prentice Hall of India Pvt. Ltd. 2007

- 1. Biggs, J.M., "Introduction to Structural Dynamics", McGraw Hill Book Co., New York, 1964
- 2. Dowrick, D.J., "Earthquake Resistant Design", John Wiley & Sons, London, 2009
- 3. Paz, M. and Leigh.W. "Structural Dynamics Theory & Computation", 4th Edition, CBS Publishers & Distributors, Shahdara, Delhi, 2006.

UNIT V CONTROLLING

C

System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

TOTAL: 45 PERIODS

TOTAL: 180 PERIODS

OUTCOMES:

• Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management

TEXTBOOKS:

- 1. Stephen P. Robbins & Mary Coulter, "Management", 10th Edition, Prentice Hall (India) Pvt. Ltd., 2009.
- 2. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.

REFERENCES:

- 1. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" 7th Edition, Pearson Education, 2011.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Harold Koontz & Heinz Weihrich "Essentials of management" Tata McGraw Hill, 1998.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata McGraw Hill, 1999

CE6811 PROJECT WORK L T P C 0 0 12 6

OBJECTIVES:

• To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

OUTCOMES:

• On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

CE6001 HYDROLOGY LTPC

OBJECTIVES:

 To impart knowledge on hydrological cycle, spatial and temporal measurement and analysis of rainfall and their applications including flood routing and ground water hydrology.

UNIT I PRECIPITATION

9

Hydrologic cycle – Types of precipitation – Forms of precipitation – Measurement of Rainfall – Spatial measurement methods – Temporal measurement methods – Frequency analysis of point rainfall – Intensity, duration, frequency relationship – Probable maximum precipitation.

UNIT II ABSTRACTION FROM PRECIPITATION

9

Losses from precipitation – Evaporation process – Reservoir evaporation – Infiltration process – Infiltration capacity – Measurement of infiltration – Infiltration indices – Effective rainfall.

UNIT III HYDROGRAPHS

9

Factors affecting Hydrograph – Baseflow separation – Unit hydrograph – Derivation of unit hydrograph – S curve hydrograph – Unit hydrograph of different deviations - Synthetic Unit Hydrograph

UNIT IV FLOODS AND FLOOD ROUTING

9

Flood frequency studies – Recurrence interval – Gumbel's method – Flood routing – Reservoir flood routing – Muskingum's Channel Routing – Flood control

UNIT V GROUND WATER HYDROLOGY

9

Types of aquifers – Darcy's law – Dupuit's assumptions – Confined Aquifer – Unconfined Aquifer – Recuperation test – Transmissibility – Specific capacity – Pumping test – Steady flow analysis only.

TOTAL: 45 PERIODS

OUTCOMES:

- The students gain the knowledge needed on hydrologic cycle, hydrometeorology and formation of precipitation.
- The students are able to apply the various methods of field measurements and empirical formulae for estimating the various losses of precipitation, stream flow, flood and flood routing.
- The students will know the basics of groundwater and hydraulics of subsurface flows.

TEXTBOOKS:

- 1. Subramanya, K., "Engineering Hydrology", Tata McGraw Hill Publishing Co., Ltd., 2000
- 2. Raghunath, H.M., "Hydrology", Wiley Eastern Ltd., 2000
- 3. Jayarami Reddy .P. Hydrology, Tata McGraw Hill, 2008.
- 4. Madan Mohan das and Mimi Das Saikia, Hydrology, Prentice Hall of India, 2013.

REFERENCES:

- 1. Chow, V.T. and Maidment D.R., "Hydrology for Engineers", McGraw-Hill Inc., Ltd., 2000
- 2. Singh, V.P., "Hydrology", McGraw Hill Inc., Ltd., 2000.

CE6002 CONCRETE TECHNOLOGY

LTPC 3 0 0 3

OBJECTIVES:

• To impart knowledge to the students on the properties of materials for concrete by suitable tests, mix design for concrete and special concretes.

UNIT I CONSTITUENT MATERIALS

9

OBJECTIVES:

 To impart knowledge on hydrological cycle, spatial and temporal measurement and analysis of rainfall and their applications including flood routing and ground water hydrology.

UNIT I PRECIPITATION

9

Hydrologic cycle – Types of precipitation – Forms of precipitation – Measurement of Rainfall – Spatial measurement methods – Temporal measurement methods – Frequency analysis of point rainfall – Intensity, duration, frequency relationship – Probable maximum precipitation.

UNIT II ABSTRACTION FROM PRECIPITATION

9

Losses from precipitation – Evaporation process – Reservoir evaporation – Infiltration process – Infiltration capacity – Measurement of infiltration – Infiltration indices – Effective rainfall.

UNIT III HYDROGRAPHS

9

Factors affecting Hydrograph – Baseflow separation – Unit hydrograph – Derivation of unit hydrograph – S curve hydrograph – Unit hydrograph of different deviations - Synthetic Unit Hydrograph

UNIT IV FLOODS AND FLOOD ROUTING

9

Flood frequency studies – Recurrence interval – Gumbel's method – Flood routing – Reservoir flood routing – Muskingum's Channel Routing – Flood control

UNIT V GROUND WATER HYDROLOGY

9

Types of aquifers – Darcy's law – Dupuit's assumptions – Confined Aquifer – Unconfined Aquifer – Recuperation test – Transmissibility – Specific capacity – Pumping test – Steady flow analysis only.

TOTAL: 45 PERIODS

OUTCOMES:

- The students gain the knowledge needed on hydrologic cycle, hydrometeorology and formation of precipitation.
- The students are able to apply the various methods of field measurements and empirical formulae for estimating the various losses of precipitation, stream flow, flood and flood routing.
- The students will know the basics of groundwater and hydraulics of subsurface flows.

TEXTBOOKS:

- 1. Subramanya, K., "Engineering Hydrology", Tata McGraw Hill Publishing Co., Ltd., 2000
- 2. Raghunath, H.M., "Hydrology", Wiley Eastern Ltd., 2000
- 3. Jayarami Reddy .P. Hydrology, Tata McGraw Hill, 2008.
- 4. Madan Mohan das and Mimi Das Saikia, Hydrology, Prentice Hall of India, 2013.

REFERENCES:

- 1. Chow, V.T. and Maidment D.R., "Hydrology for Engineers", McGraw-Hill Inc., Ltd., 2000
- 2. Singh, V.P., "Hydrology", McGraw Hill Inc., Ltd., 2000.

CE6002 CONCRETE TECHNOLOGY

LTPC 3 0 0 3

OBJECTIVES:

• To impart knowledge to the students on the properties of materials for concrete by suitable tests, mix design for concrete and special concretes.

UNIT I CONSTITUENT MATERIALS

9

Cement-Different types-Chemical composition and Properties -Tests on cement-IS Specifications-Aggregates-Classification-Mechanical properties and tests as per BIS Grading requirements-Water- Quality of water for use in concrete.

UNIT II CHEMICAL AND MINERAL ADMIXTURES

9

Accelerators-Retarders- Plasticisers- Super plasticizers- Water proofers - Mineral Admixtures like Fly Ash, Silica Fume, Ground Granulated Blast Furnace Slag and Metakaoline - Their effects on concrete properties

UNIT III PROPORTIONING OF CONCRETE MIX

9

Principles of Mix Proportioning-Properties of concrete related to Mix Design-Physical properties of materials required for Mix Design - Design Mix and Nominal Mix-BIS Method of Mix Design - Mix Design Examples

UNIT IV FRESH AND HARDENED PROPERTIES OF CONCRETE

9

Workability-Tests for workability of concrete-Slump Test and Compacting factor Test-Segregation and Bleeding-Determination of Compressive and Flexural strength as per BIS - Properties of Hardened concrete-Determination of Compressive and Flexural strength-Stress-strain curve for concrete-Determination of Young's Modulus.

UNIT V SPECIAL CONCRETES

9

Light weight concretes - High strength concrete - Fibre reinforced concrete - Ferrocement - Ready mix concrete - SIFCON-Shotcrete - Polymer concrete - High performance concrete- Geopolymer Concrete

TOTAL: 45 PERIODS

OUTCOMES:

 The student will possess the knowledge on properties of materials required for concrete tests on those materials and design procedures for making conventional and special concretes.

TEXTBOOKS:

- 1. Gupta.B.L., Amit Gupta, "Concrete Technology", Jain Book Agency, 2010.
- 2. Shetty, M.S, "Concrete Technology", S.Chand and Company Ltd, New Delhi, 2003

REFERENCES:

- 1. Santhakumar, A.R; "Concrete Technology", Oxford University Press, New Delhi, 2007
- 2. Neville, A.M; "Properties of Concrete", Pitman Publishing Limited, London,1995
- 3. Gambir, M.L; "Concrete Technology", 3rd Edition, Tata McGraw Hill Publishing Co Ltd, New Delhi, 2007
- 4. IS10262-1982 Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi, 1998

CE6003

REMOTE SENSING TECHNIQUES AND GIS

LTPC 3 0 0 3

OBJECTIVES:

- To introduce the students to the basic concepts and principles of various components of remote sensing.
- To provide an exposure to GIS and its practical applications in civil engineering.

UNIT I EMR AND ITS INTERACTION WITH ATMOSPHERE & EARTH MATERIAL 9
Definition of remote sensing and its components – Electromagnetic spectrum – wavelength regions important to remote sensing – Wave theory, Particle theory, Stefan-Boltzman and Wein's

Cement-Different types-Chemical composition and Properties -Tests on cement-IS Specifications-Aggregates-Classification-Mechanical properties and tests as per BIS Grading requirements-Water- Quality of water for use in concrete.

UNIT II CHEMICAL AND MINERAL ADMIXTURES

9

Accelerators-Retarders- Plasticisers- Super plasticizers- Water proofers - Mineral Admixtures like Fly Ash, Silica Fume, Ground Granulated Blast Furnace Slag and Metakaoline - Their effects on concrete properties

UNIT III PROPORTIONING OF CONCRETE MIX

9

Principles of Mix Proportioning-Properties of concrete related to Mix Design-Physical properties of materials required for Mix Design - Design Mix and Nominal Mix-BIS Method of Mix Design - Mix Design Examples

UNIT IV FRESH AND HARDENED PROPERTIES OF CONCRETE

9

Workability-Tests for workability of concrete-Slump Test and Compacting factor Test-Segregation and Bleeding-Determination of Compressive and Flexural strength as per BIS - Properties of Hardened concrete-Determination of Compressive and Flexural strength-Stress-strain curve for concrete-Determination of Young's Modulus.

UNIT V SPECIAL CONCRETES

9

Light weight concretes - High strength concrete - Fibre reinforced concrete - Ferrocement - Ready mix concrete - SIFCON-Shotcrete - Polymer concrete - High performance concrete- Geopolymer Concrete

TOTAL: 45 PERIODS

OUTCOMES:

 The student will possess the knowledge on properties of materials required for concrete tests on those materials and design procedures for making conventional and special concretes.

TEXTBOOKS:

- 1. Gupta.B.L., Amit Gupta, "Concrete Technology", Jain Book Agency, 2010.
- 2. Shetty, M.S, "Concrete Technology", S.Chand and Company Ltd, New Delhi, 2003

REFERENCES:

- 1. Santhakumar, A.R; "Concrete Technology", Oxford University Press, New Delhi, 2007
- 2. Neville, A.M; "Properties of Concrete", Pitman Publishing Limited, London,1995
- 3. Gambir, M.L; "Concrete Technology", 3rd Edition, Tata McGraw Hill Publishing Co Ltd, New Delhi, 2007
- 4. IS10262-1982 Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi, 1998

CE6003

REMOTE SENSING TECHNIQUES AND GIS

LTPC 3 0 0 3

OBJECTIVES:

- To introduce the students to the basic concepts and principles of various components of remote sensing.
- To provide an exposure to GIS and its practical applications in civil engineering.

UNIT I EMR AND ITS INTERACTION WITH ATMOSPHERE & EARTH MATERIAL 9
Definition of remote sensing and its components – Electromagnetic spectrum – wavelength regions important to remote sensing – Wave theory, Particle theory, Stefan-Boltzman and Wein's

Displacement Law – Atmospheric scattering, absorption – Atmospheric windows – spectral signature concepts – typical spectral reflective characteristics of water, vegetation and soil.

UNIT II PLATFORMS AND SENSORS

9

Types of platforms – orbit types, Sun-synchronous and Geosynchronous – Passive and Active sensors – resolution concept – Pay load description of important Earth Resources and Meteorological satellites – Airborne and spaceborne TIR and microwave sensors.

UNIT III IMAGE INTERPRETATION AND ANALYSIS

9

Types of Data Products – types of image interpretation – basic elements of image interpretation - visual interpretation keys – Digital Image Processing – Pre-processing – image enhancement techniques – multispectral image classification – Supervised and unsupervised.

UNIT IV GEOGRAPHIC INFORMATION SYSTEM

9

Introduction – Maps – Definitions – Map projections – types of map projections – map analysis – GIS definition – basic components of GIS – standard GIS softwares – Data type – Spatial and non-spatial (attribute) data – measurement scales – Data Base Management Systems (DBMS).

UNIT V DATA ENTRY, STORAGE AND ANALYSIS

9

TOTAL: 45 PERIODS

Data models – vector and raster data – data compression – data input by digitization and scanning – attribute data analysis – integrated data analysis – Modeling in GIS Highway alignment studies – Land Information System.

OUTCOMES:

On completion of the course the students will have knowledge on

- Principles of Remote Sensing and GIS
- Analysis of RS and GIS data and interpreting the data for modeling applications

TEXTBOOKS:

- 1. Lillesand, T.M., Kiefer, R.W. and J.W.Chipman. "Remote Sensing and Image Interpretation" 5th Edition., John Willey and Sons Asia Pvt. Ltd., New Delhi, 2004.
- 2. Anji Reddy, M. "Textbook of Remote Sensing and Geographical Information System" 2nd edition. BS Publications, Hyderabad, 2001.

REFERENCES:

- 1. Lo. C.P.and A.K.W.Yeung, "Concepts and Techniques of Geographic Information Systems", Prentice Hall of India Pvt. Ltd., New Delhi, 2002
- 2. Peter A.Burrough, Rachael A. McDonnell, " Principles of GIS", Oxford University Press, 2000
- 3. Ian Heywood "An Introduction to GIS", Pearson Education Asia, 2000

CE6004 ARCHITECTURE

LTPC 3 0 0 3

OBJECTIVES:

 To provide the basic knowledge on the principles and functional design of buildings relating to the environment and climate.

UNIT I ARCHITECTURAL DESIGN

8

Architectural Design – an analysis – integration of function and aesthetics – Introduction to basic elements and principles of design.

UNIT II SITE PLANNING

9

Surveys - Site analysis - Development Control - Layout regulations - Layout design concepts.

Displacement Law – Atmospheric scattering, absorption – Atmospheric windows – spectral signature concepts – typical spectral reflective characteristics of water, vegetation and soil.

UNIT II PLATFORMS AND SENSORS

9

Types of platforms – orbit types, Sun-synchronous and Geosynchronous – Passive and Active sensors – resolution concept – Pay load description of important Earth Resources and Meteorological satellites – Airborne and spaceborne TIR and microwave sensors.

UNIT III IMAGE INTERPRETATION AND ANALYSIS

9

Types of Data Products – types of image interpretation – basic elements of image interpretation - visual interpretation keys – Digital Image Processing – Pre-processing – image enhancement techniques – multispectral image classification – Supervised and unsupervised.

UNIT IV GEOGRAPHIC INFORMATION SYSTEM

9

Introduction – Maps – Definitions – Map projections – types of map projections – map analysis – GIS definition – basic components of GIS – standard GIS softwares – Data type – Spatial and non-spatial (attribute) data – measurement scales – Data Base Management Systems (DBMS).

UNIT V DATA ENTRY, STORAGE AND ANALYSIS

9

TOTAL: 45 PERIODS

Data models – vector and raster data – data compression – data input by digitization and scanning – attribute data analysis – integrated data analysis – Modeling in GIS Highway alignment studies – Land Information System.

OUTCOMES:

On completion of the course the students will have knowledge on

- Principles of Remote Sensing and GIS
- Analysis of RS and GIS data and interpreting the data for modeling applications

TEXTBOOKS:

- 1. Lillesand, T.M., Kiefer, R.W. and J.W.Chipman. "Remote Sensing and Image Interpretation" 5th Edition., John Willey and Sons Asia Pvt. Ltd., New Delhi, 2004.
- 2. Anji Reddy, M. "Textbook of Remote Sensing and Geographical Information System" 2nd edition. BS Publications, Hyderabad, 2001.

REFERENCES:

- 1. Lo. C.P.and A.K.W.Yeung, "Concepts and Techniques of Geographic Information Systems", Prentice Hall of India Pvt. Ltd., New Delhi, 2002
- 2. Peter A.Burrough, Rachael A. McDonnell, " Principles of GIS", Oxford University Press, 2000
- 3. Ian Heywood "An Introduction to GIS", Pearson Education Asia, 2000

CE6004 ARCHITECTURE

LTPC 3 0 0 3

OBJECTIVES:

 To provide the basic knowledge on the principles and functional design of buildings relating to the environment and climate.

UNIT I ARCHITECTURAL DESIGN

8

Architectural Design – an analysis – integration of function and aesthetics – Introduction to basic elements and principles of design.

UNIT II SITE PLANNING

9

Surveys - Site analysis - Development Control - Layout regulations - Layout design concepts.

UNIT III BUILDING TYPES

12

Residential, institutional, commercial and Industrial – Application of anthropometry and space standards-Inter relationships of functions – Safety standards – Building rules and regulations – Integration of building services – Interior design

UNIT IV CLIMATE AND ENVIRONMENTAL RESPONSIVE DESIGN

8

Man and environment interaction- Factors that determine climate – Characteristics of climate types – Design for various climate types – Passive and active energy controls – Green building concept

UNIT V TOWN PLANNING

8

Planning – Definition, concepts and processes- Urban planning standards and zoning regulations- Urban renewal – Conservation – Principles of Landscape design

TOTAL: 45 PERIODS

OUTCOMES:

• Students will have the ability to plan any civil engineering project by incorporating various aspect of environment and climate of the project area. Further they know various rules and regulation of town planning and development authorities.

REFERENCES:

- 1. Pramar. V.S. "Design fundamental in Architecture", Somaiya Publications Pvt. Ltd., New Delhi. 1997.
- 2. Muthu Shoba Mohan.G.,"Principles of Architecture"., Oxford University Press., New Delhi, 2006.
- 3. Rangwala. S.C. "Town Planning" Charotar Publishing House., Anand, 2005.
- 4. De Chiara.J., Michael. J. Crosbie.,"Time Saver Standards for Building Types", McGraw Hill Publishing Company, New York, 2001.
- 5. Arvind Krishnan, Nick Baker, Simos Yannas, Szokolay.S.V., "Climate Responsive Architecture"., A Design Hand Book for Energy Efficient Building, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2007.
- 6. National Building Code of India., SP7 (Group 1) Bureau of Indian Standards, New Delhi, 2005.

GE6075

PROFESSIONAL ETHICS IN ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

 To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I HUMAN VALUES

10

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self confidence – Character – Spirituality – Introduction to Yoga and meditation for professional excellence and stress management.

UNIT II ENGINEERING ETHICS

Ç

Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Models of professional roles - Theories about right action – Self-interest – Customs and Religion – Uses of Ethical Theories

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION

9

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

9

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk - Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination

UNIT V GLOBAL ISSUES

8

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership – Code of Conduct – Corporate Social Responsibility

TOTAL: 45 PERIODS

OUTCOMES:

 Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society.

TEXTBOOKS:

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

REFERENCES:

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003
- 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001
- 5. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" McGraw Hill education, India Pvt. Ltd., New Delhi 2013
- 6. World Community Service Centre, 'Value Education', Vethathiri publications, Erode, 2011

Web sources:

- 1. www.onlineethics.org
- 2. www.nspe.org
- 3. www.globalethics.org
- 4. www.ethics.org

CE6005 CONSTRUCTION PLANNING AND SCHEDULING

LTPC 3003

OBJECTIVES:

• To make the students to learn about planning of construction projects, scheduling procedures and techniques, cost and qualilty control projects and use of project information as decision making tool.

UNIT I CONSTRUCTION PLANNING

6

Basic concepts in the development of construction plans-choice of Technology and Construction method-Defining Work Tasks- Definition- Precedence relationships among activities-Estimating Activity Durations-Estimating Resource Requirements for work activities-coding systems.

UNIT II SCHEDULING PROCEDURES AND TECHNIQUES

12

Relevance of construction schedules-Bar charts - The critical path method-Calculations for critical path scheduling-Activity float and schedules-Presenting project schedules-Critical path scheduling for Activity-on-node and with leads, Lags and Windows-Calculations for scheduling with leads, lags and windows-Resource oriented scheduling-Scheduling with resource constraints and precedences -Use of Advanced Scheduling Techniques-Scheduling with uncertain durations-Crashing and time/cost trade offs -Improving the Scheduling process - Introduction to application software.

UNIT III COST CONTROL MONITORING AND ACCOUNTING

a

The cost control problem-The project Budget-Forecasting for Activity cost control - financial accounting systems and cost accounts-Control of project cash flows-Schedule control-Schedule and Budget updates-Relating cost and schedule information.

UNIT IV QUALITY CONTROL AND SAFETY DURING CONSTRUCTION

9

Quality and safety Concerns in Construction-Organizing for Quality and Safety-Work and Material Specifications-Total Quality control-Quality control by statistical methods -Statistical Quality control with Sampling by Attributes-Statistical Quality control by Sampling and Variables-Safety.

UNIT V ORGANIZATION AND USE OF PROJECT INFORMATION

9

Types of project information-Accuracy and Use of Information-Computerized organization and use of Information -Organizing information in databases-relational model of Data bases-Other conceptual Models of Databases-Centralized database Management systems-Databases and application programs-Information transfer and Flow.

OUTCOMES:

TOTAL: 45 PERIODS

 The student should be able to plan construction projects, schedule the activities using network diagrams, determine the cost of the project, control the cost of the project by creating cash flows and budgeting and to use the project information as decision making tool.

TEXTBOOKS:

- 1. Chitkara, K.K. "Construction Project Management Planning", Scheduling and Control, Tata McGraw Hill Publishing Co.. New Delhi, 2005
- 2. Srinath, L.S., "Pert and CPM Principles and Applications", Affiliated East West Press, 2001

REFERENCES:

- 1. Chris Hendrickson and Tung Au, "Project Management for Construction Fundamentals Concepts for Owners", Engineers, Architects and Builders, Prentice Hall, Pitsburgh, 2000.
- 2. Moder.J., Phillips. C. and Davis E, "Project Management with CPM", PERT and Precedence Diagramming, Van Nostrand Reinhold Co., 3rd Edition, 1985.
- 3. Willis., E.M., "Scheduling Construction projects", John Wiley and Sons, 1986.
- 4. Halpin, D.W., "Financial and Cost Concepts for Construction Management", John Wiley and Sons, New York, 1985.

CE6006

TRAFFIC ENGINEERING AND MANAGEMENT

LTPC 3 0 0 3

OBJECTIVES:

 To give an overview of Traffic engineering, traffic regulation, management and traffic safety with integrated approach in traffic planning as well.

UNIT I TRAFFIC PLANNING AND CHARACTERISTICS

9

Road Characteristics – Road user characteristics – PIEV theory – Vehicle – Performance characteristics – Fundamentals of Traffic Flow – Urban Traffic problems in India – Integrated planning of town ,country ,regional and all urban infrastructure – Towards Sustainable approach. – land use & transport and modal integration.

14.	Blains Apparatus	1
15.	Los - Angeles abrasion testing machine	1
16.	Marshall Stability Apparatus	1

CE6701 STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

 The main objective of the course is to introduce dynamic loading and the dynamic performance of the structures to the students. Different types of dynamic loading also to be discussed. The detailed study on the performance of structures under earthquake loading is also one of the focus of the course.

UNIT I THEORY OF VIBRATIONS

9

Difference between static loading and dynamic loading – Degree of freedom – idealisation of structure as single degree of freedom system – Formulation of Equations of motion of SDOF system - D'Alemberts principles – effect of damping – free and forced vibration of damped and undamped structures – Response to harmonic and periodic forces.

UNIT II MULTIPLE DEGREE OF FREEDOM SYSTEM

a

Two degree of freedom system – modes of vibrations – formulation of equations of motion of multi degree of freedom (MDOF) system - Eigen values and Eigen vectors – Response to free and forced vibrations - damped and undamped MDOF system – Modal superposition methods.

UNIT III ELEMENTS OF SEISMOLOGY

9

Elements of Engineering Seismology - Causes of Earthquake - Plate Tectonic theory - Elastic rebound Theory - Characteristic of earthquake - Estimation of earthquake parameters - Magnitude and intensity of earthquakes - Spectral Acceleration.

UNIT IV RESPONSE OF STRUCTURES TO EARTHQUAKE

g

Effect of earthquake on different type of structures — Behaviour of Reinforced Cement Concrete, Steel and Prestressed Concrete Structure under earthquake loading — Pinching effect — Bouchinger Effects — Evaluation of earthquake forces as per IS:1893 — 2002 - Response Spectra — Lessons learnt from past earthquakes.

UNIT V DESIGN METHODOLOGY

9

Causes of damage – Planning considerations / Architectural concepts as per IS:4326 – 1993 – Guidelines for Earthquake resistant design – Earthquake resistant design for masonry and Reinforced Cement Concrete buildings – Later load analysis – Design and detailing as per IS:13920 – 1993.

OUTCOMES:

TOTAL: 45 PERIODS

• At the end of the course, student will have the knowledge to analyse structures subjected to dynamic loading and to design the structures for seismic loading as per code provisions.

TEXTBOOKS:

- 1. Chopra, A.K., "Dynamics of Structures Theory and Applications to Earthquake Engineering", 4th Edition, Pearson Education, 2011.
- 2. Agarwal. P and Shrikhande. M., "Earthquake Resistant Design of Structures", Prentice Hall of India Pvt. Ltd. 2007

- 1. Biggs, J.M., "Introduction to Structural Dynamics", McGraw Hill Book Co., New York, 1964
- 2. Dowrick, D.J., "Earthquake Resistant Design", John Wiley & Sons, London, 2009
- 3. Paz, M. and Leigh.W. "Structural Dynamics Theory & Computation", 4th Edition, CBS Publishers & Distributors, Shahdara, Delhi, 2006.

14.	Blains Apparatus	1
15.	Los - Angeles abrasion testing machine	1
16.	Marshall Stability Apparatus	1

CE6701 STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

 The main objective of the course is to introduce dynamic loading and the dynamic performance of the structures to the students. Different types of dynamic loading also to be discussed. The detailed study on the performance of structures under earthquake loading is also one of the focus of the course.

UNIT I THEORY OF VIBRATIONS

9

Difference between static loading and dynamic loading – Degree of freedom – idealisation of structure as single degree of freedom system – Formulation of Equations of motion of SDOF system - D'Alemberts principles – effect of damping – free and forced vibration of damped and undamped structures – Response to harmonic and periodic forces.

UNIT II MULTIPLE DEGREE OF FREEDOM SYSTEM

9

Two degree of freedom system – modes of vibrations – formulation of equations of motion of multi degree of freedom (MDOF) system - Eigen values and Eigen vectors – Response to free and forced vibrations - damped and undamped MDOF system – Modal superposition methods.

UNIT III ELEMENTS OF SEISMOLOGY

9

Elements of Engineering Seismology - Causes of Earthquake - Plate Tectonic theory - Elastic rebound Theory - Characteristic of earthquake - Estimation of earthquake parameters - Magnitude and intensity of earthquakes - Spectral Acceleration.

UNIT IV RESPONSE OF STRUCTURES TO EARTHQUAKE

g

Effect of earthquake on different type of structures — Behaviour of Reinforced Cement Concrete, Steel and Prestressed Concrete Structure under earthquake loading — Pinching effect — Bouchinger Effects — Evaluation of earthquake forces as per IS:1893 — 2002 - Response Spectra — Lessons learnt from past earthquakes.

UNIT V DESIGN METHODOLOGY

9

Causes of damage – Planning considerations / Architectural concepts as per IS:4326 – 1993 – Guidelines for Earthquake resistant design – Earthquake resistant design for masonry and Reinforced Cement Concrete buildings – Later load analysis – Design and detailing as per IS:13920 – 1993.

OUTCOMES:

TOTAL: 45 PERIODS

• At the end of the course, student will have the knowledge to analyse structures subjected to dynamic loading and to design the structures for seismic loading as per code provisions.

TEXTBOOKS:

- 1. Chopra, A.K., "Dynamics of Structures Theory and Applications to Earthquake Engineering", 4th Edition, Pearson Education, 2011.
- 2. Agarwal. P and Shrikhande. M., "Earthquake Resistant Design of Structures", Prentice Hall of India Pvt. Ltd. 2007

- 1. Biggs, J.M., "Introduction to Structural Dynamics", McGraw Hill Book Co., New York, 1964
- 2. Dowrick, D.J., "Earthquake Resistant Design", John Wiley & Sons, London, 2009
- 3. Paz, M. and Leigh.W. "Structural Dynamics Theory & Computation", 4th Edition, CBS Publishers & Distributors, Shahdara, Delhi, 2006.

PRESTRESSED CONCRETE STRUCTURES

LTPC 3 0 0 3

OBJECTIVES:

• To introduce the need for prestressing as well as the methods, types and advantages of prestressing to the students. Students will be introduced to the design of prestressed concrete structures subjected to flexure and shear.

UNIT I INTRODUCTION – THEORY AND BEHAVIOUR

q

Basic concepts – Advantages – Materials required – Systems and methods of prestressing – Analysis of sections – Stress concept – Strength concept – Load balancing concept – Effect of loading on the tensile stresses in tendons – Effect of tendon profile on deflections – Factors influencing deflections – Calculation of deflections – Short term and long term deflections - Losses of prestress – Estimation of crack width.

UNIT II DESIGN FOR FLEXURE AND SHEAR

9

Basic assumptions for calculating flexural stresses — Permissible stresses in steel and concrete as per I.S.1343 Code — Design of sections of Type I and Type II post-tensioned and pre-tensioned beams — Check for strength limit based on I.S. 1343 Code — Layout of cables in post-tensioned beams — Location of wires in pre-tensioned beams — Design for shear based on I.S. 1343 Code.

UNIT III DEFLECTION AND DESIGN OF ANCHORAGE ZONE

9

Factors influencing deflections – Short term deflections of uncracked members – Prediction of long term deflections due to creep and shrinkage – Check for serviceability limit state of deflection. Determination of anchorage zone stresses in post-tensioned beams by Magnel's method, Guyon's method and IS1343 code – design of anchorage zone reinforcement – Check for transfer bond length in pre-tensioned beams.

UNIT IV COMPOSITE BEAMS AND CONTINUOUS BEAMS

9

Analysis and design of composite beams – Methods of achieving continuity in continuous beams – Analysis for secondary moments – Concordant cable and linear transformation – Calculation of stresses – Principles of design.

UNIT V MISCELLANEOUS STRUCTURES

9

Design of tension and compression members – Tanks, pipes and poles – Partial prestressing – Definition, methods of achieving partial prestressing, merits and demerits of partial prestressing.

TOTAL: 45 PERIODS

OUTCOMES:

• Student shall have a knowledge on methods of prestressing and able to design various prestressed concrete structural elements.

TEXTBOOKS:

- 1. Krishna Raju N., "Prestressed concrete", 5th Edition, Tata McGraw Hill Company, New Delhi, 2012
- 2. Pandit.G.S. and Gupta.S.P., "Prestressed Concrete", CBS Publishers and Distributers Pvt. Ltd, 2012.

- 1. Rajagopalan.N, "Prestressed Concrete", Narosa Publishing House, 2002.
- 2. Dayaratnam.P., "Prestressed Concrete Structures", Oxford and IBH, 2013
- 3. Lin T.Y. and Ned.H.Burns, "Design of prestressed Concrete Structures", Third Edition, Wiley India Pvt. Ltd., New Delhi, 2013.
- 4. IS1343:1980, Code of Practice for Prestressed Concrete, Bureau of Indian Standards, New Delhi, 2012

PRESTRESSED CONCRETE STRUCTURES

LTPC 3 0 0 3

OBJECTIVES:

• To introduce the need for prestressing as well as the methods, types and advantages of prestressing to the students. Students will be introduced to the design of prestressed concrete structures subjected to flexure and shear.

UNIT I INTRODUCTION – THEORY AND BEHAVIOUR

q

Basic concepts – Advantages – Materials required – Systems and methods of prestressing – Analysis of sections – Stress concept – Strength concept – Load balancing concept – Effect of loading on the tensile stresses in tendons – Effect of tendon profile on deflections – Factors influencing deflections – Calculation of deflections – Short term and long term deflections - Losses of prestress – Estimation of crack width.

UNIT II DESIGN FOR FLEXURE AND SHEAR

9

Basic assumptions for calculating flexural stresses — Permissible stresses in steel and concrete as per I.S.1343 Code — Design of sections of Type I and Type II post-tensioned and pre-tensioned beams — Check for strength limit based on I.S. 1343 Code — Layout of cables in post-tensioned beams — Location of wires in pre-tensioned beams — Design for shear based on I.S. 1343 Code.

UNIT III DEFLECTION AND DESIGN OF ANCHORAGE ZONE

9

Factors influencing deflections – Short term deflections of uncracked members – Prediction of long term deflections due to creep and shrinkage – Check for serviceability limit state of deflection. Determination of anchorage zone stresses in post-tensioned beams by Magnel's method, Guyon's method and IS1343 code – design of anchorage zone reinforcement – Check for transfer bond length in pre-tensioned beams.

UNIT IV COMPOSITE BEAMS AND CONTINUOUS BEAMS

9

Analysis and design of composite beams – Methods of achieving continuity in continuous beams – Analysis for secondary moments – Concordant cable and linear transformation – Calculation of stresses – Principles of design.

UNIT V MISCELLANEOUS STRUCTURES

9

Design of tension and compression members – Tanks, pipes and poles – Partial prestressing – Definition, methods of achieving partial prestressing, merits and demerits of partial prestressing.

TOTAL: 45 PERIODS

OUTCOMES:

• Student shall have a knowledge on methods of prestressing and able to design various prestressed concrete structural elements.

TEXTBOOKS:

- 1. Krishna Raju N., "Prestressed concrete", 5th Edition, Tata McGraw Hill Company, New Delhi, 2012
- 2. Pandit.G.S. and Gupta.S.P., "Prestressed Concrete", CBS Publishers and Distributers Pvt. Ltd, 2012.

- 1. Rajagopalan.N, "Prestressed Concrete", Narosa Publishing House, 2002.
- 2. Dayaratnam.P., "Prestressed Concrete Structures", Oxford and IBH, 2013
- 3. Lin T.Y. and Ned.H.Burns, "Design of prestressed Concrete Structures", Third Edition, Wiley India Pvt. Ltd., New Delhi, 2013.
- 4. IS1343:1980, Code of Practice for Prestressed Concrete, Bureau of Indian Standards, New Delhi, 2012

 The student is exposed to different phases in Water Resources Management and National Water Policy. Further they will be imparted required knowledge on Reservoir planning, management and economic analysis including Irrigation and Irrigation management practices.

UNIT I WATER RESOURCES

9

Water resources survey – Water resources of India and Tamilnadu – Description of water resources planning – Estimation of water requirements for irrigation and drinking- Single and multipurpose reservoir – Multi objective - Fixation of Storage capacity -Strategies for reservoir operation - Design flood-levees and flood walls.

UNIT II WATER RESOURCE MANAGEMENT

9

Economics of water resources planning; – National Water Policy – Consumptive and non-consumptive water use - Water quality – Scope and aims of master plan - Concept of basin as a unit for development - Water budget- Conjunctive use of surface and ground water

UNIT III IRRIGATION ENGINEERING

9

Need – Merits and Demerits – Duty, Delta and Base period – Irrigation efficiencies – Crops and Seasons - Crop water Requirement – Estimation of Consumptive use of water.

UNIT IV CANAL IRRIGATION

9

Types of Impounding structures: Gravity dam – Diversion Head works - Canal drop – Cross drainage works – Canal regulations – Canal outlets – Canal lining - Kennady's and Lacey's Regime theory

UNIT V IRRIGATION METHODS AND MANAGEMENT

Q

Lift irrigation – Tank irrigation – Well irrigation – Irrigation methods: Surface and Sub-Surface and Micro Irrigation - Merits and demerits – Irrigation scheduling – Water distribution – Participatory irrigation management with a case study

TOTAL:45 PERIODS

OUT COMES:

- The students will have knowledge and skills on Planning, design, operation and management of reservoir system.
- The student will gain knowledge on different methods of irrigation including canal irrigation.

TEXTBOOKS:

- 1. Linsley R.K. and Franzini J.B, "Water Resources Engineering", McGraw-Hill Inc, 2000.
- 2. Punmia B.C., et. al; Irrigation and water power Engineering, Laxmi Publications, 16th Edition, New Delhi, 2009
- 3. Garg S. K., "Irrigation Engineering and Hydraulic structures", Khanna Publishers, 23rd Revised Edition, New Delhi, 2009

- 1. Duggal, K.N. and Soni, J.P., "Elements of Water Resources Engineering", New Age International Publishers, 2005
- 2. Chaturvedi M.C., "Water Resources Systems Planning and Management", Tata McGraw-Hill Inc., New Delhi, 1997.
- 3. Michael A.M., Irrigation Theory and Practice, 2nd Edition, Vikas Publishing House Pvt. Ltd., Noida, Up, 2008
- 4. Dilip Kumar Majumdar, "Irrigation Water Management", Prentice-Hall of India, New Delhi, 2008.
- 5. Asawa, G.L., "Irrigation Engineering", New Age International Publishers, New Delhi, 2000.

 The student is exposed to different phases in Water Resources Management and National Water Policy. Further they will be imparted required knowledge on Reservoir planning, management and economic analysis including Irrigation and Irrigation management practices.

UNIT I WATER RESOURCES

9

Water resources survey – Water resources of India and Tamilnadu – Description of water resources planning – Estimation of water requirements for irrigation and drinking- Single and multipurpose reservoir – Multi objective - Fixation of Storage capacity -Strategies for reservoir operation - Design flood-levees and flood walls.

UNIT II WATER RESOURCE MANAGEMENT

9

Economics of water resources planning; – National Water Policy – Consumptive and non-consumptive water use - Water quality – Scope and aims of master plan - Concept of basin as a unit for development - Water budget- Conjunctive use of surface and ground water

UNIT III IRRIGATION ENGINEERING

9

Need – Merits and Demerits – Duty, Delta and Base period – Irrigation efficiencies – Crops and Seasons - Crop water Requirement – Estimation of Consumptive use of water.

UNIT IV CANAL IRRIGATION

9

Types of Impounding structures: Gravity dam – Diversion Head works - Canal drop – Cross drainage works – Canal regulations – Canal outlets – Canal lining - Kennady's and Lacey's Regime theory

UNIT V IRRIGATION METHODS AND MANAGEMENT

Q

Lift irrigation – Tank irrigation – Well irrigation – Irrigation methods: Surface and Sub-Surface and Micro Irrigation - Merits and demerits – Irrigation scheduling – Water distribution – Participatory irrigation management with a case study

TOTAL:45 PERIODS

OUT COMES:

- The students will have knowledge and skills on Planning, design, operation and management of reservoir system.
- The student will gain knowledge on different methods of irrigation including canal irrigation.

TEXTBOOKS:

- 1. Linsley R.K. and Franzini J.B, "Water Resources Engineering", McGraw-Hill Inc, 2000.
- 2. Punmia B.C., et. al; Irrigation and water power Engineering, Laxmi Publications, 16th Edition, New Delhi, 2009
- 3. Garg S. K., "Irrigation Engineering and Hydraulic structures", Khanna Publishers, 23rd Revised Edition, New Delhi, 2009

- 1. Duggal, K.N. and Soni, J.P., "Elements of Water Resources Engineering", New Age International Publishers, 2005
- 2. Chaturvedi M.C., "Water Resources Systems Planning and Management", Tata McGraw-Hill Inc., New Delhi, 1997.
- 3. Michael A.M., Irrigation Theory and Practice, 2nd Edition, Vikas Publishing House Pvt. Ltd., Noida, Up, 2008
- 4. Dilip Kumar Majumdar, "Irrigation Water Management", Prentice-Hall of India, New Delhi, 2008.
- 5. Asawa, G.L., "Irrigation Engineering", New Age International Publishers, New Delhi, 2000.

ESTIMATION AND QUANTITY SURVEYING

LTPC 3003

OBJECTIVES:

 To provide the student with the ability to estimate the quantities of item of works involved in buildings, water supply and sanitary works, road works and irrigation works, and also to equip the student with the ability to do rate analysis, valuation of properties and preparation of reports for estimation of various items.

UNIT I ESTIMATE OF BUILDINGS

11

Load bearing and framed structures – Calculation of quantities of brick work, RCC, PCC, Plastering, white washing, colour washing and painting / varnishing for shops, rooms, residential building with flat and pitched roof – Various types of arches – Calculation of brick work and RCC works in arches – Estimate of joineries for panelled and glazed doors, windows, ventilators, handrails etc.

UNIT II ESTIMATE OF OTHER STRUCTURES

10

Estimating of septic tank, soak pit – sanitary and water supply installations – water supply pipe line – sewer line – tube well – open well – estimate of bituminous and cement concrete roads – estimate of retaining walls – culverts – estimating of irrigation works – aqueduct, syphon, fall.

UNIT III SPECIFICATION AND TENDERS

8

Data – Schedule of rates – Analysis of rates – Specifications – sources – Preparation of detailed and general specifications – Tenders – TTT Act – e-tender – Preparation of Tender Notice and Document – Contracts – Types of contracts – Drafting of contract documents – Arbitration and legal requirements.

UNIT IV VALUATION

8

Necessity – Basics of value engineering – Capitalised value – Depreciation – Escalation – Value of building – Calculation of Standard rent – Mortgage – Lease

UNIT V REPORT PREPARATION

8

Principles for report preparation – report on estimate of residential building – Culvert – Roads – Water supply and sanitary installations – Tube wells – Open wells.

TOTAL: 45 PERIODS

OUTCOMES:

 The student shall be able to estimate the material quantities, prepare a bill of quantities, make specifications and prepare tender documents. Student shall be able to prepare value estimates.

TEXTBOOKS:

- 1. Dutta, B.N., "Estimating and Costing in Civil Engineering", UBS Publishers & Distributors Pvt. Ltd., 2003
- 2. Kohli, D.D and Kohli, R.C., "A Text Book of Estimating and Costing (Civil)", S.Chand & Company Ltd., 2004

- 1. PWD Data Book.
- 2. Tamilnadu Transparencies in Tender Act, 1998
- 3. Arbitration and Conciliation Act. 1996
- 4. Standard Bid Evaluation Form, Procurement of Goods or Works, The World Bank, April 1996.

UNIT II SCHEDULING PROCEDURES AND TECHNIQUES

12

Relevance of construction schedules-Bar charts - The critical path method-Calculations for critical path scheduling-Activity float and schedules-Presenting project schedules-Critical path scheduling for Activity-on-node and with leads, Lags and Windows-Calculations for scheduling with leads, lags and windows-Resource oriented scheduling-Scheduling with resource constraints and precedences -Use of Advanced Scheduling Techniques-Scheduling with uncertain durations-Crashing and time/cost trade offs -Improving the Scheduling process - Introduction to application software.

UNIT III COST CONTROL MONITORING AND ACCOUNTING

a

The cost control problem-The project Budget-Forecasting for Activity cost control - financial accounting systems and cost accounts-Control of project cash flows-Schedule control-Schedule and Budget updates-Relating cost and schedule information.

UNIT IV QUALITY CONTROL AND SAFETY DURING CONSTRUCTION

9

Quality and safety Concerns in Construction-Organizing for Quality and Safety-Work and Material Specifications-Total Quality control-Quality control by statistical methods -Statistical Quality control with Sampling by Attributes-Statistical Quality control by Sampling and Variables-Safety.

UNIT V ORGANIZATION AND USE OF PROJECT INFORMATION

9

Types of project information-Accuracy and Use of Information-Computerized organization and use of Information -Organizing information in databases-relational model of Data bases-Other conceptual Models of Databases-Centralized database Management systems-Databases and application programs-Information transfer and Flow.

OUTCOMES:

TOTAL: 45 PERIODS

 The student should be able to plan construction projects, schedule the activities using network diagrams, determine the cost of the project, control the cost of the project by creating cash flows and budgeting and to use the project information as decision making tool.

TEXTBOOKS:

- 1. Chitkara, K.K. "Construction Project Management Planning", Scheduling and Control, Tata McGraw Hill Publishing Co.. New Delhi, 2005
- 2. Srinath, L.S., "Pert and CPM Principles and Applications", Affiliated East West Press, 2001

REFERENCES:

- 1. Chris Hendrickson and Tung Au, "Project Management for Construction Fundamentals Concepts for Owners", Engineers, Architects and Builders, Prentice Hall, Pitsburgh, 2000.
- 2. Moder.J., Phillips. C. and Davis E, "Project Management with CPM", PERT and Precedence Diagramming, Van Nostrand Reinhold Co., 3rd Edition, 1985.
- 3. Willis., E.M., "Scheduling Construction projects", John Wiley and Sons, 1986.
- 4. Halpin, D.W., "Financial and Cost Concepts for Construction Management", John Wiley and Sons, New York, 1985.

CE6006

TRAFFIC ENGINEERING AND MANAGEMENT

LTPC 3 0 0 3

OBJECTIVES:

 To give an overview of Traffic engineering, traffic regulation, management and traffic safety with integrated approach in traffic planning as well.

UNIT I TRAFFIC PLANNING AND CHARACTERISTICS

9

Road Characteristics – Road user characteristics – PIEV theory – Vehicle – Performance characteristics – Fundamentals of Traffic Flow – Urban Traffic problems in India – Integrated planning of town ,country ,regional and all urban infrastructure – Towards Sustainable approach. – land use & transport and modal integration.

UNIT II TRAFFIC SURVEYS

10

Traffic Surveys – Speed, journey time and delay surveys – Vehicles_ Volume Survey including non-motorized transports – Methods and interpretation – Origin Destination Survey – Methods and presentation – Parking Survey – Accident analyses -Methods, interpretation and presentation – Statistical applications in traffic studies and traffic forecasting – Level of service – Concept, applications and significance.

UNIT III TRAFFIC DESIGN AND VISUAL AIDS

10

Intersection Design - channelization, Rotary intersection design - Signal design - Coordination of signals — Grade separation - Traffic signs including VMS and road markings - Significant roles of traffic control personnel - Networking pedestrian facilities & cycle tracks.

UNIT IV TRAFFIC SAFETY AND ENVIRONMENT

8

Road accidents – Causes, effect, prevention, and cost – Street lighting – Traffic and environment hazards – Air and Noise Pollution, causes, abatement measures – Promotion and integration of public transportation – Promotion of non-motorized transport.

UNIT V TRAFFIC MANAGEMENT

8

TOTAL: 45 PERIODS

Area Traffic Management System - Traffic System Management (TSM) with IRC standards — Traffic Regulatory Measures-Travel Demand Management (TDM) — Direct and indirect methods — Congestion and parking pricing — All segregation methods- Coordination among different agencies — Intelligent Transport System for traffic management, enforcement and education.

OUTCOMES:

On completing this course, the Students will be able to

- Analyse traffic problems and plan for traffic systems various uses
- Design Channels, Intersections, signals and parking arrangements
- Develop Traffic management Systems

TEXTBOOKS:

- 1. Kadiyali.L.R. "Traffic Engineering and Transport Planning", Khanna Publishers, Delhi, 2013
- 2. Indian Roads Congress (IRC) Specifications: Guidelines and Special Publications on Traffic Planning and Management.
- 3. Salter. R.I and Hounsell N.B, "Highway Traffic Analysis and design", Macmillan Press Ltd.1996.

- 1. Fred L. Mannering, Scott S. Washburn and Walter P.Kilareski, Principles of Highway Engineering and Traffic Analysis, Wiley India Pvt. Ltd., New Delhi, 2011
- 2. Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning, New Delhi, 2010
- 3. SP:43-1994, IRC Specification, "Guidelines on Low-cost Traffic Management Techniques" for Urban Areas, 1994
- 4. John E Tyworth, "Traffic Management Planning, Operations and control", Addison Wesly Publishing Company, 1996
- 5. Hobbs.F.D. "Traffic Planning and Engineering", University of Brimingham, Peragamon Press Ltd. 2005
- 6. Taylor MAP and Young W, "Traffic Analysis New Technology and New Solutions", Hargreen Publishing Company, 1998.

UNIT II TRAFFIC SURVEYS

10

Traffic Surveys – Speed, journey time and delay surveys – Vehicles_ Volume Survey including non-motorized transports – Methods and interpretation – Origin Destination Survey – Methods and presentation – Parking Survey – Accident analyses -Methods, interpretation and presentation – Statistical applications in traffic studies and traffic forecasting – Level of service – Concept, applications and significance.

UNIT III TRAFFIC DESIGN AND VISUAL AIDS

10

Intersection Design - channelization, Rotary intersection design - Signal design - Coordination of signals — Grade separation - Traffic signs including VMS and road markings - Significant roles of traffic control personnel - Networking pedestrian facilities & cycle tracks.

UNIT IV TRAFFIC SAFETY AND ENVIRONMENT

8

Road accidents – Causes, effect, prevention, and cost – Street lighting – Traffic and environment hazards – Air and Noise Pollution, causes, abatement measures – Promotion and integration of public transportation – Promotion of non-motorized transport.

UNIT V TRAFFIC MANAGEMENT

8

TOTAL: 45 PERIODS

Area Traffic Management System - Traffic System Management (TSM) with IRC standards — Traffic Regulatory Measures-Travel Demand Management (TDM) — Direct and indirect methods — Congestion and parking pricing — All segregation methods- Coordination among different agencies — Intelligent Transport System for traffic management, enforcement and education.

OUTCOMES:

On completing this course, the Students will be able to

- Analyse traffic problems and plan for traffic systems various uses
- Design Channels, Intersections, signals and parking arrangements
- Develop Traffic management Systems

TEXTBOOKS:

- 1. Kadiyali.L.R. "Traffic Engineering and Transport Planning", Khanna Publishers, Delhi, 2013
- 2. Indian Roads Congress (IRC) Specifications: Guidelines and Special Publications on Traffic Planning and Management.
- 3. Salter. R.I and Hounsell N.B, "Highway Traffic Analysis and design", Macmillan Press Ltd.1996.

- 1. Fred L. Mannering, Scott S. Washburn and Walter P.Kilareski, Principles of Highway Engineering and Traffic Analysis, Wiley India Pvt. Ltd., New Delhi, 2011
- 2. Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning, New Delhi, 2010
- 3. SP:43-1994, IRC Specification, "Guidelines on Low-cost Traffic Management Techniques" for Urban Areas, 1994
- 4. John E Tyworth, "Traffic Management Planning, Operations and control", Addison Wesly Publishing Company, 1996
- 5. Hobbs.F.D. "Traffic Planning and Engineering", University of Brimingham, Peragamon Press Ltd. 2005
- 6. Taylor MAP and Young W, "Traffic Analysis New Technology and New Solutions", Hargreen Publishing Company, 1998.

• The objective of the course is to train the students to have a comprehensive knowledge of planning, design, evaluation, construction and financing of housing projects. The course focuses on cost effective construction materials and methods. Emphasis is given on the principles of sustainable housing policies and programmes.

UNIT I INTRODUCTION TO HOUSING

10

Definition of Basic Terms – House, Home, Household, Apartments, Multi storied Buildings, Special Buildings, Objectives and Strategies of National Housing Policies including Slum Housing Policy, Principle of Sustainable Housing – Integrated approach on arriving holding capacity and density norms - All basic infrastructure consideration - Institutions for Housing at National, State and Local levels.

UNIT II HOUSING PROGRAMMES

10

Basic Concepts, Contents and Standards for Housing Programmes - Sites and Services, Neighborhoods- Plotted land development programs, Open Development Plots, Apartments, Gated communities, Townships, Rental Housing, Co-operative Housing, Slum Housing Programmes - Slum improvement - Slum redevelopment and Relocation - Use of GIS and MIS in Slum Housing Projects,, Role of Public housing agencies, and Private sector in supply, quality, infrastructure and pricing - Role of Non-Government Organizations in slum housing.

UNIT III PLANNING AND DESIGN OF HOUSING PROJECTS

9

Formulation of Housing Projects – Land Use and Soil suitability analysis -Building Byelaws and Rules and Development Control Regulations - Site Analysis, Layout Design, Design of Housing Units (Design Problems) – Housing Project Formulation.

UNIT IV CONSTRUCTION TECHNIQUES AND COST-EFFECTIVE MATERIALS

- 8

New Constructions Techniques – Cost Effective Modern Materials and methods of Construction-Green building concept- Building Centers – Concept, Functions and Performance Evaluation.

UNIT V HOUSING FINANCE AND PROJECT APPRAISAL

8

Evaluation of Housing Projects for sustainable principles – Housing Finance, Cost Recovery – Cash Flow Analysis, Subsidy and Cross Subsidy- Public Private Partnership Projects – Viability Gap Funding - Pricing of Housing Units (Problems).

OUTCOMES:

TOTAL: 45 PERIODS

 The students should have a comprehensive knowledge of planning, design, evaluation, construction and financing of housing projects.

TEXTBOOKS:

- 1. Meera Mehta and Dinesh Mehta, "Metropolitan Housing Markets", Sage Publications Pvt. Ltd., New Delhi, 1999.
- 2. Francis Cherunilam and Odeyar D Heggade, "Housing in India", Himalaya Publishing House, Bombay, 1997.

- 1. Wiley- Blackwell, "Neufert Architects" Data, 4th Edition, Blackwell Publishing Ltd, 2012
- 2. Donald Watson and Michael J.Crosbie, "Time Saver Standards for Architectural Design", 8th Edition, Tata McGraw Hill Edition, 2011
- 3. Walter Martin Hosack, "Land Development Calculations", McGraw Hill 2nd Edition, USA 2010
- 4. Development Control Rules for Chennai Metropolitan Area, CMA, Chennai, 2004.
- 5. UNCHS, National Experiences with Shelter Delivery for the Poorest Groups, UNCHS Habitat, Nairobi, 1994
- 6. Government of India, National Housing Policy, 1994

• The objective of the course is to train the students to have a comprehensive knowledge of planning, design, evaluation, construction and financing of housing projects. The course focuses on cost effective construction materials and methods. Emphasis is given on the principles of sustainable housing policies and programmes.

UNIT I INTRODUCTION TO HOUSING

10

Definition of Basic Terms – House, Home, Household, Apartments, Multi storied Buildings, Special Buildings, Objectives and Strategies of National Housing Policies including Slum Housing Policy, Principle of Sustainable Housing – Integrated approach on arriving holding capacity and density norms - All basic infrastructure consideration - Institutions for Housing at National, State and Local levels.

UNIT II HOUSING PROGRAMMES

10

Basic Concepts, Contents and Standards for Housing Programmes - Sites and Services, Neighborhoods- Plotted land development programs, Open Development Plots, Apartments, Gated communities, Townships, Rental Housing, Co-operative Housing, Slum Housing Programmes - Slum improvement - Slum redevelopment and Relocation - Use of GIS and MIS in Slum Housing Projects,, Role of Public housing agencies, and Private sector in supply, quality, infrastructure and pricing - Role of Non-Government Organizations in slum housing.

UNIT III PLANNING AND DESIGN OF HOUSING PROJECTS

9

Formulation of Housing Projects – Land Use and Soil suitability analysis -Building Byelaws and Rules and Development Control Regulations - Site Analysis, Layout Design, Design of Housing Units (Design Problems) – Housing Project Formulation.

UNIT IV CONSTRUCTION TECHNIQUES AND COST-EFFECTIVE MATERIALS

- 8

New Constructions Techniques – Cost Effective Modern Materials and methods of Construction-Green building concept- Building Centers – Concept, Functions and Performance Evaluation.

UNIT V HOUSING FINANCE AND PROJECT APPRAISAL

8

Evaluation of Housing Projects for sustainable principles – Housing Finance, Cost Recovery – Cash Flow Analysis, Subsidy and Cross Subsidy- Public Private Partnership Projects – Viability Gap Funding - Pricing of Housing Units (Problems).

OUTCOMES:

TOTAL: 45 PERIODS

 The students should have a comprehensive knowledge of planning, design, evaluation, construction and financing of housing projects.

TEXTBOOKS:

- 1. Meera Mehta and Dinesh Mehta, "Metropolitan Housing Markets", Sage Publications Pvt. Ltd., New Delhi, 1999.
- 2. Francis Cherunilam and Odeyar D Heggade, "Housing in India", Himalaya Publishing House, Bombay, 1997.

- 1. Wiley- Blackwell, "Neufert Architects" Data, 4th Edition, Blackwell Publishing Ltd, 2012
- 2. Donald Watson and Michael J.Crosbie, "Time Saver Standards for Architectural Design", 8th Edition, Tata McGraw Hill Edition, 2011
- 3. Walter Martin Hosack, "Land Development Calculations", McGraw Hill 2nd Edition, USA 2010
- 4. Development Control Rules for Chennai Metropolitan Area, CMA, Chennai, 2004.
- 5. UNCHS, National Experiences with Shelter Delivery for the Poorest Groups, UNCHS Habitat, Nairobi, 1994
- 6. Government of India, National Housing Policy, 1994

GROUNDWATER ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

- To introduce the student to the principles of Groundwater governing Equations and Characteristics of different aquifers,
- To understand the techniques of development and management of groundwater.

UNIT I HYDROGEOLOGICAL PARAMETERS

9

Introduction – Water bearing Properties of Rock – Type of aquifers - Aquifer properties – permeability, specific yield, transmissivity and storage coefficient – Methods of Estimation–Ground water table fluctuation and its interpretations – Groundwater development and Potential in India – GEC norms.

UNIT II WELL HYDRAULICS

9

Objectives of Groundwater hydraulics – Darcy's Law - Groundwater equation – steady state flow - Dupuit Forchheimer assumption - Unsteady state flow - Theis method - Jacob method -Slug tests - Image well theory – Partial penetrations of wells.

UNIT III GROUNDWATER MANAGEMENT

9

Need for Management Model – Database for groundwater management –groundwater balance study – Introduction to Mathematical model – Conjunctive use – Collector well and Infiltration gallery.

UNIT IV GROUNDWATER QUALITY

9

Ground water chemistry - Origin, movement and quality - Water quality standards - Health and aesthetic aspects of water quality - Saline intrusion - Environmental concern and Regulatory requirements

UNIT V GROUNDWATER CONSERVATION

q

Artificial recharge techniques – Remediation of Saline intrusion– Ground water management studies – Protection zone delineation, Contamination source inventory, remediation schemes - Ground water Pollution and legislation.

TOTAL: 45 PERIODS

OUTCOMES:

- Students will be able to understand aquifer properties and its dynamics after the completion of the course. It gives an exposure towards well design and practical problems of groundwater aquifers.
- Students will be able to understand the importance of artificial recharge and groundwater quality concepts.

TEXTBOOKS:

- 1. Raghunath H.M., "Ground Water Hydrology", New Age International (P) Limited, New Delhi 2010
- 2. Todd D.K., "Ground Water Hydrology", John Wiley and Sons, New York, 2000.

- 1. Fitts R Charles, "Groundwater Science". Elsevier, Academic Press, 2002.
- 2. Ramakrishnan, S, Ground Water, K.J. Graph arts, Chennai, 1998.

GROUNDWATER ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

- To introduce the student to the principles of Groundwater governing Equations and Characteristics of different aquifers,
- To understand the techniques of development and management of groundwater.

UNIT I HYDROGEOLOGICAL PARAMETERS

9

Introduction – Water bearing Properties of Rock – Type of aquifers - Aquifer properties – permeability, specific yield, transmissivity and storage coefficient – Methods of Estimation–Ground water table fluctuation and its interpretations – Groundwater development and Potential in India – GEC norms.

UNIT II WELL HYDRAULICS

9

Objectives of Groundwater hydraulics – Darcy's Law - Groundwater equation – steady state flow - Dupuit Forchheimer assumption - Unsteady state flow - Theis method - Jacob method -Slug tests - Image well theory – Partial penetrations of wells.

UNIT III GROUNDWATER MANAGEMENT

9

Need for Management Model – Database for groundwater management –groundwater balance study – Introduction to Mathematical model – Conjunctive use – Collector well and Infiltration gallery.

UNIT IV GROUNDWATER QUALITY

9

Ground water chemistry - Origin, movement and quality - Water quality standards - Health and aesthetic aspects of water quality - Saline intrusion - Environmental concern and Regulatory requirements

UNIT V GROUNDWATER CONSERVATION

q

Artificial recharge techniques – Remediation of Saline intrusion– Ground water management studies – Protection zone delineation, Contamination source inventory, remediation schemes - Ground water Pollution and legislation.

TOTAL: 45 PERIODS

OUTCOMES:

- Students will be able to understand aquifer properties and its dynamics after the completion of the course. It gives an exposure towards well design and practical problems of groundwater aquifers.
- Students will be able to understand the importance of artificial recharge and groundwater quality concepts.

TEXTBOOKS:

- 1. Raghunath H.M., "Ground Water Hydrology", New Age International (P) Limited, New Delhi 2010
- 2. Todd D.K., "Ground Water Hydrology", John Wiley and Sons, New York, 2000.

- 1. Fitts R Charles, "Groundwater Science". Elsevier, Academic Press, 2002.
- 2. Ramakrishnan, S, Ground Water, K.J. Graph arts, Chennai, 1998.

WATER RESOURCES SYSTEMS ANALYSIS

LTPC 3 0 0 3

OBJECTIVES:

- To introduce the student to the concept of Mathematical approaches for managing the water resources system.
- To make the students apply an appropriate system approach to optimally operate a water resource system.

UNIT I SYSTEM APPROACH

7

Philosophy of modelling – Goals and Objectives – Basics of system analysis concept – scopes and steps in systems engineering.

UNIT II PHYSICAL AND SOCIO - ECONOMIC DATA

6

Collection, evaluation and processing – project appraisal – public involvement, master Comprehensive and integrated planning of water resources project.

UNIT III LINEAR PROGRAMMING

10

Operation research - introduction - Problem Formulation-graphical solution- Simplex method - Sensitivity analysis - simple applications

UNIT IV DYNAMIC PROGRAMMING

11

Optimality criteria Stage coach problem – Bellman's optimality criteria Problem formulation and Solution - simple applications

UNIT V SIMULATION

1

Basic principles – Methodology and Philosophy – Model development – input and outputs – Deterministic simulation - simple applications

TOTAL: 45 PERIODS

OUTCOMES:

- The students will be exposed to the economical aspects and analysis of water resources systems by which they will get an idea of comprehensive and integrated planning of a water resources project.
- The students will develop skills in solving problems in operations research through LP, DP and Simulation techniques.

TEXTBOOK:

1. Vedula, S., and Majumdar, P.P. "Water Resources Systems" – Modeling Techniques and Analysis Tata McGraw Hill, 5th reprint, New Delhi, 2010.

- 1. Hall Warren, A. and John A. Dracup., "Water Resources System Engineering", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1998
- 2. Chadurvedi M.C., "Water resource Systems Planning and Management", Tata McGraw Hill inc., New Delhi, 1997
- 3. Taha H.A., "Operation Research", McMillan Publication Co., New York, 1995.
- 4. Maass A., Husfchimidt M.M., ,Dorfman R., ThomasH A., Marglin S.A and Fair G. M., "Design of Water Resources System", Hardward University Press, Cambridge, Mass.,1995.
- 5. Goodman Aluvin S., "Principles of Water Resources Planning", Prentice Hall of India, 1984

WATER RESOURCES SYSTEMS ANALYSIS

LTPC 3 0 0 3

OBJECTIVES:

- To introduce the student to the concept of Mathematical approaches for managing the water resources system.
- To make the students apply an appropriate system approach to optimally operate a water resource system.

UNIT I SYSTEM APPROACH

7

Philosophy of modelling – Goals and Objectives – Basics of system analysis concept – scopes and steps in systems engineering.

UNIT II PHYSICAL AND SOCIO - ECONOMIC DATA

6

Collection, evaluation and processing – project appraisal – public involvement, master Comprehensive and integrated planning of water resources project.

UNIT III LINEAR PROGRAMMING

10

Operation research - introduction - Problem Formulation-graphical solution- Simplex method - Sensitivity analysis - simple applications

UNIT IV DYNAMIC PROGRAMMING

11

Optimality criteria Stage coach problem – Bellman's optimality criteria Problem formulation and Solution - simple applications

UNIT V SIMULATION

1

Basic principles – Methodology and Philosophy – Model development – input and outputs – Deterministic simulation - simple applications

TOTAL: 45 PERIODS

OUTCOMES:

- The students will be exposed to the economical aspects and analysis of water resources systems by which they will get an idea of comprehensive and integrated planning of a water resources project.
- The students will develop skills in solving problems in operations research through LP, DP and Simulation techniques.

TEXTBOOK:

1. Vedula, S., and Majumdar, P.P. "Water Resources Systems" – Modeling Techniques and Analysis Tata McGraw Hill, 5th reprint, New Delhi, 2010.

- 1. Hall Warren, A. and John A. Dracup., "Water Resources System Engineering", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1998
- 2. Chadurvedi M.C., "Water resource Systems Planning and Management", Tata McGraw Hill inc., New Delhi, 1997
- 3. Taha H.A., "Operation Research", McMillan Publication Co., New York, 1995.
- 4. Maass A., Husfchimidt M.M., ,Dorfman R., ThomasH A., Marglin S.A and Fair G. M., "Design of Water Resources System", Hardward University Press, Cambridge, Mass.,1995.
- 5. Goodman Aluvin S., "Principles of Water Resources Planning", Prentice Hall of India, 1984

PAVEMENT ENGINEERING

LT P C 3 0 0 3

OBJECTIVES:

 Student gains knowledge on various IRC guidelines for designing rigid and flexible pavements. Further, he/she will be in a position to assess quality and serviceability conditions of roads.

UNIT I TYPE OF PAVEMENT AND STRESS DISTRIBUTION ON LAYERED SYSTEM 8
Introduction – Pavement as layered structure – Pavement types rigid and flexible. Resilient modulus - Stress and deflections in pavements under repeated loading.

UNIT II DESIGN OF FLEXIBLE PAVEMENTS

10

Flexible pavement design factors influencing design of flexible pavement, Empirical - Semi empirical and theoretical methods – Design procedure as per IRC guidelines – Design and specification of rural roads.

UNIT III DESIGN OF RIGID PAVEMENTS

9

Cement concrete pavements factors influencing CC pavements – Modified Westergaard approach – Design procedure as per IRC guidelines – Concrete roads and their scope in India.

UNIT IV PERFORMANCE EVALUATION AND MAINTENANCE

10

Pavement Evaluation - causes of distress in rigid and flexible pavements – Evaluation based on Surface Appearance, Cracks, Patches and Pot Holes, Undulations, Raveling, Roughness, Skid Resistance. Structural Evaluation by Deflection Measurements - Pavement Serviceability index. - Pavement maintenance (IRC Recommendations only).

UNIT V STABILIZATION OF PAVEMENTS

8

Stabilisation with special reference book to highway pavements – Choice of stabilizers – Testing and field control Stabilisation for rural roads in India – use of Geosynthetics in roads.

TOTAL: 45 PERIODS

OUTCOMES:

 Students will have adequate knowledge to design flexible and rigid pavements based on IRC guidelines. Further they know various techniques to evaluate performance of pavements.

TEXTBOOKS:

- 1. Wright P.H. "Highway Engineers", John Wiley and Sons, Inc., New York, 1996.
- 2. Khanna, S.K., Justo C.E.G. and Veeraragavan. A., "Highway Engineering", Nem Chand and Brothers, 10th Edition, Roorkee, 2014.
- 3. Kadiyali, L.R. 'Principles and Practice of Highway Engineering", Khanna tech.Publications, New Delhi, 1989.

REFERENCES:

- 1. Yoder, R.J. and Witchak M.W. "Principles of Pavement Design", John Wiley 2000.
- 2. IRC-37-001, The Indian roads Congress, Guidelines for the Design of Flexible Pavements, New Delhi, 2001
- 3. IRC 58-1998. The Indian Road Congress, Guideline for the Design of Rigid Pavements for Highways, New Delhi, 1991
- 4. Rajib B.Mallick, Tahar El-Korchi, "Pavement Engineering: Principles and Practice, 2nd Edition, CRC Press, 2013.

EN6801

ENVIRONMENTAL IMPACT ASSESSMENT

LTPC 3003

OBJECTIVES:

PAVEMENT ENGINEERING

LT P C 3 0 0 3

OBJECTIVES:

 Student gains knowledge on various IRC guidelines for designing rigid and flexible pavements. Further, he/she will be in a position to assess quality and serviceability conditions of roads.

UNIT I TYPE OF PAVEMENT AND STRESS DISTRIBUTION ON LAYERED SYSTEM 8
Introduction – Pavement as layered structure – Pavement types rigid and flexible. Resilient modulus - Stress and deflections in pavements under repeated loading.

UNIT II DESIGN OF FLEXIBLE PAVEMENTS

10

Flexible pavement design factors influencing design of flexible pavement, Empirical - Semi empirical and theoretical methods – Design procedure as per IRC guidelines – Design and specification of rural roads.

UNIT III DESIGN OF RIGID PAVEMENTS

9

Cement concrete pavements factors influencing CC pavements – Modified Westergaard approach – Design procedure as per IRC guidelines – Concrete roads and their scope in India.

UNIT IV PERFORMANCE EVALUATION AND MAINTENANCE

10

Pavement Evaluation - causes of distress in rigid and flexible pavements – Evaluation based on Surface Appearance, Cracks, Patches and Pot Holes, Undulations, Raveling, Roughness, Skid Resistance. Structural Evaluation by Deflection Measurements - Pavement Serviceability index. - Pavement maintenance (IRC Recommendations only).

UNIT V STABILIZATION OF PAVEMENTS

8

Stabilisation with special reference book to highway pavements – Choice of stabilizers – Testing and field control Stabilisation for rural roads in India – use of Geosynthetics in roads.

TOTAL: 45 PERIODS

OUTCOMES:

 Students will have adequate knowledge to design flexible and rigid pavements based on IRC guidelines. Further they know various techniques to evaluate performance of pavements.

TEXTBOOKS:

- 1. Wright P.H. "Highway Engineers", John Wiley and Sons, Inc., New York, 1996.
- 2. Khanna, S.K., Justo C.E.G. and Veeraragavan. A., "Highway Engineering", Nem Chand and Brothers, 10th Edition, Roorkee, 2014.
- 3. Kadiyali, L.R. 'Principles and Practice of Highway Engineering", Khanna tech.Publications, New Delhi, 1989.

REFERENCES:

- 1. Yoder, R.J. and Witchak M.W. "Principles of Pavement Design", John Wiley 2000.
- 2. IRC-37-001, The Indian roads Congress, Guidelines for the Design of Flexible Pavements, New Delhi, 2001
- 3. IRC 58-1998. The Indian Road Congress, Guideline for the Design of Rigid Pavements for Highways, New Delhi, 1991
- 4. Rajib B.Mallick, Tahar El-Korchi, "Pavement Engineering: Principles and Practice, 2nd Edition, CRC Press, 2013.

EN6801

ENVIRONMENTAL IMPACT ASSESSMENT

LTPC 3003

OBJECTIVES:

 To impart knowledge on Environmental management and Environmental Impact Assessment.

UNIT I INTRODUCTION

8

Impact of development projects – Sustainable development- Need for Environmental Impact Assessment (EIA) - Environmental Impact Statement (EIS) – EIA capability and limitations – Legal provisions on EIA-Stages of EIA, Types of EIA

UNIT II METHODOLOGIES

9

Methods of EIA - Check lists - Matrices - Networks - Cost-benefit analysis - Analysis of alternatives

UNIT III PREDICTION AND ASSESSMENT

9

Assessment of Impact on land, water, air, social & cultural activities and on flora & fauna-Mathematical models-Public participation

UNIT IV ENVIRONMENTAL MANAGEMENT PLAN

9

Plan for mitigation of adverse impact on environment – Options for mitigation of impact on water, air, land and on flora & fauna - Addressing the issues related to the Project Affected People. Post project monitoring

UNIT V CASE STUDIES

10

EIA for infrastructure projects – Dams – Highways – Multi-storey Buildings – Water Supply and Drainage Projects – Waste water treatment plants, STP.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will have ability to

- carry out scoping and screening of developmental projects for environmental and social assessments
- explain different methodologies for environmental impact prediction and assessment
- plan environmental impact assessments and environmental management plans
- evaluate environmental impact assessment reports

TEXTBOOKS:

- 1. Canter, R.L., "Environmental Impact Assessment", McGraw Hill Inc., New Delhi, 1996.
- 2. Shukla, S.K. and Srivastava, P.R., "Concepts in Environmental Impact Analysis", Common Wealth Publishers, New Delhi, 1992.

REFERENCES:

- 1. John G. Rau and David C Hooten "Environmental Impact Analysis Handbook", McGraw Hill Book Company, 1990.
- 2. "Environmental Assessment Source book", Vol. I, II & III. The World Bank, Washington, D.C., 1991.
- 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I & II", Blackwell Science, 1999.

CE6023

INDUSTRIAL WASTE MANAGEMENT

LT P C 3 0 0 3

OBJECTIVES:

 To impart knowledge on sources and characteristics of various industrial wastes and strategies for its prevention and control

UNIT I INTRODUCTION

8

Types of industries and industrial pollution – Characteristics of industrial wastes – Population equivalent – Bioassay studies – effects of industrial effluents on streams, sewer, land, sewage

 To impart knowledge on Environmental management and Environmental Impact Assessment.

UNIT I INTRODUCTION

8

Impact of development projects – Sustainable development- Need for Environmental Impact Assessment (EIA) - Environmental Impact Statement (EIS) – EIA capability and limitations – Legal provisions on EIA-Stages of EIA, Types of EIA

UNIT II METHODOLOGIES

9

Methods of EIA - Check lists - Matrices - Networks - Cost-benefit analysis - Analysis of alternatives

UNIT III PREDICTION AND ASSESSMENT

9

Assessment of Impact on land, water, air, social & cultural activities and on flora & fauna-Mathematical models-Public participation

UNIT IV ENVIRONMENTAL MANAGEMENT PLAN

9

Plan for mitigation of adverse impact on environment – Options for mitigation of impact on water, air, land and on flora & fauna - Addressing the issues related to the Project Affected People. Post project monitoring

UNIT V CASE STUDIES

10

EIA for infrastructure projects – Dams – Highways – Multi-storey Buildings – Water Supply and Drainage Projects – Waste water treatment plants, STP.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will have ability to

- carry out scoping and screening of developmental projects for environmental and social assessments
- explain different methodologies for environmental impact prediction and assessment
- plan environmental impact assessments and environmental management plans
- evaluate environmental impact assessment reports

TEXTBOOKS:

- 1. Canter, R.L., "Environmental Impact Assessment", McGraw Hill Inc., New Delhi, 1996.
- 2. Shukla, S.K. and Srivastava, P.R., "Concepts in Environmental Impact Analysis", Common Wealth Publishers, New Delhi, 1992.

REFERENCES:

- 1. John G. Rau and David C Hooten "Environmental Impact Analysis Handbook", McGraw Hill Book Company, 1990.
- 2. "Environmental Assessment Source book", Vol. I, II & III. The World Bank, Washington, D.C., 1991.
- 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I & II", Blackwell Science, 1999.

CE6023

INDUSTRIAL WASTE MANAGEMENT

LT P C 3 0 0 3

OBJECTIVES:

 To impart knowledge on sources and characteristics of various industrial wastes and strategies for its prevention and control

UNIT I INTRODUCTION

8

Types of industries and industrial pollution – Characteristics of industrial wastes – Population equivalent – Bioassay studies – effects of industrial effluents on streams, sewer, land, sewage

treatment plants and human health – Environmental legislations related to prevention and control of industrial effluents and hazardous wastes

UNIT II CLEANER PRODUCTION

8

Waste management Approach – Waste Audit – Volume and strength reduction – Material and process modifications – Recycle, reuse and byproduct recovery – Applications.

UNIT III POLLUTION FROM MAJOR INDUSTRIES

9

Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants, Refineries, fertilizer, thermal power plants – Wastewater reclamation concepts

UNIT IV TREATMENT TECHNOLOGIES

11

Equalisation – Neutralisation – Removal of suspended and dissolved organic solids - Chemical oxidation – Adsorption - Removal of dissolved inorganics – Combined treatment of industrial and municipal wastes – Residue management – Dewatering – Disposal

UNIT V HAZARDOUS WASTE MANAGEMENT

9

Hazardous wastes - Physico chemical treatment – solidification – incineration – Secure land fills

TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will have

- an insight into the pollution from major industries including the sources and characteristics of pollutants
- ability to plan minimization of industrial wastes
- ability to design facilities for the processing and reclamation of industrial waste water

TEXTBOOKS:

- 1. Rao M. N. & Dutta A. K., "Wastewater Treatment", Oxford IBH Publication, 1995.
- 2. Eckenfelder W.W. Jr., "Industrial Water Pollution Control", McGraw Hill Book Company, New Delhi, 2000.
- 3. Patwardhan. A.D., Industrial Wastewater Treatment", Prentice Hall of India, New Delhi 2010.

REFERENCES:

- 1. Shen T.T., "Industrial Pollution Prevention", Springer, 1999.
- 2. Stephenson R.L. and Blackburn J.B., Jr., "Industrial Wastewater Systems Hand book", Lewis Publisher, New York, 1998
- 3. Freeman H.M., "Industrial Pollution Prevention Hand Book", McGraw Hill Inc., New Delhi, 1995.
- 4. Bishop, P.L., "Pollution Prevention: Fundamental & Practice", McGraw Hill, 2000.
- 5. Pandey, "Environmental Management" Vikas Publications, 2010.
- 6. Industrial Wastewater Management, Treatment and Disposal",(WEF MOP FD3) McGraw Hill, 2008.

CE6011

AIR POLLUTION MANAGEMENT

LTPC 3003

OBJECTIVES:

• This subject covers the sources, characteristics and effects of air and noise pollution and the methods of controlling the same. The student is expected to know about source inventory and control mechanism.

UNIT I SOURCES AND EFFECTS OF AIR POLLUTANTS

treatment plants and human health – Environmental legislations related to prevention and control of industrial effluents and hazardous wastes

UNIT II CLEANER PRODUCTION

8

Waste management Approach – Waste Audit – Volume and strength reduction – Material and process modifications – Recycle, reuse and byproduct recovery – Applications.

UNIT III POLLUTION FROM MAJOR INDUSTRIES

9

Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants, Refineries, fertilizer, thermal power plants – Wastewater reclamation concepts

UNIT IV TREATMENT TECHNOLOGIES

11

Equalisation – Neutralisation – Removal of suspended and dissolved organic solids - Chemical oxidation – Adsorption - Removal of dissolved inorganics – Combined treatment of industrial and municipal wastes – Residue management – Dewatering – Disposal

UNIT V HAZARDOUS WASTE MANAGEMENT

9

Hazardous wastes - Physico chemical treatment – solidification – incineration – Secure land fills

TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will have

- an insight into the pollution from major industries including the sources and characteristics of pollutants
- ability to plan minimization of industrial wastes
- ability to design facilities for the processing and reclamation of industrial waste water

TEXTBOOKS:

- 1. Rao M. N. & Dutta A. K., "Wastewater Treatment", Oxford IBH Publication, 1995.
- 2. Eckenfelder W.W. Jr., "Industrial Water Pollution Control", McGraw Hill Book Company, New Delhi, 2000.
- 3. Patwardhan. A.D., Industrial Wastewater Treatment", Prentice Hall of India, New Delhi 2010.

REFERENCES:

- 1. Shen T.T., "Industrial Pollution Prevention", Springer, 1999.
- 2. Stephenson R.L. and Blackburn J.B., Jr., "Industrial Wastewater Systems Hand book", Lewis Publisher, New York, 1998
- 3. Freeman H.M., "Industrial Pollution Prevention Hand Book", McGraw Hill Inc., New Delhi, 1995.
- 4. Bishop, P.L., "Pollution Prevention: Fundamental & Practice", McGraw Hill, 2000.
- 5. Pandey, "Environmental Management" Vikas Publications, 2010.
- 6. Industrial Wastewater Management, Treatment and Disposal",(WEF MOP FD3) McGraw Hill, 2008.

CE6011

AIR POLLUTION MANAGEMENT

LTPC 3003

OBJECTIVES:

• This subject covers the sources, characteristics and effects of air and noise pollution and the methods of controlling the same. The student is expected to know about source inventory and control mechanism.

UNIT I SOURCES AND EFFECTS OF AIR POLLUTANTS

Classification of air pollutants – Particulates and gaseous pollutants – Sources of air pollution – Source inventory – Effects of air pollution on human beings, materials, vegetation, animals – global warming-ozone layer depletion, Sampling and Analysis – Basic Principles of Sampling – Source and ambient sampling – Analysis of pollutants – Principles.

UNIT II DISPERSION OF POLLUTANTS

9

Elements of atmosphere – Meteorological factors – Wind roses – Lapse rate - Atmospheric stability and turbulence – Plume rise – Dispersion of pollutants – Dispersion models – Applications.

UNIT III AIR POLLUTION CONTROL

12

Concepts of control – Principles and design of control measures – Particulates control by gravitational, centrifugal, filtration, scrubbing, electrostatic precipitation – Selection criteria for equipment - gaseous pollutant control by adsorption, absorption, condensation, combustion – Pollution control for specific major industries.

UNIT IV AIR QUALITY MANAGEMENT

8

Air quality standards – Air quality monitoring – Preventive measures - Air pollution control efforts – Zoning – Town planning regulation of new industries – Legislation and enforcement – Environmental Impact Assessment and Air quality

UNIT V NOISE POLLUTION

7

Sources of noise pollution – Effects – Assessment - Standards – Control methods – Prevention

TOTAL: 45 PERIODS

TOTAL. 43 FERIO

OUTCOMES:

The students completing the course will have

- an understanding of the nature and characteristics of air pollutants, noise pollution and basic concepts of air quality management
- ability to identify, formulate and solve air and noise pollution problems
- ability to design stacks and particulate air pollution control devices to meet applicable standards.

TEXTBOOKS:

- 1. Anjaneyulu, D., "Air Pollution and Control Technologies", Allied Publishers, Mumbai, 2002.
- 2. Rao, C.S. Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 1996.
- 3. Rao M.N., and Rao H. V. N., Air Pollution Control, Tata McGraw Hill, New Delhi, 1996.

REFERENCES:

- 1. Heumann. W.L., "Industrial Air Pollution Control Systems", McGraw Hill, New Yark, 1997.
- 2. Mahajan S.P., "Pollution Control in Process Industries", Tata McGraw Hill Publishing Company, New Delhi, 1991.
- 3. Peavy S.W., Rowe D.R. and Tchobanoglous G. "Environmental Engineering", McGraw Hill, New Delhi. 1985.
- 4. Garg, S.K., "Environmental Engineering Vol. II", Khanna Publishers, New Delhi, 1998
- 5. Mahajan, S.P., "Pollution Control in Process Industries", Tata McGraw Hill, New Delhi, 1991.
- 6. Thod Godesh, "Air Quality, Lewis India Edition, 2013.

EN6501

MUNICIPAL SOLID WASTE MANAGEMENT

L T P C 3 0 0 3

Classification of air pollutants – Particulates and gaseous pollutants – Sources of air pollution – Source inventory – Effects of air pollution on human beings, materials, vegetation, animals – global warming-ozone layer depletion, Sampling and Analysis – Basic Principles of Sampling – Source and ambient sampling – Analysis of pollutants – Principles.

UNIT II DISPERSION OF POLLUTANTS

9

Elements of atmosphere – Meteorological factors – Wind roses – Lapse rate - Atmospheric stability and turbulence – Plume rise – Dispersion of pollutants – Dispersion models – Applications.

UNIT III AIR POLLUTION CONTROL

12

Concepts of control – Principles and design of control measures – Particulates control by gravitational, centrifugal, filtration, scrubbing, electrostatic precipitation – Selection criteria for equipment - gaseous pollutant control by adsorption, absorption, condensation, combustion – Pollution control for specific major industries.

UNIT IV AIR QUALITY MANAGEMENT

8

Air quality standards – Air quality monitoring – Preventive measures - Air pollution control efforts – Zoning – Town planning regulation of new industries – Legislation and enforcement – Environmental Impact Assessment and Air quality

UNIT V NOISE POLLUTION

7

Sources of noise pollution – Effects – Assessment - Standards – Control methods – Prevention

TOTAL: 45 PERIODS

TOTAL. 43 FERIO

OUTCOMES:

The students completing the course will have

- an understanding of the nature and characteristics of air pollutants, noise pollution and basic concepts of air quality management
- ability to identify, formulate and solve air and noise pollution problems
- ability to design stacks and particulate air pollution control devices to meet applicable standards.

TEXTBOOKS:

- 1. Anjaneyulu, D., "Air Pollution and Control Technologies", Allied Publishers, Mumbai, 2002.
- 2. Rao, C.S. Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 1996.
- 3. Rao M.N., and Rao H. V. N., Air Pollution Control, Tata McGraw Hill, New Delhi, 1996.

REFERENCES:

- 1. Heumann. W.L., "Industrial Air Pollution Control Systems", McGraw Hill, New Yark, 1997.
- 2. Mahajan S.P., "Pollution Control in Process Industries", Tata McGraw Hill Publishing Company, New Delhi, 1991.
- 3. Peavy S.W., Rowe D.R. and Tchobanoglous G. "Environmental Engineering", McGraw Hill, New Delhi. 1985.
- 4. Garg, S.K., "Environmental Engineering Vol. II", Khanna Publishers, New Delhi, 1998
- 5. Mahajan, S.P., "Pollution Control in Process Industries", Tata McGraw Hill, New Delhi, 1991.
- 6. Thod Godesh, "Air Quality, Lewis India Edition, 2013.

EN6501

MUNICIPAL SOLID WASTE MANAGEMENT

L T P C 3 0 0 3

• To make the students conversant with different aspects of the types, sources, generation, storage, collection, transport, processing and disposal of municipal solid waste.

UNIT I SOURCES AND TYPES

8

Sources and types of municipal solid wastes-waste generation rates-factors affecting generation, characteristics-methods of sampling and characterization; Effects of improper disposal of solid wastes-Public health and environmental effects. Elements of solid waste management –Social and Financial aspects – Municipal solid waste (M&H) rules – integrated management-Public awareness; Role of NGO's.

UNIT II ON-SITE STORAGE AND PROCESSING

8

On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and economic aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Recycling.

UNIT III COLLECTION AND TRANSFER

8

Methods of Residential and commercial waste collection – Collection vehicles – Manpower–Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems-solving.

UNIT IV OFF-SITE PROCESSING

12

Objectives of waste processing – Physical Processing techniques and Equipments; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions.

UNIT V DISPOSAL

TOTAL: 45 PERIODS

Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas-Landfill bioreactor – Dumpsite Rehabilitation

OUTCOMES:

The students completing the course will have

- an understanding of the nature and characteristics of municipal solid wastes and the regulatory requirements regarding municipal solid waste management
- ability to plan waste minimisation and design storage, collection, transport, processing and disposal of municipal solid waste

TEXTBOOKS:

- 1. Tchobanoglous, G., Theisen, H. M., and Eliassen, R. "Solid. Wastes: Engineering Principles and Management Issues". McGraw Hill, New York, 1993.
- 2. Vesilind, P.A. and Rimer, A.E., "Unit Operations in Resource Recovery Engineering", Prentice Hall, Inc., 1981
- 3. Paul T Willams, "Waste Treatment and Disposal", John Wiley and Sons, 2000

- 1. Government of India, "Manual on Municipal Solid Waste Management", CPHEEO, Ministry of Urban Development, New Delhi, 2000.
- 2. Bhide A.D. and Sundaresan, B.B. "Solid Waste Management Collection", Processing and Disposal, 2001
- 3. Manser A.G.R. and Keeling A.A.," Practical Handbook of Processing and Recycling of Municipal solid Wastes", Lewis Publishers, CRC Press, 1996
- 4. George Tchobanoglous and Frank Kreith "Handbook of Solidwaste Management", McGraw Hill, New York, 2002

• To make the students conversant with different aspects of the types, sources, generation, storage, collection, transport, processing and disposal of municipal solid waste.

UNIT I SOURCES AND TYPES

8

Sources and types of municipal solid wastes-waste generation rates-factors affecting generation, characteristics-methods of sampling and characterization; Effects of improper disposal of solid wastes-Public health and environmental effects. Elements of solid waste management –Social and Financial aspects – Municipal solid waste (M&H) rules – integrated management-Public awareness; Role of NGO's.

UNIT II ON-SITE STORAGE AND PROCESSING

8

On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and economic aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Recycling.

UNIT III COLLECTION AND TRANSFER

8

Methods of Residential and commercial waste collection – Collection vehicles – Manpower–Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems-solving.

UNIT IV OFF-SITE PROCESSING

12

Objectives of waste processing – Physical Processing techniques and Equipments; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions.

UNIT V DISPOSAL

TOTAL: 45 PERIODS

Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas-Landfill bioreactor – Dumpsite Rehabilitation

OUTCOMES:

The students completing the course will have

- an understanding of the nature and characteristics of municipal solid wastes and the regulatory requirements regarding municipal solid waste management
- ability to plan waste minimisation and design storage, collection, transport, processing and disposal of municipal solid waste

TEXTBOOKS:

- 1. Tchobanoglous, G., Theisen, H. M., and Eliassen, R. "Solid. Wastes: Engineering Principles and Management Issues". McGraw Hill, New York, 1993.
- 2. Vesilind, P.A. and Rimer, A.E., "Unit Operations in Resource Recovery Engineering", Prentice Hall, Inc., 1981
- 3. Paul T Willams, "Waste Treatment and Disposal", John Wiley and Sons, 2000

- 1. Government of India, "Manual on Municipal Solid Waste Management", CPHEEO, Ministry of Urban Development, New Delhi, 2000.
- 2. Bhide A.D. and Sundaresan, B.B. "Solid Waste Management Collection", Processing and Disposal, 2001
- 3. Manser A.G.R. and Keeling A.A.," Practical Handbook of Processing and Recycling of Municipal solid Wastes", Lewis Publishers, CRC Press, 1996
- 4. George Tchobanoglous and Frank Kreith "Handbook of Solidwaste Management", McGraw Hill, New York, 2002

LTPC 3 0 0 3

OBJECTIVES:

 At the end of the course student is expected to identify the problematic soil and suitable suggest remedial measures to improve their behaviour.

UNIT I PROBLEMATIC SOIL AND IMPROVEMENT TECHNIQUES

8

Role of ground improvement in foundation engineering – methods of ground improvement – Geotechnical problems in alluvial, lateritic and black cotton soils – Selection of suitable ground improvement techniques based on soil conditions.

UNIT II DEWATEREING

10

Dewatering Techniques - Well points – Vacuum and electroosmotic methods – Seepage analysis for two – dimensional flow for fully and partially penetrated slots in homogeneous deposits - Simple cases - Design.

UNIT III INSITU TREATMENT OF COHESIONLESS AND COHESIVE SOILS

Insitu densification of cohesion-less soils and consolidation of cohesive soils: Dynamic compaction Vibroflotation, Sand compaction piles and deep compaction. Consolidation: Preloading with sand drains, and fabric drains, Stone columns and Lime piles-installation techniques – simple design relative merits of above methods and their limitations.

UNIT IV EARTH REINFORCEMENT

9

10

Concept of reinforcement – Types of reinforcement material – Reinforced earth wall – Mechanism – simple design - applications of reinforced earth. Role of Geotextiles in filtration, drainage, separation, road works and containment.

UNIT V GROUT TECHNIQUES

8

Types of grouts – Grouting equipments and machinery – injection methods – Grout monitoring – stabilization with cement, lime and chemicals – stabilization of expansive soil.

TOTAL: 45 PERIODS

OUTCOMES:

 Student will be in a position to identify and evaluate the deficiencies if any in the deposits of a project area and capable of providing alternate methods to improve its character suitable to the project so that the structures built will be stable and serve.

TEXTBOOKS:

- 1. Purushothama Rai. P. "Ground Improvement Techniques", Firewall Media, 2005.
- 2. Koerner, R.M. "Construction and Geotechnical Methods in Foundation Engineering", McGraw Hill, 1994.
- 3. Mittal.S, "An Introduction to Ground Improvement Engineering", Medtech Publisher, 2013.

- 1. Moseley, M.P., "Ground Improvement Blockie Academic and Professional", Chapman and Hall, Glasgow, 1998.
- 2. Jones J.E.P. "Earth Reinforcement and Soil Structure", Butterworths, London, 1985.
- 3. Winterkorn, H.F. and Fang, H.Y. "Foundation Engineering Hand Book". Van Nostrand Reinhold, 1994.
- 4. Das, B.M. "Principles of Foundation Engineering" 7th edition, Cengage learning, 2010.
- 5. Coduto, D.P. "Geotechnical Engineering Principles and Practices", Prentice Hall of India Pvt.Ltd. New Delhi, 2011.
- 6. Koerner, R.M. "Designing with Geosynthetics" 4th Edition, Prentice Hall, Jersey, 1999.
- 7. IS9759: 1981 "Guidelines for Dewatering During Construction", Bureau of Indian Standards, New Delhi, Reaffirmed 1999
- 8. IS15284(Part 1): 2003 "Design and Construction for Ground Improvement Guidelines" (Stone Column), Bureau of Indian Standards, New Delhi, 2003

ESTIMATION AND QUANTITY SURVEYING

LTPC 3003

OBJECTIVES:

 To provide the student with the ability to estimate the quantities of item of works involved in buildings, water supply and sanitary works, road works and irrigation works, and also to equip the student with the ability to do rate analysis, valuation of properties and preparation of reports for estimation of various items.

UNIT I ESTIMATE OF BUILDINGS

11

Load bearing and framed structures – Calculation of quantities of brick work, RCC, PCC, Plastering, white washing, colour washing and painting / varnishing for shops, rooms, residential building with flat and pitched roof – Various types of arches – Calculation of brick work and RCC works in arches – Estimate of joineries for panelled and glazed doors, windows, ventilators, handrails etc.

UNIT II ESTIMATE OF OTHER STRUCTURES

10

Estimating of septic tank, soak pit – sanitary and water supply installations – water supply pipe line – sewer line – tube well – open well – estimate of bituminous and cement concrete roads – estimate of retaining walls – culverts – estimating of irrigation works – aqueduct, syphon, fall.

UNIT III SPECIFICATION AND TENDERS

8

Data – Schedule of rates – Analysis of rates – Specifications – sources – Preparation of detailed and general specifications – Tenders – TTT Act – e-tender – Preparation of Tender Notice and Document – Contracts – Types of contracts – Drafting of contract documents – Arbitration and legal requirements.

UNIT IV VALUATION

8

Necessity – Basics of value engineering – Capitalised value – Depreciation – Escalation – Value of building – Calculation of Standard rent – Mortgage – Lease

UNIT V REPORT PREPARATION

8

Principles for report preparation – report on estimate of residential building – Culvert – Roads – Water supply and sanitary installations – Tube wells – Open wells.

TOTAL: 45 PERIODS

OUTCOMES:

 The student shall be able to estimate the material quantities, prepare a bill of quantities, make specifications and prepare tender documents. Student shall be able to prepare value estimates.

TEXTBOOKS:

- 1. Dutta, B.N., "Estimating and Costing in Civil Engineering", UBS Publishers & Distributors Pvt. Ltd., 2003
- 2. Kohli, D.D and Kohli, R.C., "A Text Book of Estimating and Costing (Civil)", S.Chand & Company Ltd., 2004

- 1. PWD Data Book.
- 2. Tamilnadu Transparencies in Tender Act, 1998
- 3. Arbitration and Conciliation Act. 1996
- 4. Standard Bid Evaluation Form, Procurement of Goods or Works, The World Bank, April 1996.

• To acquire hands on experience in design and preparation of structural drawings for concrete / steel structures normally encountered in Civil Engineering practice.

LIST OF EXPERIMENTS:

- 1. Design and drawing of RCC cantilever and counter fort type retaining walls with reinforcement details
- 2. Design of solid slab and RCC Tee beam bridges for IRC loading and reinforcement details
- 3. Design and drafting of circular and rectangular RCC water tanks
- 4. Design of plate Girder Bridge Truss Girder bridges Detailed Drawings including connections
- 5. Design of hemispherical bottomed steel tank

TOTAL: 60 PERIODS

OUTCOMES:

 At the end of the course the student acquires hands on experience in design and preparation of structural drawings for concrete / steel structures normally encountered in Civil Engineering practice.

TEXTBOOKS:

- 1. Krishnaraju, N. "Structural Design & Drawing, Universities Press, 2009.
- 2. Punmia, B.C., Ashok Kumar Jain, Arun Kumar Jain, "Comprehensive Design of Steel Structures, Laxmi Publications Pvt. Ltd., 2003.

REFERENCES:

- 1. Krishnamurthy, D., "Structural Design & Drawing Vol. II and III, CBS Publishers, 2010.
- 2. Shah V L and Veena Gore, "Limit State Design of Steel Structures" IS800-2007, Structures Publications, 2009.

EXAMINATION DURATION:3 HOURS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

SI. No.	Description of Equipment	Quantity
1.	Models of Structures	1 each
2.	Computers Pentium IV	30 Nos
3.	Analysis and Design Software - Minimum 5 use License	1 No

CE6712 DESIGN PROJECT L T P C 0 0 4 2

OBJECTIVES:

The objective of this course is to impart and improve the design capability of the student. This course conceives purely a design problem in any one of the disciplines of Civil Engineering; e.g., Design of an RC structure, Design of a waste water treatment plant, Design of a foundation system, Design of traffic intersection etc. The design problem can be allotted to either an individual student or a group of students comprising of not more than four. At the end of the course the group should submit a complete report on the design problem consisting of the data given, the design calculations, specifications if any and complete set of drawings which follow the design.

TOTAL: 60 PERIODS

• To make the students conversant with different aspects of the types, sources, generation, storage, collection, transport, processing and disposal of municipal solid waste.

UNIT I SOURCES AND TYPES

8

Sources and types of municipal solid wastes-waste generation rates-factors affecting generation, characteristics-methods of sampling and characterization; Effects of improper disposal of solid wastes-Public health and environmental effects. Elements of solid waste management –Social and Financial aspects – Municipal solid waste (M&H) rules – integrated management-Public awareness; Role of NGO's.

UNIT II ON-SITE STORAGE AND PROCESSING

8

On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and economic aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Recycling.

UNIT III COLLECTION AND TRANSFER

8

Methods of Residential and commercial waste collection – Collection vehicles – Manpower–Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems-solving.

UNIT IV OFF-SITE PROCESSING

12

Objectives of waste processing – Physical Processing techniques and Equipments; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions.

UNIT V DISPOSAL

TOTAL: 45 PERIODS

Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas-Landfill bioreactor – Dumpsite Rehabilitation

OUTCOMES:

The students completing the course will have

- an understanding of the nature and characteristics of municipal solid wastes and the regulatory requirements regarding municipal solid waste management
- ability to plan waste minimisation and design storage, collection, transport, processing and disposal of municipal solid waste

TEXTBOOKS:

- 1. Tchobanoglous, G., Theisen, H. M., and Eliassen, R. "Solid. Wastes: Engineering Principles and Management Issues". McGraw Hill, New York, 1993.
- 2. Vesilind, P.A. and Rimer, A.E., "Unit Operations in Resource Recovery Engineering", Prentice Hall, Inc., 1981
- 3. Paul T Willams, "Waste Treatment and Disposal", John Wiley and Sons, 2000

- 1. Government of India, "Manual on Municipal Solid Waste Management", CPHEEO, Ministry of Urban Development, New Delhi, 2000.
- 2. Bhide A.D. and Sundaresan, B.B. "Solid Waste Management Collection", Processing and Disposal, 2001
- 3. Manser A.G.R. and Keeling A.A.," Practical Handbook of Processing and Recycling of Municipal solid Wastes", Lewis Publishers, CRC Press, 1996
- 4. George Tchobanoglous and Frank Kreith "Handbook of Solidwaste Management", McGraw Hill, New York, 2002

LTPC 3 0 0 3

OBJECTIVES:

 At the end of the course student is expected to identify the problematic soil and suitable suggest remedial measures to improve their behaviour.

UNIT I PROBLEMATIC SOIL AND IMPROVEMENT TECHNIQUES

8

Role of ground improvement in foundation engineering – methods of ground improvement – Geotechnical problems in alluvial, lateritic and black cotton soils – Selection of suitable ground improvement techniques based on soil conditions.

UNIT II DEWATEREING

10

Dewatering Techniques - Well points – Vacuum and electroosmotic methods – Seepage analysis for two – dimensional flow for fully and partially penetrated slots in homogeneous deposits - Simple cases - Design.

UNIT III INSITU TREATMENT OF COHESIONLESS AND COHESIVE SOILS

Insitu densification of cohesion-less soils and consolidation of cohesive soils: Dynamic compaction Vibroflotation, Sand compaction piles and deep compaction. Consolidation: Preloading with sand drains, and fabric drains, Stone columns and Lime piles-installation techniques – simple design relative merits of above methods and their limitations.

UNIT IV EARTH REINFORCEMENT

9

10

Concept of reinforcement – Types of reinforcement material – Reinforced earth wall – Mechanism – simple design - applications of reinforced earth. Role of Geotextiles in filtration, drainage, separation, road works and containment.

UNIT V GROUT TECHNIQUES

8

Types of grouts – Grouting equipments and machinery – injection methods – Grout monitoring – stabilization with cement, lime and chemicals – stabilization of expansive soil.

TOTAL: 45 PERIODS

OUTCOMES:

 Student will be in a position to identify and evaluate the deficiencies if any in the deposits of a project area and capable of providing alternate methods to improve its character suitable to the project so that the structures built will be stable and serve.

TEXTBOOKS:

- 1. Purushothama Rai. P. "Ground Improvement Techniques", Firewall Media, 2005.
- 2. Koerner, R.M. "Construction and Geotechnical Methods in Foundation Engineering", McGraw Hill, 1994.
- 3. Mittal.S, "An Introduction to Ground Improvement Engineering", Medtech Publisher, 2013.

- 1. Moseley, M.P., "Ground Improvement Blockie Academic and Professional", Chapman and Hall, Glasgow, 1998.
- 2. Jones J.E.P. "Earth Reinforcement and Soil Structure", Butterworths, London, 1985.
- 3. Winterkorn, H.F. and Fang, H.Y. "Foundation Engineering Hand Book". Van Nostrand Reinhold, 1994.
- 4. Das, B.M. "Principles of Foundation Engineering" 7th edition, Cengage learning, 2010.
- 5. Coduto, D.P. "Geotechnical Engineering Principles and Practices", Prentice Hall of India Pvt.Ltd. New Delhi, 2011.
- 6. Koerner, R.M. "Designing with Geosynthetics" 4th Edition, Prentice Hall, Jersey, 1999.
- 7. IS9759: 1981 "Guidelines for Dewatering During Construction", Bureau of Indian Standards, New Delhi, Reaffirmed 1999
- 8. IS15284(Part 1): 2003 "Design and Construction for Ground Improvement Guidelines" (Stone Column), Bureau of Indian Standards, New Delhi, 2003

• Draw the hazard and vulnerability profile of India, Scenarious in the Indian context, Disaster damage assessment and management.

TEXTBOOKS:

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10**: 1259007367, **ISBN-13**: 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

REFERENCES

- 1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005
- 2. Government of India, National Disaster Management Policy, 2009.

CE6013

BRIDGE STRUCTURES

LT P C 3 0 0 3

OBJECTIVES:

• To make the student to know about various bridge structures, selection of appropriate bridge structures and design it for given site conditions.

UNIT I INTRODUCTION

۵

History of Bridges - Components of a Bridge and its definitions- Classification of Road Bridges - Selection of Site and Initial Decision Process - Survey and Alignment; Geotechnical Investigations and Interpretations. River Bridge: Selection of Bridge site and planning - Collection of Bridge design data - Hydrological calculation

Road Bridges - IRC codes - Standard Loading for Bridge Design - Influence lines for statically determinate structures - I.L. for statically indeterminate structures - Transverse distribution of Live loads among deck longitudinal - Load combinations for different working state and limit state designs

Railway Bridges: Loadings for Railway Bridges; Railroad data. Pre-design considerations; - Railroad vs. Highway bridges.

UNIT II SUPERSTRUCTURES

9

Selection of main bridge parameters, design methodologies -Choices of superstructure types; Orthotropic plate theory, load + techniques - Grillage analysis - Finite element analysis - Different types of superstructure (RCC and PSC); Longitudinal Analysis of Bridge.- Transverse Analysis of Bridge- Temperature Analysis-Distortional Analysis-Effects of Differential settlement of supports-Reinforced earth structures

UNIT III DESIGN OF STEEL BRIDGES

9

Design of Truss Bridges – Design of Plate girder bridges.

UNIT IV DESIGN OF RC AND PSC BRIDGES

9

Design of slab bridges – Girder bridges – PSC bridges

UNIT V SUBSTRUCTURE, BEARINGS AND DECK JOINTS, PARAPETS AND RAILINGS

9

Substructure - Pier; Abutment - Wing walls- Importance of Soil-Structure Interaction - Types of foundations - Open foundation- Pile foundation- Well foundation- Simply supported bridge-Continuous Bridge - Bearings and Deck Joints - Different types of bridge bearings and expansion joints - Parapets and Railings for Highway Bridges

TOTAL: 45 PERIODS

OUTCOMES:

- To develop an understanding of an appreciation for basic concepts in proportioning and design of bridges in terms of aesthetics, geographical location and functionality.
- To help the student develop an intuitive feeling about the sizing of bridge elements, ie., develop a clear understanding of conceptual design
- To understand the load flow mechanism and identify loads on bridges.
- To carry out a design of bridge starting from conceptual design, selecting suitable bridge, geometry to sizing of its elements.

TEXTBOOKS:

- 1. Johnson Victor D., "Essentials of Bridge Engineering", Oxford and IBH Publishing Co., New Delhi, 1990.
- 2. Jagadeesh .T.R. and Jayaram.M.A., "Design of Bridge Structures", Prentice Hall of India Pvt. Ltd, Learning Pvt. Ltd., 2013

REFERENCES:

- 1. Phatak D.R., "Bridge Engineering", Satya Prakashan, New Delhi, 1990.
- 2. Ponnuswamy S., "Bridge Engineering", Tata McGraw-Hill, New Delhi, 1996.
- 3. Rajagopalan. N. "Bridge Superstructure", Alpha Science International, 2006

CE6014

STORAGE STRUCTURES

LT P C 3 0 0 3

OBJECTIVES:

 To introduce the student to basic theory and concepts of design of storage structures like steel and concrete tanks, bunkers and silos.

UNIT I STEEL WATER TANKS

9

Design of rectangular riveted steel water tank – Tee covers – Plates – Stays –Longitudinal and transverse beams – Design of staging – Base plates – Foundation and anchor bolts – Design of pressed steel water tank – Design of stays – Joints – Design of hemispherical bottom water tank – side plates – Bottom plates – joints – Ring girder – Design of staging and foundation.

UNIT II CONCRETE WATER TANKS

9

Design of Circular tanks – Hinged and fixed at the base – IS method of calculating shear forces and moments – Hoop tension – Design of intze tank – Dome – Ring girders – Conical dome – Staging – Bracings – Raft foundation – Design of rectangular tanks – Approximate methods and IS methods – Design of under ground tanks – Design of base slab and side wall – Check for uplift.

UNIT III STEEL BUNKERS AND SILOS

9

Design of square bunker – Jansen's and Airy's theories – IS Codal provisions – Design of side plates – Stiffeners – Hooper – Longitudinal beams – Design of cylindrical silo – Side plates – Ring girder – stiffeners.

UNIT IV CONCRETE BUNKERS AND SILOS

9

Design of square bunker – Side Walls – Hopper bottom – Top and bottom edge beams – Design of cylindrical silo – Wall portion – Design of conical hopper – Ring beam at junction

UNIT V PRESTRESSED CONCRETE WATER TANKS

9

Principles of circular prestressing – Design of prestressed concrete circular water tanks

• Draw the hazard and vulnerability profile of India, Scenarious in the Indian context, Disaster damage assessment and management.

TEXTBOOKS:

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10**: 1259007367, **ISBN-13**: 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

REFERENCES

- 1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005
- 2. Government of India, National Disaster Management Policy, 2009.

CE6013

BRIDGE STRUCTURES

LT P C 3 0 0 3

OBJECTIVES:

• To make the student to know about various bridge structures, selection of appropriate bridge structures and design it for given site conditions.

UNIT I INTRODUCTION

۵

History of Bridges - Components of a Bridge and its definitions- Classification of Road Bridges - Selection of Site and Initial Decision Process - Survey and Alignment; Geotechnical Investigations and Interpretations. River Bridge: Selection of Bridge site and planning - Collection of Bridge design data - Hydrological calculation

Road Bridges - IRC codes - Standard Loading for Bridge Design - Influence lines for statically determinate structures - I.L. for statically indeterminate structures - Transverse distribution of Live loads among deck longitudinal - Load combinations for different working state and limit state designs

Railway Bridges: Loadings for Railway Bridges; Railroad data. Pre-design considerations; - Railroad vs. Highway bridges.

UNIT II SUPERSTRUCTURES

9

Selection of main bridge parameters, design methodologies -Choices of superstructure types; Orthotropic plate theory, load + techniques - Grillage analysis - Finite element analysis - Different types of superstructure (RCC and PSC); Longitudinal Analysis of Bridge.- Transverse Analysis of Bridge- Temperature Analysis-Distortional Analysis-Effects of Differential settlement of supports-Reinforced earth structures

UNIT III DESIGN OF STEEL BRIDGES

9

Design of Truss Bridges – Design of Plate girder bridges.

UNIT IV DESIGN OF RC AND PSC BRIDGES

9

Design of slab bridges – Girder bridges – PSC bridges

UNIT V SUBSTRUCTURE, BEARINGS AND DECK JOINTS, PARAPETS AND RAILINGS

9

Substructure - Pier; Abutment - Wing walls- Importance of Soil-Structure Interaction - Types of foundations - Open foundation- Pile foundation- Well foundation- Simply supported bridge-Continuous Bridge - Bearings and Deck Joints - Different types of bridge bearings and expansion joints - Parapets and Railings for Highway Bridges

TOTAL: 45 PERIODS

OUTCOMES:

- To develop an understanding of an appreciation for basic concepts in proportioning and design of bridges in terms of aesthetics, geographical location and functionality.
- To help the student develop an intuitive feeling about the sizing of bridge elements, ie., develop a clear understanding of conceptual design
- To understand the load flow mechanism and identify loads on bridges.
- To carry out a design of bridge starting from conceptual design, selecting suitable bridge, geometry to sizing of its elements.

TEXTBOOKS:

- 1. Johnson Victor D., "Essentials of Bridge Engineering", Oxford and IBH Publishing Co., New Delhi, 1990.
- 2. Jagadeesh .T.R. and Jayaram.M.A., "Design of Bridge Structures", Prentice Hall of India Pvt. Ltd, Learning Pvt. Ltd., 2013

REFERENCES:

- 1. Phatak D.R., "Bridge Engineering", Satya Prakashan, New Delhi, 1990.
- 2. Ponnuswamy S., "Bridge Engineering", Tata McGraw-Hill, New Delhi, 1996.
- 3. Rajagopalan. N. "Bridge Superstructure", Alpha Science International, 2006

CE6014

STORAGE STRUCTURES

LT P C 3 0 0 3

OBJECTIVES:

 To introduce the student to basic theory and concepts of design of storage structures like steel and concrete tanks, bunkers and silos.

UNIT I STEEL WATER TANKS

9

Design of rectangular riveted steel water tank – Tee covers – Plates – Stays –Longitudinal and transverse beams – Design of staging – Base plates – Foundation and anchor bolts – Design of pressed steel water tank – Design of stays – Joints – Design of hemispherical bottom water tank – side plates – Bottom plates – joints – Ring girder – Design of staging and foundation.

UNIT II CONCRETE WATER TANKS

9

Design of Circular tanks – Hinged and fixed at the base – IS method of calculating shear forces and moments – Hoop tension – Design of intze tank – Dome – Ring girders – Conical dome – Staging – Bracings – Raft foundation – Design of rectangular tanks – Approximate methods and IS methods – Design of under ground tanks – Design of base slab and side wall – Check for uplift.

UNIT III STEEL BUNKERS AND SILOS

9

Design of square bunker – Jansen's and Airy's theories – IS Codal provisions – Design of side plates – Stiffeners – Hooper – Longitudinal beams – Design of cylindrical silo – Side plates – Ring girder – stiffeners.

UNIT IV CONCRETE BUNKERS AND SILOS

9

Design of square bunker – Side Walls – Hopper bottom – Top and bottom edge beams – Design of cylindrical silo – Wall portion – Design of conical hopper – Ring beam at junction

UNIT V PRESTRESSED CONCRETE WATER TANKS

9

Principles of circular prestressing – Design of prestressed concrete circular water tanks

TOTAL: 45 PERIODS

OUTCOMES:

• At the end of the course the student shall be able to design concrete and steel material storage structures.

TEXTBOOKS:

- 1. Rajagopalan K., "Storage Structures", Tata McGraw Hill, New Delhi, 1998.
- 2. Krishna Raju N., "Advanced Reinforced Concrete Design", CBS Publishers and Distributors, New Delhi, 1998.

REFERENCES:

- 1. Punmia B.C, Ashok Kumar Jain, Arun K.Jain, "R.C.C. Designs Reinforced Concrete Structures", Laxmi Publications Pvt. Ltd., New Delhi, 2006.
- 2. Gambhir.M.L., "Design of Reinforced Concrete Structures", Prentice Hall of India Private Limited, 2012.

CE6015 TALL BUILDINGS L T P C 3 0 0 3

OBJECTIVES:

• The design aspects and analysis methodologies of tall buildings will be introduced. The stability analysis of tall buildings is another important objective of this course.

UNIT I DESIGN CRITERIA AND MATERIALS

9

Development of High Rise Structures - General Planning Considerations - Design philosophies - Materials used for Construction - High Strength Concrete - High Performance Concrete - Self Compacting Concrete - Glass - High Strength Steel

UNIT II LOADING

Gravity Loading - Dead Load - Live Load - Live load reduction technique - Impact Load - Construction Load - Sequential Loading. Lateral Loading - Wind load - Earthquake Load. Combination of Loads.

UNIT III BEHAVIOUR OF VARIOUS STRUCTURAL SYSTEMS

9

Factors affecting growth, Height and Structural form. High rise behaviour of Various structural systems - Rigid frames, braced frames, Infilled frames, shear walls, coupled shear walls, wall-frames, tubular structures, cores, outrigger - braced and hybrid mega systems.

UNIT IV ANALYSIS AND DESIGN

9

Modeling for approximate analysis, Accurate analysis and reduction techniques, Analysis of buildings as total structural system considering overall integrity and major subsystem interaction, Analysis for member forces, drift and twist, computerised general three dimensional analysis.

UNIT V STABILITY OF TALL BUILDINGS

9

Overall buckling analysis of frames, wall-frames, Approximate methods, second order effects of gravity of loading, P-Delta analysis, simultaneous first-order and P-Delta analysis, Translational, Torsional instability, out of plumb effects, stiffness of member in stability, effect of foundation rotation.

OUTCOMES:

TOTAL: 45 PERIODS

 At the end of this course the student should have an understanding on the behaviour of tall buildings subjected to lateral building. The students should have knowledge about the rudimentary principles of designing tall buildings as per the existing codes.

TEXTBOOKS:

- 1. Bryan Stafford Smith, Alex coull, "Tall Building Structures, Analysis and Design", John Wiley and Sons, Inc., 1991.
- 2. Taranath B.S., "Structural Analysis and Design of Tall Buildings", McGraw Hill, 2011.

REFERENCES:

- 1. Lin.T.Y, Stotes Burry.D, "Structural Concepts and systems for Architects and Engineers", John Wiley, 1988.
- 2. Lynn S.Beedle, "Advances in Tall Buildings", CBS Publishers and Distributors, Delhi, 1986.
- 3. Wolfgang Schueller "High Rise Building Structures", John Wiley and Sons, New York 1977.

CE6016

PREFABRICATED STRUCTURES

LTPC 3003

OBJECTIVES:

• To impart knowledge to students on modular construction, industrialised construction and design of prefabricated elements and construction methods.

UNIT I INTRODUCTION

9

Need for prefabrication – Principles – Materials – Modular coordination – Standarization – Systems – Production – Transportation – Erection.

UNIT II PREFABRICATED COMPONENTS

9

Behaviour of structural components – Large panel constructions – Construction of roof and floor slabs – Wall panels – Columns – Shear walls

UNIT III DESIGN PRINCIPLES

9

Disuniting of structures- Design of cross section based on efficiency of material used – Problems in design because of joint flexibility – Allowance for joint deformation.

UNIT IV JOINT IN STRUCTURAL MEMBERS

9

Joints for different structural connections – Dimensions and detailing – Design of expansion joints

UNIT V DESIGN FOR ABNORMAL LOADS

9

Progressive collapse – Code provisions – Equivalent design loads for considering abnormal effects such as earthquakes, cyclones, etc., - Importance of avoidance of progressive collapse.

TOTAL: 45 PERIODS

OUTCOMES:

 The student shall be able to design some of the prefabricated elements and also have the knowledge of the construction methods in using these elements.

TEXTBOOKS:

- 1. CBRI, Building materials and components, India, 1990
- 2. Gerostiza C.Z., Hendrikson C. and Rehat D.R., "Knowledge based process planning for construction and manufacturing", Academic Press Inc., 1994

- 1. Koncz T., "Manual of precast concrete construction", Vol. I, II and III, Bauverlag, GMBH, 1976.
- 2. "Structural design manual", Precast concrete connection details, Society for the studies in the use of precast concrete, Netherland Betor Verlag, 2009

- 1. Bryan Stafford Smith, Alex coull, "Tall Building Structures, Analysis and Design", John Wiley and Sons, Inc., 1991.
- 2. Taranath B.S., "Structural Analysis and Design of Tall Buildings", McGraw Hill, 2011.

REFERENCES:

- 1. Lin.T.Y, Stotes Burry.D, "Structural Concepts and systems for Architects and Engineers", John Wiley, 1988.
- 2. Lynn S.Beedle, "Advances in Tall Buildings", CBS Publishers and Distributors, Delhi, 1986.
- 3. Wolfgang Schueller "High Rise Building Structures", John Wiley and Sons, New York 1977.

CE6016

PREFABRICATED STRUCTURES

LTPC 3003

OBJECTIVES:

• To impart knowledge to students on modular construction, industrialised construction and design of prefabricated elements and construction methods.

UNIT I INTRODUCTION

9

Need for prefabrication – Principles – Materials – Modular coordination – Standarization – Systems – Production – Transportation – Erection.

UNIT II PREFABRICATED COMPONENTS

9

Behaviour of structural components – Large panel constructions – Construction of roof and floor slabs – Wall panels – Columns – Shear walls

UNIT III DESIGN PRINCIPLES

9

Disuniting of structures- Design of cross section based on efficiency of material used – Problems in design because of joint flexibility – Allowance for joint deformation.

UNIT IV JOINT IN STRUCTURAL MEMBERS

9

Joints for different structural connections – Dimensions and detailing – Design of expansion joints

UNIT V DESIGN FOR ABNORMAL LOADS

9

Progressive collapse – Code provisions – Equivalent design loads for considering abnormal effects such as earthquakes, cyclones, etc., - Importance of avoidance of progressive collapse.

TOTAL: 45 PERIODS

OUTCOMES:

 The student shall be able to design some of the prefabricated elements and also have the knowledge of the construction methods in using these elements.

TEXTBOOKS:

- 1. CBRI, Building materials and components, India, 1990
- 2. Gerostiza C.Z., Hendrikson C. and Rehat D.R., "Knowledge based process planning for construction and manufacturing", Academic Press Inc., 1994

- 1. Koncz T., "Manual of precast concrete construction", Vol. I, II and III, Bauverlag, GMBH, 1976.
- 2. "Structural design manual", Precast concrete connection details, Society for the studies in the use of precast concrete, Netherland Betor Verlag, 2009

EXPERIMENTAL ANALYSIS OF STRESS

LTPC 3 0 0 3

OBJECTIVES:

• To make students aware of various measurement techniques and experimental planning and procedures adopted in laboratory.

UNIT I STRAIN GAUGES

9

Definition of Gauge length, sensitivity and range – Characteristics of an ideal strain gauge – Different types of mechanical strain gauges for use in metal and concrete specimens – Optical strain gauge – Acoustic strain gauge – Pneumatic strain gauge – Merits and demerits.

UNIT II ELECTRICAL STRAIN GAUGES

9

Inductance, capacitance and piezo-electric gauges – Bonded and unbounded resistance gauges and their application in stress analysis – Fixing technique and measurement of strains – Rosettes – Determination of principal strains using rosettes – Use of Murphy's construction for drawing circle of strains – Mohr's stress circle – Analytical solution.

UNIT III PHOTOELASTICITY

9

Principles – Maxwell's stress optic law – Plane and circularly polarised light and their use in photo elasticity – Polariscopes – Diffusion type, lense type and reflection type polariscopes – Isochromatics and Isoclinics – Model materials – Calibration methods for finding material fringe value – Model fringe value – Examples of beam flexure and diametrically loaded circular plates.

UNIT IV MODEL ANALYSIS

9

Direct and indirect models – Laws of structural similitude – Choice of scales – Limitation of model studies - Buckingham piktheorem – Dimensional analysis – Model materials – Begg's deformeter and its use in model analysis – Simple design of models for direct and indirect model analysis.

UNIT V BRITTLE COATINGS

9

Historical review – Stress Coat – Ceramic coatings – Application – Moire fringe method of stress analysis.

TOTAL: 45 PERIODS

OUTCOMES:

• Students will be able to select the appropriate strain gauges for strain measurements and they have sufficient knowledge in model analysis and predict the behaviour of prototypes.

TEXTBOOKS:

- 1. T.K.Roy, "Experimental Analysis of Stress and Strains", S.Chand and Company Ltd., New Delhi. 2000
- 2. Hetenyi. M., Hand Book of Experimental Stress Analysis, John Wiley and Sons Inc., New York, 1966

REFERENCES:

- 1. J.W.Dally and W.F.Riley, "Experimental Stress Analysis", McGraw Hill Book, New York,
- 2. L.S. Srinath, "Experimental Stress Analysis", Tata-McGraw Hill Book Company, New Delhi, 2001
- 3. Sadhu Singh, "Experimental Stress Analysis", Khanna Publishers, New Delhi, 2004.

GE6757

TOTAL QUALITY MANAGEMENT

L TPC 3 0 0 3

OBJECTIVES:

To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION

9

EXPERIMENTAL ANALYSIS OF STRESS

LTPC 3 0 0 3

OBJECTIVES:

• To make students aware of various measurement techniques and experimental planning and procedures adopted in laboratory.

UNIT I STRAIN GAUGES

9

Definition of Gauge length, sensitivity and range – Characteristics of an ideal strain gauge – Different types of mechanical strain gauges for use in metal and concrete specimens – Optical strain gauge – Acoustic strain gauge – Pneumatic strain gauge – Merits and demerits.

UNIT II ELECTRICAL STRAIN GAUGES

9

Inductance, capacitance and piezo-electric gauges – Bonded and unbounded resistance gauges and their application in stress analysis – Fixing technique and measurement of strains – Rosettes – Determination of principal strains using rosettes – Use of Murphy's construction for drawing circle of strains – Mohr's stress circle – Analytical solution.

UNIT III PHOTOELASTICITY

9

Principles – Maxwell's stress optic law – Plane and circularly polarised light and their use in photo elasticity – Polariscopes – Diffusion type, lense type and reflection type polariscopes – Isochromatics and Isoclinics – Model materials – Calibration methods for finding material fringe value – Model fringe value – Examples of beam flexure and diametrically loaded circular plates.

UNIT IV MODEL ANALYSIS

9

Direct and indirect models – Laws of structural similitude – Choice of scales – Limitation of model studies - Buckingham piktheorem – Dimensional analysis – Model materials – Begg's deformeter and its use in model analysis – Simple design of models for direct and indirect model analysis.

UNIT V BRITTLE COATINGS

9

Historical review – Stress Coat – Ceramic coatings – Application – Moire fringe method of stress analysis.

TOTAL: 45 PERIODS

OUTCOMES:

• Students will be able to select the appropriate strain gauges for strain measurements and they have sufficient knowledge in model analysis and predict the behaviour of prototypes.

TEXTBOOKS:

- 1. T.K.Roy, "Experimental Analysis of Stress and Strains", S.Chand and Company Ltd., New Delhi. 2000
- 2. Hetenyi. M., Hand Book of Experimental Stress Analysis, John Wiley and Sons Inc., New York, 1966

REFERENCES:

- 1. J.W.Dally and W.F.Riley, "Experimental Stress Analysis", McGraw Hill Book, New York,
- 2. L.S. Srinath, "Experimental Stress Analysis", Tata-McGraw Hill Book Company, New Delhi, 2001
- 3. Sadhu Singh, "Experimental Stress Analysis", Khanna Publishers, New Delhi, 2004.

GE6757

TOTAL QUALITY MANAGEMENT

L TPC 3 0 0 3

OBJECTIVES:

To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION

9

Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM - Quality statements - Customer focus - Customer orientation, Customer satisfaction, Customer complaints, Customer retention - Costs of quality.

UNIT II TQM PRINCIPLES

9

Leadership - Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Quality circles Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TOOLS AND TECHNIQUES I

9

The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT IV TOOLS AND TECHNIQUES II

9

Control Charts - Process Capability - Concepts of Six Sigma - Quality Function Development (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.

UNIT V QUALITY SYSTEMS

9

Need for ISO 9000 - ISO 9001-2008 Quality System - Elements, Documentation, Quality Auditing - QS 9000 - ISO 14000 - Concepts, Requirements and Benefits - TQM Implementation in manufacturing and service sectors..

TOTAL: 45 PERIODS

OUTCOMES:

• The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

TEXTBOOK:

1. Dale H. Besterfiled, et at., "Total quality Management", Pearson Education Asia, Third Edition, Indian Reprint, 2006.

REFERENCES:

- 1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.
- 2. Suganthi. L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.
- 3. Janakiraman. B and Gopal .R.K., "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.

GE 6084 HUMAN RIGHTS

LTPC

3 0 0 3

OBJECTIVES:

To sensitize the Engineering students to various aspects of Human Rights.

I INIT I

Human Rights – Meaning, origin and Development. Notion and classification of Rights – Natural, Moral and Legal Rights. Civil and Political Rights, Economic, Social and Cultural Rights; collective / Solidarity Rights.

UNIT II ______ 9

Evolution of the concept of Human Rights Magana carta – Geneva convention of 1864. Universal Declaration of Human Rights, 1948. Theories of Human Rights.

UNIT III 9

Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

UNIT IV 9

Human Rights in India – Constitutional Provisions / Guarantees.
UNIT V

q

Human Rights of Disadvantaged People – Women, Children, Displaced persons and Disabled persons, including Aged and HIV Infected People. Implementation of Human Rights – National and State Human Rights Commission – Judiciary – Role of NGO's, Media, Educational Institutions, Social Movements.

TOTAL: 45 PERIODS

OUTCOME:

• Engineering students will acquire the basic knowledge of human rights.

REFERENCES:

- 1. Kapoor S.K., "Human Rights under International law and Indian Laws", Central Law Agency, Allahabad, 2014.
- 2. Chandra U., "Human Rights", Allahabad Law Agency, Allahabad, 2014.
- 3. Upendra Baxi, The Future of Human Rights, Oxford University Press, New Delhi

CE6018 COMPUTER AIDED DESIGN OF STRUCTURES

LT P C 3 0 0 3

OBJECTIVES:

• To introduce the students about computer graphics, structural analysis, design and optimization and expert systems, applications in analysis.

UNIT I INTRODUCTION

9

Fundamental reason for implementing CAD - Software requirements – Hardware components in CAD system – Design process - Applications and benefits.

UNIT II COMPUTER GRAPHICS

9

Graphic Software – Graphic primitives - Transformations - 2 Dimensional and 3 Dimensional transformations – Concatenation - Wire frame modeling - Solid modeling - Graphic standards - Drafting packages – Auto CAD.

UNIT III STRUCTURAL ANALYSIS

9

Principles of structural analysis - Fundamentals of finite element analysis - Concepts of finite elements - Stiffness matrix formulation - Variational Method - Weighted residual method - Problems - Conditions of convergence of functions - Analysis packages and applications.

UNIT IV DESIGN AND OPTIMIZATION

9

Principles of design of steel and RC structures - Beams and Columns - Applications to simple design problems - Optimization techniques - Algorithms - Linear programming.

UNIT V EXPERT SYSTEMS

9

Introduction to artificial intelligence - Knowledge based expert systems - Applications of KBES- Rules and decision tables - Inference mechanisms - simple applications

OUTCOMES:

TOTAL: 45 PERIODS

 Students will be able to implement ideas of computer aided design with advantages and demerits.

TEXTBOOKS:

1. Groover M.P. and Zimmers E.W. Jr., "CAD/CAM, Computer Aided Design and Manufacturing", Prentice Hall of India Ltd, New Delhi, 1993.

2. Krishnamoorthy C.S.Rajeev S., "Computer Aided Design", Narosa Publishing House, New Delhi, 1993

REFERENCES:

- 1. Harrison H.B., "Structural Analysis and Design", Part I and II Pergamon Press, Oxford, 1990
- 2. Rao S.S., "Optimisation Theory and Applications", Wiley Eastern Limited, New Delhi, 1977.
- 3. Richard Forsyth (Ed), "Expert System Principles and Case Studies", Chapman and Hall, London, 1989.

CE6019

INDUSTRIAL STRUCTURES

LTPC 3 0 0 3

OBJECTIVES:

 This course deals with some of the special aspects with respect to Civil Engineering structures in industries.

UNIT I PLANNING

9

Classification of industries and industrial structures – General requirements of various industries – Planning and layout of buildings and components.

UNIT II FUNCTIONAL REQUIREMENTS

9

Lighting – Ventilation - Acoustics – Fire safety – Guidelines from factories act.

UNIT III DESIGN OF STEEL STRUCTURES

9

Industrial roofs – Crane girders – Mills buildings – Bunkers and Silos - Chimney.

UNIT IV DESIGN OF R.C. STRUCTURES

۵

Corbels, Brackets and Nibs - Silos and bunkers - Chimney - Principles of folded plates and shell roofs

UNIT V PREFABRICATION

9

Principles of prefabrication – Prestressed precast roof trusses - Construction of roof and floor slabs - Wall panels.

TOTAL: 45 PERIODS

OUTCOMES:

 At the end of this course the student shall be able to design some of the structures used in industries.

TEXTBOOKS:

- 1. Ramamrutham.S., "Design of Reinforced Concrete Structures", Dhanpat Rai Publishing Company, 2007.
- 2. Varghese.P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India Eastern Economy Editions, 2nd Edition, 2003.
- 3. Bhavikatti.S.S., "Design of Steel Structures", J.K. International Publishing House Pvt.Ltd., 2009.

- 1. Henn W. "Buildings for Industry", Vol.I and II, London Hill Books, 1995
- 2. SP32-1986, Handbook on Functional Requirements of Industrial buildings, Bureau of Indian Standards, 1990
- 3. Structural Engineering Research Centre, Course Notes on Modern Developments in the Design and Construction of Industrial Structures, Madras, 1982
- 4. Koncz.J., "Manual of Precast Construction", Vol.I and II, Bauverlay GMBH, 1971.

2. Krishnamoorthy C.S.Rajeev S., "Computer Aided Design", Narosa Publishing House, New Delhi, 1993

REFERENCES:

- 1. Harrison H.B., "Structural Analysis and Design", Part I and II Pergamon Press, Oxford, 1990
- 2. Rao S.S., "Optimisation Theory and Applications", Wiley Eastern Limited, New Delhi, 1977.
- 3. Richard Forsyth (Ed), "Expert System Principles and Case Studies", Chapman and Hall, London, 1989.

CE6019

INDUSTRIAL STRUCTURES

LTPC 3 0 0 3

OBJECTIVES:

 This course deals with some of the special aspects with respect to Civil Engineering structures in industries.

UNIT I PLANNING

9

Classification of industries and industrial structures – General requirements of various industries – Planning and layout of buildings and components.

UNIT II FUNCTIONAL REQUIREMENTS

9

Lighting – Ventilation - Acoustics – Fire safety – Guidelines from factories act.

UNIT III DESIGN OF STEEL STRUCTURES

9

Industrial roofs – Crane girders – Mills buildings – Bunkers and Silos - Chimney.

UNIT IV DESIGN OF R.C. STRUCTURES

۵

Corbels, Brackets and Nibs - Silos and bunkers - Chimney - Principles of folded plates and shell roofs

UNIT V PREFABRICATION

9

Principles of prefabrication – Prestressed precast roof trusses - Construction of roof and floor slabs - Wall panels.

TOTAL: 45 PERIODS

OUTCOMES:

 At the end of this course the student shall be able to design some of the structures used in industries.

TEXTBOOKS:

- 1. Ramamrutham.S., "Design of Reinforced Concrete Structures", Dhanpat Rai Publishing Company, 2007.
- 2. Varghese.P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India Eastern Economy Editions, 2nd Edition, 2003.
- 3. Bhavikatti.S.S., "Design of Steel Structures", J.K. International Publishing House Pvt.Ltd., 2009.

- 1. Henn W. "Buildings for Industry", Vol.I and II, London Hill Books, 1995
- 2. SP32-1986, Handbook on Functional Requirements of Industrial buildings, Bureau of Indian Standards, 1990
- 3. Structural Engineering Research Centre, Course Notes on Modern Developments in the Design and Construction of Industrial Structures, Madras, 1982
- 4. Koncz.J., "Manual of Precast Construction", Vol.I and II, Bauverlay GMBH, 1971.

FINITE ELEMENT TECHNIQUES

LTPC 3 0 0 3

OBJECTIVES:

• To apprise the students about the basics of Finite Element theory, computer implementation of this theory and its practical applications.

UNIT I INTRODUCTION TO FINITE ELEMENT ANALYSIS AND FINITE ELEMENT FORMULATION TECHNIQUES

Introduction - Basic Concepts of Finite Element Analysis - Introduction to Elasticity - Steps in Finite Element Analysis - Virtual Work and Variational Principle - Galerkin Method- Finite Element Method: Displacement Approach - Stiffness Matrix and Boundary Conditions.

UNIT II ELEMENT PROPERTIES

9

Natural Coordinates - Triangular Elements - Rectangular Elements - Lagrange and Serendipity Elements - Solid Elements - Isoparametric Formulation - Stiffness Matrix of Isoparametric Elements - Numerical Integration: One, Two and Three Dimensional

UNIT III ANALYSIS OF FRAME STRUCTURES

9

Stiffness of Truss Members - Analysis of Truss - Stiffness of Beam Members - Finite Element Analysis of Continuous Beam - Plane Frame Analysis - Analysis of Grid and Space Frame.

UNIT IV FEM FOR TWO AND THREE DIMENSIONAL SOLIDS

q

Constant Strain Triangle - Linear Strain Triangle - Rectangular Elements - Numerical Evaluation of Element Stiffness - Computation of Stresses, Geometric Nonlinearity and Static Condensation - Axisymmetric Element - Finite Element Formulation of Axisymmetric Element - Finite Element Formulation for 3 Dimensional Elements

UNIT V APPLICATIONS OF FEM

9

TOTAL: 45 PERIODS

Plate Bending Problems - Finite Elements for Elastic Stability - Finite Elements in Fluid Mechanics - Dynamic Analysis

OUTCOMES:

• Students will be in a position to develop computer codes for any physical problems using FE techniques.

TEXTBOOKS:

- 1. Chandrupatla, T.R., and Belegundu, A.D., "Introduction to Finite Element in Engineering", Third Edition, Prentice Hall, India, 2003.
- 2. Krishnamoorthy C. S. ,"Finite Element Analysis Theory and Programming", Tata McGraw Hill Education, 1994
- 3. David V. Hutton, "Fundamentals of Finite Element Analysis", Tata McGraw Hill, 2004
- 4. Daryl L.Logan, "A First Course in Finite Element Method", Cengage Learning, 2012.

- 1. Reddy J.N., "An Introduction to Finite Element Method", McGraw-Hill, Intl. Student Edition, 1985
- 2. Zienkiewics, "The finite element method, Basic formulation and linear problems", Vol.1, 4th Edition, McGraw-Hill, Book Co., 1987
- 3. Rao S.S, "The Finite Element Method in Engineering", Pergaman Press, 2003.
- 4. Desai C.S. and. Abel J.F, "Introduction to the Finite Element Method", Affiliated East West Press, 1972.
- 5. Cook R. D., "Concepts and Applications of Finite Element Analysis", Wiley and Sons, 1989.

FINITE ELEMENT TECHNIQUES

LTPC 3 0 0 3

OBJECTIVES:

• To apprise the students about the basics of Finite Element theory, computer implementation of this theory and its practical applications.

UNIT I INTRODUCTION TO FINITE ELEMENT ANALYSIS AND FINITE ELEMENT FORMULATION TECHNIQUES

Introduction - Basic Concepts of Finite Element Analysis - Introduction to Elasticity - Steps in Finite Element Analysis - Virtual Work and Variational Principle - Galerkin Method- Finite Element Method: Displacement Approach - Stiffness Matrix and Boundary Conditions.

UNIT II ELEMENT PROPERTIES

9

Natural Coordinates - Triangular Elements - Rectangular Elements - Lagrange and Serendipity Elements - Solid Elements - Isoparametric Formulation - Stiffness Matrix of Isoparametric Elements - Numerical Integration: One, Two and Three Dimensional

UNIT III ANALYSIS OF FRAME STRUCTURES

9

Stiffness of Truss Members - Analysis of Truss - Stiffness of Beam Members - Finite Element Analysis of Continuous Beam - Plane Frame Analysis - Analysis of Grid and Space Frame.

UNIT IV FEM FOR TWO AND THREE DIMENSIONAL SOLIDS

q

Constant Strain Triangle - Linear Strain Triangle - Rectangular Elements - Numerical Evaluation of Element Stiffness - Computation of Stresses, Geometric Nonlinearity and Static Condensation - Axisymmetric Element - Finite Element Formulation of Axisymmetric Element - Finite Element Formulation for 3 Dimensional Elements

UNIT V APPLICATIONS OF FEM

9

TOTAL: 45 PERIODS

Plate Bending Problems - Finite Elements for Elastic Stability - Finite Elements in Fluid Mechanics - Dynamic Analysis

OUTCOMES:

• Students will be in a position to develop computer codes for any physical problems using FE techniques.

TEXTBOOKS:

- 1. Chandrupatla, T.R., and Belegundu, A.D., "Introduction to Finite Element in Engineering", Third Edition, Prentice Hall, India, 2003.
- 2. Krishnamoorthy C. S. ,"Finite Element Analysis Theory and Programming", Tata McGraw Hill Education, 1994
- 3. David V. Hutton, "Fundamentals of Finite Element Analysis", Tata McGraw Hill, 2004
- 4. Daryl L.Logan, "A First Course in Finite Element Method", Cengage Learning, 2012.

- 1. Reddy J.N., "An Introduction to Finite Element Method", McGraw-Hill, Intl. Student Edition, 1985
- 2. Zienkiewics, "The finite element method, Basic formulation and linear problems", Vol.1, 4th Edition, McGraw-Hill, Book Co., 1987
- 3. Rao S.S, "The Finite Element Method in Engineering", Pergaman Press, 2003.
- 4. Desai C.S. and. Abel J.F, "Introduction to the Finite Element Method", Affiliated East West Press, 1972.
- 5. Cook R. D., "Concepts and Applications of Finite Element Analysis", Wiley and Sons, 1989.

REPAIR AND REHABILITATION OF STRUCTURES

LTPC 3 0 0 3

OBJECTIVES:

 To make the students to gain the knowledge on quality of concrete, durability aspects, causes of deterioration, assessment of distressed structures, repairing of structures and demolition procedures.

UNIT I MAINTENANCE AND REPAIR STRATEGIES

9

Maintenance, Repair and Rehabilitation, Facets of Maintenance, importance of Maintenance, Various aspects of Inspection, Assessment procedure for evaluating a damaged structure, causes of deterioration.

UNIT II STRENGTH AND DURABILITY OF CONCRETE

g

Quality assurance for concrete – Strength, Durability and Thermal properties, of concrete - Cracks, different types, causes – Effects due to climate, temperature, Sustained elevated temperature, Corrosion - Effects of cover thickness.

UNIT III SPECIAL CONCRETES

9

Polymer concrete, Sulphur infiltrated concrete, Fibre reinforced concrete, High strength concrete, High performance concrete, Vacuum concrete, Self compacting concrete, Geopolymer concrete, Reactive powder concrete, Concrete made with industrial wastes.

UNIT IV TECHNIQUES FOR REPAIR AND PROTECTION METHODS 9 Non-destructive Testing Techniques, Epoxy injection, Shoring, Underpinning, Corrosion protection

techniques – Corrosion inhibitors, Corrosion resistant steels, Coatings to reinforcement, cathodic protection.

UNIT V REPAIR, REHABILITATION AND RETROFITTING OF STRUCTURES 9 Strengthening of Structural elements, Repair of structures distressed due to corrosion, fire,

Leakage, earthquake – DEMOLITION TECHNIQUES - Engineered demolition methods - Case studies.

TOTAL: 45 PERIODS

OUTCOMES:

 Students must gained knowledge on quality of concrete, durability aspects, causes of deterioration, assessment of distressed structures, repairing of structures and demolition procedures.

TEXTBOOKS:

- Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials, Maintenance and Repair", Longman Scientific and Technical UK, 1991.
- 2. Allen R.T. & Edwards S.C, Repair of Concrete Structures, Blakie and Sons, UK, 1987

- 1. Shetty M.S., "Concrete Technology Theory and Practice", S.Chand and Company, 2008.
- 2. Dov Kominetzky.M.S., "Design and Construction Failures", Galgotia Publications Pvt. Ltd., 2001
- 3. Ravishankar.K., Krishnamoorthy.T.S, "Structural Health Monitoring, Repair and Rehabilitation of Concrete Structures", Allied Publishers, 2004.
- 4. CPWD and Indian Buildings Congress, Hand book on Seismic Retrofit of Buildings, Narosa Publishers, 2008.
- 5. Gambhir.M.L., "Concrete Technology", McGraw Hill, 2013

REPAIR AND REHABILITATION OF STRUCTURES

LTPC 3 0 0 3

OBJECTIVES:

 To make the students to gain the knowledge on quality of concrete, durability aspects, causes of deterioration, assessment of distressed structures, repairing of structures and demolition procedures.

UNIT I MAINTENANCE AND REPAIR STRATEGIES

9

Maintenance, Repair and Rehabilitation, Facets of Maintenance, importance of Maintenance, Various aspects of Inspection, Assessment procedure for evaluating a damaged structure, causes of deterioration.

UNIT II STRENGTH AND DURABILITY OF CONCRETE

g

Quality assurance for concrete – Strength, Durability and Thermal properties, of concrete - Cracks, different types, causes – Effects due to climate, temperature, Sustained elevated temperature, Corrosion - Effects of cover thickness.

UNIT III SPECIAL CONCRETES

9

Polymer concrete, Sulphur infiltrated concrete, Fibre reinforced concrete, High strength concrete, High performance concrete, Vacuum concrete, Self compacting concrete, Geopolymer concrete, Reactive powder concrete, Concrete made with industrial wastes.

UNIT IV TECHNIQUES FOR REPAIR AND PROTECTION METHODS 9 Non-destructive Testing Techniques, Epoxy injection, Shoring, Underpinning, Corrosion protection

techniques – Corrosion inhibitors, Corrosion resistant steels, Coatings to reinforcement, cathodic protection.

UNIT V REPAIR, REHABILITATION AND RETROFITTING OF STRUCTURES 9 Strengthening of Structural elements, Repair of structures distressed due to corrosion, fire,

Leakage, earthquake – DEMOLITION TECHNIQUES - Engineered demolition methods - Case studies.

TOTAL: 45 PERIODS

OUTCOMES:

 Students must gained knowledge on quality of concrete, durability aspects, causes of deterioration, assessment of distressed structures, repairing of structures and demolition procedures.

TEXTBOOKS:

- Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials, Maintenance and Repair", Longman Scientific and Technical UK, 1991.
- 2. Allen R.T. & Edwards S.C, Repair of Concrete Structures, Blakie and Sons, UK, 1987

- 1. Shetty M.S., "Concrete Technology Theory and Practice", S.Chand and Company, 2008.
- 2. Dov Kominetzky.M.S., "Design and Construction Failures", Galgotia Publications Pvt. Ltd., 2001
- 3. Ravishankar.K., Krishnamoorthy.T.S, "Structural Health Monitoring, Repair and Rehabilitation of Concrete Structures", Allied Publishers, 2004.
- 4. CPWD and Indian Buildings Congress, Hand book on Seismic Retrofit of Buildings, Narosa Publishers, 2008.
- 5. Gambhir.M.L., "Concrete Technology", McGraw Hill, 2013

EARTHQUAKE GEOTECHNICAL ENGINEERING

LTPC 3003

OBJECTIVES:

- To understand the dynamics of earth and to estimate dynamic properties of soils
- To develop the site specific design spectrum for design of sub structure and evaluation of liquefaction potential.

UNIT I SEISMOLOGY AND EARTHQUAKES

7

Internal Structure of the Earth – Continental Drift and Plate Tectonics – Faults – Elastic rebound theory – Different sources of Seismic Activity – Geometric Notation – Location of Earthquakes – Size of Earthquakes.

UNIT II DYNAMIC PROPERTIES OF SOILS

11

Measurement of Dynamic Properties of soils – Field Tests – Low strain – Seismic Reflection – Seismic Refraction – Horizontal layering – Steady State Vibration – Spectral analysis of surface wave – Seismic cross hole – Down Hole – Up hole – tests – Laboratory tests – Resonance Column Test – Bender Element – Cyclic Tri-axial test.

UNIT III SEISMIC HAZARD ANALYSIS

9

Identification and Evaluation of Earthquake Sources – Geologic Evidence – Tectonic Evidence – Historical Seismicity – Instrumental Seismicity – Deterministic Seismic Hazard Analysis – Probabilistic Seismic Hazard Analysis.

UNIT IV GROUND RESPONSE ANALYSIS

9

Ground Response Analysis – One Dimensional Linear – Evaluation of Transfer Function – Uniform undamped soil on rigid rock – Uniform damped soil on Rigid Rock – Uniform damped soil on elastic rock – layered damped soil on elastic rock – Equivalent linear Approximation – Deconvolution.

UNIT V LIQUEFACTION ANALYSIS

9

Liquefaction – Flow liquefaction – Cyclic Mobility – Evaluation of liquefaction Hazards – Liquefaction Susceptibility – Criteria – Historical Geologic – Compositional – State – Evaluation of Initiation of Liquefaction – Cyclic stress approach – Characterization of Liquefaction Resistance – SPT Test – Various correction factor – Factor of Safety.

OUTCOMES:

TOTAL: 45 PERIODS

 Students are able to perform site specific response analysis to develop design spectra and to do detailed liquefaction analysis using SPT data.

TEXTBOOKS:

- 1. Krammer S.L., "Geotechnical Earthquake Engineering", Prentice Hall, International Series, Pearson Education Inc and Donling Kindersley Publishing Inc. 2013
- 2. Roberto Villaverde, "Fundamental Concepts of Earthquake Engineering", CRC Press Taylor & Francis Group, 2009.

- 1. Kameswara Rao, N.S.V., "Dynamics soil tests and applications", Wheeler Publishing New Delhi 2000
- 2. Kameswara Rao, "Vibration Analysis and Foundation Dynamics", Wheeler Publishing, New Delhi. 1998.
- 3. McGuire, R.K. "Seismic Hazard and Risk Analysis Earthquake Engineering" Research Institute, 2004.
- 4. Mahanti, N.C. Samal, S.K. Datta, P. Nag.N.K., "Diaster Management", Narosa Publishing House, New Delhi, India, 2006.

EARTHQUAKE GEOTECHNICAL ENGINEERING

LTPC 3003

OBJECTIVES:

- To understand the dynamics of earth and to estimate dynamic properties of soils
- To develop the site specific design spectrum for design of sub structure and evaluation of liquefaction potential.

UNIT I SEISMOLOGY AND EARTHQUAKES

7

Internal Structure of the Earth – Continental Drift and Plate Tectonics – Faults – Elastic rebound theory – Different sources of Seismic Activity – Geometric Notation – Location of Earthquakes – Size of Earthquakes.

UNIT II DYNAMIC PROPERTIES OF SOILS

11

Measurement of Dynamic Properties of soils – Field Tests – Low strain – Seismic Reflection – Seismic Refraction – Horizontal layering – Steady State Vibration – Spectral analysis of surface wave – Seismic cross hole – Down Hole – Up hole – tests – Laboratory tests – Resonance Column Test – Bender Element – Cyclic Tri-axial test.

UNIT III SEISMIC HAZARD ANALYSIS

9

Identification and Evaluation of Earthquake Sources – Geologic Evidence – Tectonic Evidence – Historical Seismicity – Instrumental Seismicity – Deterministic Seismic Hazard Analysis – Probabilistic Seismic Hazard Analysis.

UNIT IV GROUND RESPONSE ANALYSIS

9

Ground Response Analysis – One Dimensional Linear – Evaluation of Transfer Function – Uniform undamped soil on rigid rock – Uniform damped soil on Rigid Rock – Uniform damped soil on elastic rock – layered damped soil on elastic rock – Equivalent linear Approximation – Deconvolution.

UNIT V LIQUEFACTION ANALYSIS

9

Liquefaction – Flow liquefaction – Cyclic Mobility – Evaluation of liquefaction Hazards – Liquefaction Susceptibility – Criteria – Historical Geologic – Compositional – State – Evaluation of Initiation of Liquefaction – Cyclic stress approach – Characterization of Liquefaction Resistance – SPT Test – Various correction factor – Factor of Safety.

OUTCOMES:

TOTAL: 45 PERIODS

 Students are able to perform site specific response analysis to develop design spectra and to do detailed liquefaction analysis using SPT data.

TEXTBOOKS:

- 1. Krammer S.L., "Geotechnical Earthquake Engineering", Prentice Hall, International Series, Pearson Education Inc and Donling Kindersley Publishing Inc. 2013
- 2. Roberto Villaverde, "Fundamental Concepts of Earthquake Engineering", CRC Press Taylor & Francis Group, 2009.

- 1. Kameswara Rao, N.S.V., "Dynamics soil tests and applications", Wheeler Publishing New Delhi 2000
- 2. Kameswara Rao, "Vibration Analysis and Foundation Dynamics", Wheeler Publishing, New Delhi. 1998.
- 3. McGuire, R.K. "Seismic Hazard and Risk Analysis Earthquake Engineering" Research Institute, 2004.
- 4. Mahanti, N.C. Samal, S.K. Datta, P. Nag.N.K., "Diaster Management", Narosa Publishing House, New Delhi, India, 2006.

- 5. Wai-Fah Chen and Cgharles Scawthem, "Earthquake Engineering Hand book", Caspress, 2003.
- 6. Robert W. Day, "Geotechnical Earthquake Engineering" Hand book, McGraw Hill, 2002.

UNIT V CONTROLLING

9

System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

TOTAL: 45 PERIODS

TOTAL: 180 PERIODS

OUTCOMES:

• Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management

TEXTBOOKS:

- 1. Stephen P. Robbins & Mary Coulter, "Management", 10th Edition, Prentice Hall (India) Pvt. Ltd., 2009.
- 2. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.

REFERENCES:

- 1. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" 7th Edition, Pearson Education, 2011.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Harold Koontz & Heinz Weihrich "Essentials of management" Tata McGraw Hill, 1998.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata McGraw Hill, 1999

CE6811 PROJECT WORK L T P C 0 0 12 6

OBJECTIVES:

 To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

OUTCOMES:

• On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

CE6001 HYDROLOGY LTPC