ENGINEERING THERMODYNAMICS

COURSE OBJECTIVES

- To provide knowledge in the basic concepts, processes, first law and applications of thermodynamic system.
- To know about the second law, Carnot cycle and concept of entropy.
- To familiarize the properties of pure substance and steam power cycle.
- To understand the concepts of ideal and real gases and thermodynamics relations.
- To study the concepts of psychometric properties and processes.

UNIT I BASIC CONCEPT AND FIRST LAW

15

Basic concepts - concept of continuum, macroscopic approach, Thermodynamic systems - closed, open and isolated. Property, state, path and process, quasi-static process, work, modes of work, Zeroth law of thermodynamics – concept of temperature and heat. Concept of ideal and real gases. First law of thermodynamics – application to closed and open systems, internal energy, specific heat capacities, enthalpy, steady flow process with reference to various thermal equipments.

UNIT II SECOND LAW

15

Second law of thermodynamics – Kelvin's and Clausius statements of second law. Reversibility and irreversibility. Carnot theorem, Carnot cycle, reversed carnot cycle, efficiency, COP. Thermodynamic temperature scale, Clausius inequality, concept of entropy, entropy of ideal gas, principle of increase of entropy – availability.

UNIT III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE 15

Properties of pure substances – Thermodynamic properties of pure substances in solid, liquid and vapour phases, phase rule, P-V, P-T, T-V, T-S, H-S diagrams, PVT surfaces, thermodynamic properties of steam. Calculations of work done and heat transfer in nonflow and flow processes. Standard Rankine cycle, Reheat and regenerative cycle.

UNIT IV IDEAL AND REAL GASES AND THERMODYNAMIC RELATIONS 15

Gas mixtures – properties ideal and real gases, equation state, Avagadro's Law, Vander Waal's equation of state, compressability factor, compressability chart – Dalton's law of partial pressure, exact differentials, T-D relations, Maxwell's relations, Clausius Clapeyron equations, Joule – Thomson coefficient.

UNIT V PSYCHROMETRY

15

Psychrometry and psychrometric charts, property calculations of air vapour mixtures. Psychrometric process – Sensible heat exchange processes. Latent heat exchange processes. Adiabatic mixing, evaporative cooling.

TOTAL: 75 PERIODS

COURSE OUTCOMES

At the end of the course the students will be able to

- learn the basic concept ,first law, concept of ideal and real gases.
- understand the real time applications of Carnot theorem, COP, Clausius inequality and availability.
- enhance the knowledge on properties of pure substances and steam power cycle.
- know the real time applications of ideal ,real gases and thermodynamic relations.
- understand the applications of psychrometry.

TEXT BOOKS

- 1. Nag.P.K., "Engineering Thermodynamics", Tata McGraw-Hill, New Delhi, 1998.
- Cengel, 'Thermodynamics An Engineering Approach' Third Edition 2003 Tata McGraw Hill, New Delhi.

REFERENCES

- 1. Holman.J.P., "Thermodynamics", 3rd Ed. McGraw-Hill, 1995.
- 2. Venwylen and Sontag, "Classical Thermodynamics", Wiley Eastern, 1987
- 3. Arora C.P, "Thermodynamics", Tata McGraw-Hill, New Delhi, 2003.
- 4. Rathakrishnan.E, "Fundamentals of Engineering Thermodynamics" Second Edition, PHI Learning Pvt. Ltd, 2005
- 5. Achuthan.M "Engineering Thermodynamics" PHI Learning Private Limited, New Delhi ,2009

WEB LINKS

- 1. home.iitk.ac.in/~suller/lectures.htm
- 2. http://personal.cityu.edu.hk/~bsapplec/psychrom.htm

						_				gramme o		Weak		
COs						Pr	ogram	me Out	comes(l	POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	-	-	-	-	-	-	-	2	3	2
CO2	3	3	3	3	-	-	-	-	-	-	-	2	3	3
CO3	3	3	3	3	-	-	-	-	1	-	-	2	3	2
CO4	3	3	3	3	-	-	-	-	-	-	-	2	3	2
CO5	3	3	3	3	=	=	3	=	=	-	-	2	3	3

- To familiarize the concepts of basic manufacturing processes, metal casting processes and melting furnaces.
- To learn the working principles of arc welding, gas welding and special welding processes.
- To provide knowledge in manufacturing processes, hot and cold working processes with their typical applications.
- To understand the sheet metal characteristics, operations, and special forming processes.
- To get exposure to various types of plastic injection molding processes and typical applications.

UNIT I METAL CASTING PROCESSES

9

Sand casting – Sand moulds - Type of patterns – Pattern materials – Pattern allowances – Types of Moulding sand – Properties – Core making – Methods of Sand testing – Moulding machines – Types of moulding machines - Melting furnaces – Working principle of Special casting processes – Shell, investment casting – Ceramic mould – Lost Wax process – Pressure die casting – Centrifugal casting – CO2 process – Sand Casting defects – Casting cleaning process - Inspection methods

UNIT II JOINING PROCESSES

9

Fusion welding processes – Types of Gas welding – Equipments used – Flame characteristics – Filler and Flux materials - Arc welding equipments - Electrodes – Coating and specifications – Principles of Resistance welding – Spot/butt, seam welding – Percusion welding - Gas metal arc welding – Flux cored – Submerged arc welding – Electro slag welding – TIG welding – Principle and application of special welding processes - Plasma arc welding – Thermit welding – Electron beam welding – Friction welding – Diffusion welding – Weld defects – Brazing and soldering process – Methods and process capabilities – Filler materials and fluxes – Types of Adhesive bonding.

UNIT III BULK DEFORMATION PROCESSES

9

Hot working and cold working of metals – Forging processes – Open, impression and closed die forging – Characteristics of the process – Types of Forging Machines – Typical forging operations – Rolling of metals – Types of Rolling mills - Flat strip rolling – Shape rolling operations – Defects in rolled parts - Principle of rod and wire drawing - Tube drawing – Principles of Extrusion – Types of Extrusion – Hot and Cold extrusion – Equipments used. Case Study: Manufacturing solid rocket-motor case segment for the space shuttle.

UNIT IV SHEET METAL PROCESSES

9

Sheet metal characteristics - Typical shearing operations, bending and drawing operations - Stretch forming operations - Formability of sheet metal - Test methods - Working principle and application of special

forming processes - Hydro forming - Rubber pad forming - Metal spinning - Introduction to Explosive forming, Magnetic pulse forming, Peen forming, Super plastic forming.

UNIT V MANUFACTURING OF PLASTIC COMPONENTS

9

Types of plastics - Characteristics of the forming and shaping processes - Moulding of Thermoplastics - Working principles and typical applications of - Injection moulding - Plunger and screw machines - Compression moulding, Transfer moulding - Typical industrial applications - Introduction to Blow moulding - Rotational moulding - Film blowing - Extrusion - Thermoforming, - Bonding of Thermoplastics.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course the students will be able to

- know about the types of casting and molding processes and melting furnaces.
- understand the various types of welding methods and their applications.
- analyze the various types of Forging processes, types of rolling and extrusion processes.
- learn the various types of Sheet metal characteristics and Typical shearing operations.
- gain the knowledge on types of plastics and working of Injection Molding Machines.

TEXT BOOKS

- Hajra Choudhury, "Elements of Workshop Technology, Vol. I and II", Media Promotors Pvt Ltd., Mumbai, 2001
- 2. S.Gowri, P.Hariharan, and A.SureshBabu, "Manufacturing Technology 1", Pearson Education, 2008.

REFERENCES

- B.S. MagendranParashar & R.K. Mittal,"Elements of Manufacturing Processes", Prentice Hall of India, 2003.
- 2. P.N. Rao, "Manufacturing Technology", Tata McGraw-Hill Publishing Limited, II Edition, 2002.
- 3. P.C. Sharma, "A text book of production technology", S. Chand and Company, IV Edition, 2003.
- 4. Begman, 'Manufacturing Process', John Wilely& Sons, VIII Edition, 2005.
- 5. SeropeKalpajian, Steven R.Schmid, Manufacturing Engineering and Technology, Pearson Education, Inc.2002 (Second Indian Reprint).

WEB LINKS

- 1. www.bookdepository.com
- 2. www.elsiver.com

Cos			(_				gramme o		-Weak				
						Pr	ogramı	me Out	comes(POs)						
	PO1															
CO1	3															
CO2	3	2	2	-	(2)	2	1	-	-	-	2	2	3	3		
CO3	3	2	2	-	(2)	2	1	-	-	_	2	2	3	3		
CO4	3	2	2	-	2	2	1	-	-	-	2	2	3	3		
CO5	3	2	2	-	2	2	1	_	-	-	2	2	3	3		

- To learn about the micro-structure of materials, phase diagrams for different binary Alloys.
- To impart knowledge on different types of phase diagrams of alloys and types of heat treatments.
- To identify the various mechanical properties of materials through different types of tests and their significance.
- To know about different types of alloy steels with their applications, non-ferrous alloys with particular reference to copper, aluminum, magnesium, zinc, nickel, titanium, lead and tin alloys.
- To gain knowledge on the types, structure, properties and applications of polymers, ceramics and composites.

Review (Not for Exam)

Crystal structure – BCC, FCC and HCP structure – unit cell – crystallographic planes and directions, miller indices – crystal imperfections, point, line, planar and volume defects – Grain size, ASTM grain size number.

UNIT I CONSTITUTION OF ALLOYS AND PHASE DIAGRAMS

Constitution of alloys – Solid solutions, substitutional and interstitial – phase diagrams, Isomorphous, eutectoid, eutectic, peritectic and peritectroid reactions, Iron – Iron carbide equilibrium diagram. Classification of steel and cast Iron, microstructure, properties and applications.

UNIT II HEAT TREATMENT

9

Definition – Full annealing, stress relief, recrystallisation and spheroidizing –normalising, hardening and tempering of steel. Isothermal transformation diagrams – cooling curves superimposed on I.T. diagram, CCR - Hardenability, Jominy end quench test – Austempering, martempering – case hardening - carburising, nitriding, cyaniding, carbonitriding, flame and induction hardening.

UNIT III MECHANICAL PROPERTIES AND TESTING

9

Mechanism of plastic deformation, slip and twinning – Types of fracture – Testing of materials under tension, compression and shear loads – Hardness tests (Brinell, Vickers and Rockwell), Impact test - Izod and Charpy, Fatigue and creep tests, fracture toughness tests.

UNIT IV FERROUS AND NON FERROUS METALS

9

Effect of alloying elements on steel (Mn, Si, Cr, Mo, V, Ti & W) - stainless and tool steels – HSLA - maraging steels – Cast Irons - Grey, White malleable, spheroidal – Graphite, Alloy cast irons, Copper and Copper alloys - Brass, Bronze and Cupronickel – Aluminum and Al-Cu alloy – precipitation hardening—Bearing alloys.

UNIT V NON-METALLIC MATERIALS

Polymers – types of polymer, commodity and engineering polymers – Properties and applications of PE, PP, PS, PVC, PMMA, PET, PC, PA, ABS, PI, PAI, PPO, PPS, PEEK, PTFE Polymers – Urea and Phenol Formaldehydes – Engineering Ceramics – Introduction to Fibre reinforced plastics.

TOTAL: 45 PERIODS

9

COURSE OUTCOMES

After completion of this course the students will be able to

- gain knowledge on micro-structure of materials, iron-carbon and other phase diagrams.
- acquire knowledge on isothermal transformation diagram and various types of heat treatments.
- know the concepts of plastic deformation, strengthening mechanisms and fracture of metals, various mechanical testing methods for properties and their engineering importance.
- understand different types alloy steels and their engineering applications, non-ferrous alloys with particular reference to copper, aluminium, magnesium, zinc, nickel, titanium, lead and tin alloys.
- learn the types, structure, properties and applications of polymers, composites materials.

TEXT BOOK

1. Kenneth G.Budinski and Michael K.Budinski "Engineering Materials" Prentice-Hall of India Private Limited, 4th Indian Reprint 2002.

REFERENCES

- 1. William D Callister "Material Science and Engineering", John Wiley and Sons 2007.
- 2. Raghavan. V "Materials Science and Engineering", Prentice Hall of India Pvt., Ltd., 2007.
- 3. Sydney H.Avner "Introduction to Physical Metallurgy" McGraw Hill Book Company, 2007.
- 4. Dieter G. E., Mechanical Metallurgy, McGraw Hill Book Company, 1988.
- 5. O.P. Khanna, A text book of Materials Science and Metallurgy, Khanna Publishers, 2003.

WEB LINKS

- 1. nptel.ac.in/courses/113106032/9%20-%20Phase%20diagrams.pdf
- 2. https://books.google.co.in/books?isbn=1856178099

						_				gramme o		Weak		
COs						Pr	ogram	me Out	comes(l	POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	1	-	-	-	-	1
CO2	3	3	-	1	2	-	-	-	-	-	-	-	-	2
CO3	2	-	1	-	-	P- 1	100	COLLEG	14	-	-	-	-	1
CO4	3	3	1	2	-	2 /		proved OF STUDIE	STE	-	-	-	-	1
CO5	2	-	-	-	2	EN	Mechanic	of STUDIE	- Ja	-	-	-	-	1

- To introduce the basic concepts of fluid mechanics for thorough understanding of the properties of fluids.
- To introduce the dynamics of fluids through the control volume approach.
- To understand the concepts of dimensionless parameters and its applications.
- To study the working principles of pumps and turbines, also their applications.
- To describe and learn the working of reciprocating and rotodynamic hydraulic machines

UNIT I INTRODUCTION

9

Units & Dimensions. Properties of fluids – Specific gravity, specific weight, viscosity, compressibility, vapour pressure and gas laws – capillarity and surface tension. Flow characteristics: concepts of system and control volume. Application of control volume to continuity equiation, energy equation, momentum equation and moment of momentum equation.

UNIT II FLOW THROUGH CIRCULAR CONDUITS

9

Laminar flow though circular conduits and circular annuli. Boundary layer concepts. Boundary layer thickness. Hydraulic and energy gradient. Darcy – Weisbachequaition. Friction factor and Moody diagram. Commercial pipes. Minor losses. Flow though pipes in series and in parallel.

UNIT III DIMENSIONAL ANALYSIS

9

Dimension and units: Buckingham's Π theorem. Discussion on dimensionless parameters. Models and similar sim

UNIT IV ROTO DYNAMIC MACHINES

9

Homologus units. Specific speed. Elementary cascade theory. Theory of turbo machines. Euler's equation. Hydraulic efficiency. Velocity components at the entry and exit of the rotor. Velocity triangle for single stage radial flow and axial flow machines. Centrifugal pumps, turbines, performance curves for pumps and turbines.

UNIT V POSITIVE DISPLACEMENT MACHINES

9

Recriprocating pumps, Indicator diagrams, Work saved by air vessels. Rotary pumps. Classification. Working and performance curves.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course the student will be able to

• understand the fundamentals of fluid mechanics, including the basics of hydraulics, types of fluidswater, oils and its uses along with fluid properties.

- analyze fluid flow phenomena with the application of momentum and energy equation.
- perform dimensional analysis and to learn the several non-dimensional numbers with real time applications.
- acquire knowledge about the working principle of turbo machinery.
- learn the different types of pumps, fluid machineries and its working principles.

TEXT BOOKS

- 1. Streeter. V. L., and Wylie, E.B., Fluid Mechanics, McGraw Hill, 1983.
- 2. Rathakrishnan. E, Fluid Mechanics, Prentice Hall of India (II Ed.), 2007.

REFERENCES

- Ramamritham. S, Fluid Mechanics, Hydraulics and Fluid Machines, DhanpatRai& Sons, Delhi, 1988.
- 2. Kumar. K.L., Engineering Fluid Mechanics (VII Ed.) Eurasia Publishing House (P) Ltd., New Delhi, 1995.
- 3. Bansal, R.K., Fluid Mechanics and Hydraulics Machines, Laxmi Publications (P) Ltd., New Delhi.
- 4. Grabel.W.P, Engineering Fluid Mechanics, Taylor Francis, Indian Reprint, 2011.
- 5. Modi P.N and Seth S.M, Hydraulics and Fluid Mechanics, Standard Book House, New Delhi 2004.

WEB LINK

- 1. www.mechanical.in/fluid-mechanics-and-machinery
- 2. http://nptel.ac.in/courses/105101082/1

			(_				gramme o		Weak			
COs						Pr	ogramı	me Out	comes(l	POs)					
	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO 10 PO11 PO12 PS01 PS02													
CO1	3	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO 10 PO11 PO12 PSO1 PSO2													
CO2	3	3	3	2	-	-	-	-	-	-	-	2	2	2	
CO3	3	3	3	2	-	-	-	-	-	-	-	2	2	2	
CO4	3	3	3	2	-	-	-	-	-	-	-	2	2	2	
CO5	3	3	3	2	-	-	-	-	-	-	-	2	2	2	

- To gain hands on experience on working of general purpose machine tools and various manufacturing processes.
- To acquire real-time knowledge on Injection molding process and metal joining methods like Welding and Brazing.
- To gain practical knowledge on fabrication of sheet metal work.
- To understand the design and manufacturing of simple patterns.

Lathe

- 1.1. Facing, plain turning and step turning
- 1.2. Taper turning using compound rest, Tailstock set over, etc
- 1.3. Single start V thread (LH & RH), Knurling (Diamond & Single Start)
- 1.4. Internal thread cutting (Metric & BSW)

Welding exercises

- 2.1. Horizontal, Vertical and overhead welding.
- 2.2. Gas Cutting, Gas Welding
- 2.3. Brazing for demonstration purpose

Sheet metal work

- 3.1. Fabrication of sheet metal tray
- 3.2. Fabrication of a funnel

Preparation of sand mould

- 4.1. Mould with solid, split patterns
- 4.2. Mould with loose-piece pattern
- 4.3. Mould with Core

Metal Casting - Demo

5.1 Cube (or) Gear Blank - for demonstration purpose

TOTAL: 60 PERIODS

COURSE OUTCOMES

At the end of the course students will be able to

- handle the Capstan or Turret Lathe and carry out various lathe operations.
- perform the metal joining welding operations such as lap-joint, butt joint and T-joint.
- make various sheet metal operations.
- understand about foundry technology and its applications.

						-				gramme ou		Weak			
COs						Pr	ogram	me Out	comes(l	POs)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2	
CO1	3	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO 10 PO11 PO12 PS01 PS02 1 - - - - 2 1 2 2 2 3 2													
CO2	3	1	-	-	-	-	-	2	1	2	2	2	3	2	
CO3	3	1	-	-	-	-	-	2	1	2	2	2	3	2	
CO4	3	1	-	-	-	-	-	2	1	2	2	(2)	3	2	

- To compute Coefficient of discharge of given Orifice meter.
- To calculate the rate of flow using Rota meter.
- To determine friction factor for a given set of pipes.
- To characterize reciprocating and gear pump.

LIST OF EXPERIMENTS

- Determination of the Coefficient of discharge of given Orifice meter.
- Determination of the Coefficient of discharge of given Venturi meter.
- Calculation of the rate of flow using Rota meter.
- Determination of friction factor for a given set of pipes.
- Conducting experiments and drawing the characteristic curves of centrifugal pump/ submersible
 pump
- Conducting experiments and drawing the characteristic curves of reciprocating pump.
- Conducting experiments and drawing the characteristic curves of Gear pump.
- Conducting experiments and drawing the characteristic curves of Pelton wheel.
- Conducting experiments and drawing the characteristics curves of Francis turbine.
- Conducting experiments and drawing the characteristic curves of Kaplan turbine.

TOTAL: 60 PERIODS

COURSE OUTCOMES

At the end of the course the students will be able to

- determine the Coefficient of discharge of given Orifice meter.
- analyze the rate of flow using Rota meter
- understand the friction factor for a given set of pipes.
- select an appropriate pump for a specific application.

										gramme o				
				(1/2/3 i)	ndicates	streng	th of co	rrelatio	n)3-Str	ong, 2-M	edium, 1-	Weak		
COs						Pr	ogram	me Out	comes(l	POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	- 50	B.756	W 500	_	i	-	-	2	2	2
CO2	3	3	3	2	-	10		OLLEGE	1	-	-	2	2	2
CO3	3	2	3	2	-	City 8	DARB OF	red STUDIES	THE SERVICE SE	-	-	2	2	2
CO4	3	3	3	2	- /	We Me	chanical E	1 -	Não!	-	-	2	2	2

- To introduce the basic principles of thermodynamics via real-world engineering examples, to show students how thermodynamic is applied in engineering practice.
- To understand the fundamentals of operation of internal combustion engines, the factors affecting their performance, operation, fuel requirements and environmental impact.
- To provide knowledge about the analysis of various cycles used for power generation, combustion and kinetics involved in turbines.
- To acquire knowledge on design and working principles of compressors.
- To learn the methods of refrigeration and its types, psychrometry and its principles.

UNIT I GAS POWER CYCLES

9

Otto, Diesel, Dual, Brayton cycles, Calculation of mean effective pressure, and air standard efficiency - Actual and theoretical PV diagram of four stroke and two stroke engines

UNIT II INTERNAL COMBUSTION ENGINES

9

Classification - Components and their function. Valve timing diagram and port timing diagram - actual and theoretical p-V diagram of four stroke and two stroke engines. Governing of I.C. engines -Simple and complete Carburetor. MPFI, Diesel pump and injector system. Battery and Magneto Ignition System - Principles of Combustion and knocking in SI and CI Engines. Turbulence in S.I. engines - Lubrication and Cooling systems. Performance calculation.

UNIT III STEAM NOZZLES AND TURBINES

9

Flow of steam through nozzles, shapes of nozzles, effect of friction, critical pressure ratio, supersaturated flow, Impulse and Reaction principles, compounding, velocitydiagram for simple and multi-stage turbines, speed regulations—Governors.

UNIT IV AIR COMPRESSORS

9

Classification and working principle of various types of compressors, work of compression with and without clearance, Volumetric efficiency, Isothermal efficiency and Isentropic efficiency of reciprocating compressors, Multistage air compressor and inter cooling –work of multistage air compressor

UNIT V REFRIGERATION AND AIR CONDITIONING

9

Refrigerants classification, properties and applications - Vapour compression refrigeration cycle- super heat, sub cooling – Performance calculations - working principle of vapour absorption system, Ammonia –

Water, Lithium bromide —water systems (Description only). Air conditioning system - Processes, Types and Working Principles - Concept of RSHF, GSHF, ESHF-Cooling Load calculations.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon completion of this course, the students will be able to

- analyze and apply the different gas power cycles for various requirements.
- know about the internal combustion engine components, operation and its performance.
- gain knowledge on the basic concepts of steam nozzles, turbines and their functions.
- learn the Performance characteristics of Air compressors.
- acquire knowledge about the various refrigeration techniques, psychrometric principles and cooling load calculations.

TEXT BOOKS

- 1. Sarkar, B.K,"Thermal Engineering" Tata McGraw-Hill Publishers, 2007
- 2. Kothandaraman.C.P., Domkundwar.S and Domkundwar. A.V., "A Course in Thermal Engineering," Dhanpat Rai & Sons, Fifth edition, 2002

REFERENCES

- 1. Rajput. R. K., "Thermal Engineering" S.ChandPublishers, 2000
- 2. Arora.C.P,"Refrigeration and Air Conditioning," Tata McGraw-Hill Publishers 1994
- 3. Ganesan V." Internal Combustion Engines", Third Edition, Tata Mcgraw-Hill 2007
- 4. Rudramoorthy, R, "Thermal Engineering", Tata McGraw-Hill, New Delhi, 2003
- 5. R.S.Khurmi & J.K. Gupta "A Textbook Of Thermal Engineering" S. Chand, 2008

WEB LINKS

- 1. http://www.rejinpaul.com/2013/06/anna-university-me2301-thermal-engineering-notes-mech-5th-sem.html
- 2. www.iannauniversity.com/.../me2301-thermal-engineering-lecture.html

			(1/			_				gramme ot a g, 2-Medi		eak				
COs						Pr	ogram	me Out	comes(l	POs)						
	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO 10 PO11 PO12 PSO1 PSO2														
CO1	3	3 3 3 2 3 2 3 2														
CO2	3															
CO3	3	3	3	2	2	-	3	-	ı	ı	ı	2	3	2		
CO4	3	3	3	2	2	-	3	. <u>-</u>	aing C	OLLEGE	<u> </u>	2	3	3		
CO5	3	3	3	2	2	-	3	(SIN)	POARD OF	STUDIES	<u> </u>	2	3	3		

- To familiarize the concepts of machines, mechanisms and related terminology.
- To analyze the parameters of displacement, velocity and acceleration for planer mechanism graphically.
- To understand the importance of cam profiles for different types of motions.
- To describe the types of gear trains and its variation in speed through theoretical approach.
- To know the role of friction in belt drives and brakes.

UNIT I BASICS OF MECHANISMS

7

Definitions – Link, Kinematic pair, Kinematic chain, Mechanism, and Machine. –Degree of Freedom – Mobility - Kutzbach criterion (Gruebler's equation) -Grashoff'slawKinematic Inversions of four-bar chain and slider crank chain - Mechanical Advantage-Transmission angle. Description of common Mechanisms - Offset slider mechanism as quick return mechanisms, Pantograph, Straight line generators (Peaucellier and Watt mechanisms), Steering gear for automobile, Hooke's joint, Toggle mechanism, Ratchets and escapements - Indexing Mechanisms.

UNIT II KINEMATIC ANALYSIS

10

Analysis of simple mechanisms (Single slider crank mechanism and four bar mechanism) - Graphical Methods for displacement, velocity and acceleration; Shaping machine mechanism - Coincident points – Coriolis acceleration - Analytical method of analysis of slider crank mechanism and four bar mechanism. Approximate analytical expression for displacement, velocity and acceleration of piston of reciprocating engine mechanism.

UNIT III KINEMATICS OF CAMS

8

Classifications - Displacement diagrams - Parabolic, Simple harmonic and Cycloidal motions – Graphical construction of displacement diagrams and layout of plate cam profiles - circular arc and tangent cams - Pressure angle and undercutting.

UNIT IV GEARS 10

Classification of gears – Gear tooth terminology - Fundamental Law of toothed gearing and involute gearing – Length of path of contact and contact ratio – Interference and undercutting - Gear trains – Simple, compound and Epicyclic gear trains - Differentials.

UNIT V FRICTION

10

Dry friction – Friction in screw jack – Pivot and collar friction - Plate clutches - Belt and rope drives - Block brakes, band brakes.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the student will be able to

- understand the types of motion, joints and degree of freedom.
- gain the knowledge on displacement, velocity and acceleration for planer mechanism graphically.
- design cam profile for different types of motions.
- choose a gear and gear train depending on the application.
- apply the friction concepts to belt drives and brakes.

TEXT BOOKS

- 1. Ambekar A. G., Mechanism and Machine Theory, Prentice Hall of India, New Delhi, 2007
- Uicker J.J., Pennock G.R., Shigley J.E., "Theory of Machines and Mechanisms" (Indian Edition), Oxford University Press, 2003

REFERENCES

- 1. S.S.Rattan,"Theory of Machines", second edition, Tata Mc-Graw Hill, Delhi, 2008
- 2. P.L.Ballaney, "Theory of Machines: A textbook for Engg students", 15th edition, Khanna, Delhi, 1987
- 3. R.S.Khurmi&J.K.Gupta, "Theory of Machines", 14th Edition, Eurasia Publishing House, Delhi, 2005
- 4. V.Jayakumar, "Kinematics of Machinery", 1st Edition, Lakshmi Publisher, Chennai, 2004
- 5. Ghosh, A, and Malick, A. K., "Theory of Mechanisms and Machines" 3rd Edition, East West Press Pvt. Ltd., 2000.

WEB LINKS

- 1. ebooks.library.cornell.edu/k/kmoddl/pdf/016_002.pdf
- $2. \ https://www.vidyarthiplus.com/vp/Thread-ME2203-KINEMATICS-OF-MACHINERY-Lecture-Notes-adhithya-edition$

					Mappin	g of Cou	ırse out	comes v	vith Pro	gramme o	utcomes				
				(1/2/3 iı	ndicates	streng	th of co	rrelatio	n)3-Str	ong, 2-Mo	edium, 1-	Weak			
COs						Pr	ogram	me Out	comes(l	POs)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2	
CO1	3	2 2 2 2 1 2 2 3 3													
CO2	3	2	2	2	2	2	1	ı	į	ı	2	2	3	3	
CO3	3	2	2	2	2	2	1	-	-	-	2	2	3	3	
CO4	3	2	2	2	2	2	1	-	ı	=	2	2	3	3	
CO5	3	2	2	2	2	2	1		COLLE	1	2	2	3	3	

- To make the student to understand the basic principles of theory of metal cutting.
- To provide details of the construction of conventional lathe and metal cutting machine tools.
- To study the concept of Machine tools like shaping, slotting, planning, milling, drilling, grinding machines.
- To understand the manufacturing operations for gears and surface finishing processes.
- To study the CNC programming and part programming used for APT programming.

UNIT I THEORY OF METAL CUTTING

9

Introduction: Material removal processes, Types of machine tools – theory of metal cutting: chip formation, orthogonal cutting, cutting tool materials, tool wear, tool life, surface finish, cutting fluids.

UNIT II CENTRE LATHE AND SPECIAL PURPOSE LATHES

9

Centre lathe, constructional features, cutting tool geometry, various operations, taper turning methods, thread cutting methods, special attachments, machining time and power estimation. Capstan and turret lathes – automats – single spindle, Swiss type, automatic screw type, multi spindle - Turret Indexing mechanism, Bar feed mechanism.

UNIT III OTHER MACHINE TOOLS

9

Reciprocating machine tools: shaper, planer, slotter - Milling: types, milling cutters, operations - Holemaking: drilling - Quill mechanism, Reaming, Boring, Tapping -Sawing machine: hack saw, band saw, circular saw; broaching machines: broach construction – push, pull, surface and continuous broaching machines

UNIT IV ABRASIVE PROCESSES AND GEAR CUTTING

9

Abrasive processes: grinding wheel – specifications and selection, types of grinding process – cylindrical grinding, surface grinding, centreless grinding – Gear Finishing Process-honing, lapping, super finishing, polishing and buffing, abrasive jet machining - Gear cutting, forming, generation, shaping, hobbing.

UNIT V CNC MACHINE TOOLS AND PART PROGRAMMING

9

Numerical control (NC) machine tools – CNC: types, constructional details, special features – design considerations of CNC machines for improving machining accuracy –structural members – slide ways – linear bearings – ball screws – spindle drives and feed drives. Part programming fundamentals – manual programming – computer assisted part programming-APT Languages.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of the course, the student will be able to

- apply the concepts of theory of metal cutting in real life machining.
- gain the knowledge about the centre lathe, its accessories and relative operations which are performed in machine shop.
- know the basic concepts and working principles of other machines tools like Shaper, Drilling, Milling and all allied machines.
- apply the surface machining processes, design and fabrication of important machine elements.
- acquire knowledge on CNC machining, respective equipment and its parts along with the ability to develop CNC programs for machining of materials.

TEXT BOOKS

- 1. Hajra Choudry, "Elements of Work Shop Technology Vol. II", Media Promoters. 2002
- 2. HMT "Production Technology", Tata McGraw-Hill, 1998.

REFERENCES

- 1. Rao, P.N. "Manufacturing Technology", Metal Cutting and Machine Tools, Tata McGraw-Hill, New Delhi, 2003.
- 2. P.C. Sharma, "A Text Book of Production Engineering", S. Chand and Co. Ltd, IV edition, 1993.
- 3. Shrawat N.S. and Narang J.S, 'CNC Machines', DhanpatRai&Co., 2002.
- 4. P.N.Rao, 'CAD/CAM Principles and Applications', TATA Mc Craw Hill, 2007.
- 5. M.P.Groover and Zimers Jr., 'CAD/CAM' Prentice Hall of India Ltd., 2004.

WEBLINKS

- 1. http://www.notesengine.com/dept/mech/4sem/anna-university-4-sem-mech-notes.html.
- 2. https://www.youtube.com/playlist?list=PL2C105C94D2955C8B.

CO						streng	th of co	rrelatio	n)3-Str	gramme or		Weak			
COs	PO1	 													
CO1	3	1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO 10 PO11 PO12 PSO1 PSO2 3 - - 2 - - 3 3 - 3 3 3													
CO2	3														
CO3	2	2	_	_	2	_	_	_	3	3	_	2	3	3	
CO4	3	2	-	-	3	_	-	-	3	3	_	2	2	3	
CO5	3	2	_	-	3			_	2	3	_	2	3	3	

- To familiarize the terminology like simple stresses, strains and deformation in components due to external loads.
- To understand the stresses and deformations through mathematical models of beams, twisting bars or combinations of both.
- To analyze torsion of circular bars and springs.
- To know about the deflection and slope of the beams and columns by using Euler equation.
- To learn about the stresses involved in two dimensional approach of thin cylindrical and spherical shells.

UNIT I STRESS STRAIN DEFORMATION OF SOLIDS

15

Rigid and Deformable bodies – Strength, Stiffness and Stability – Stresses; Tensile, Compressive and Shear – Deformation of simple and compound bars under axial load – Thermal stress – Elastic constants – Strain energy and unit strain energy – Strain energy in uniaxial loads.

UNIT II BEAMS - LOADS AND STRESSES

15

Types of beams: Supports and Loads – Shear force and Bending Moment in beams – Cantilever, Simply supported and over hanging beams – Stresses in beams – Theory of simple bending – Stress variation along the length and in the beam section – Effect of shape of beam section on stress induced – Shear stresses in beams – Shear flow.

UNIT III TORSION

15

Analysis of torsion of circular bars – Shear stress distribution – Bars of Solid and hollow circular section, Stepped shaft – Twist and torsion stiffness – Compound shafts – Fixed and simply supported shafts – Application to close-coiled helical springs – Maximum shear stress in spring section including Wahl Factor – Deflection of helical coil springs under axial loads – Design of helical coil springs – stresses in helical coil springs under torsion loads.

UNIT IV BEAM DEFLECTION

15

Elastic curve of Neutral axis of the beam under normal loads – Evaluation of beam deflection and slope:

Double integration method, Macaulay Method, and Moment-area Method – Columns – End conditions –

Equivalent length of a column – Euler equation – Slenderness ratio – Rankine formula for columns.

UNIT V ANALYSIS OF STRESSES IN TWO DIMENSIONS

15

Biaxial state of stresses – Thin cylindrical and spherical shells – Deformation in thin cylindrical and spherical shells – Biaxial stresses at a point – Stresses on inclined plane – Principal planes and stresses – Mohr's circle for biaxial stresses – Maximum shear stress - Strain energy in bending and torsion.

TOTAL: 75 PERIODS

COURSE OUTCOMES

At the end of the course the students will be able to

- apply the concepts of strength of materials to obtain solutions to real time Engineering problems.
- gain the mathematical knowledge to calculate the deformation behavior of simple structures.
- analyse critical problems related to mechanical elements and the deformation behavior for different types of loads.
- understand the torsion of circular bars and springs.
- analyze the deflection and slope of the beams and columns by using Euler equation.

TEXT BOOKS

- 1. Popov E.P, "Engineering Mechanics of Solids", Prentice-Hall of India, New Delhi, 1997.
- 2. Beer F. P. and Johnston R," Mechanics of Materials", McGraw-Hill Book Co, Third Edition, 2002.

REFERENCES

- Nash W.A, "Theory and problems in Strength of Materials", Schaum Outline Series, McGraw-Hill BookCo, New York, 1995
- 2. Kazimi S.M.A, "Solid Mechanics", Tata McGraw-Hill Publishing Co., New Delhi, 1981.
- 3. Ryder G.H, "Strength of Materials, Macmillan India Ltd"., Third Edition, 2002
- 4. Ray Hulse, Keith Sherwin & Jack Cain, "Solid Mechanics", Palgrave ANE Books, 2004.
- 5. Singh D.K "Mechanics of Solids" Pearson Education 2002.

WEB LINKS

- http://nptel.ac.in/courses/Webcourse-contents/IIT-ROORKEE/strength%20of%20materials/homepage.htm
- https://www.vidyarthiplus.com/vp/Thread-CE2252-STRENGTH-OF-MATERIALS-Lecturenotes-collections

CO-PO Mapping

						-				gramme or		Weak				
COs						Pı	rogram	me Out	comes(l	POs)						
	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO 10 PO11 PO12 PSO1 PSO2														
CO1	3	3 3 3 3 2														
CO2	3	3	3	-	-	-	-	-	1	-	-	3	3	2		
CO3	3	3	3	-	-	-	-	-	-	-	-	2	3	2		
CO4	3	2	3	_	-	-	-	-	-	-	-	2	3	2		
CO5	3	2	2	_	_	· <u>.</u>	NL.	_	p -	_	-	2	3	2		

BOARD OF STUDIES

To enable students to

- know the constituents of the environment and the precious resources in the environment.
- conserve all biological resources.
- understand the role of human being in maintaining a clean environment and useful environment for the future generations
- acquire knowledge about ecological balance and preserve bio-diversity.
- understand the role of government and non-government organizations in environment management.

UNIT I INTRODUCTION TO ENVIRONMENTAL STUDIES AND NATURAL RESOURCES 9

Environment: Definition- scope - importance – need for public awareness. Forest resources: Use – over exploitation-deforestation - case studies- mining - effects on forests and tribal people. Water resources: Use – over utilization of surface and ground water- floods – drought - conflicts over water. Mineral resources-Use – exploitation - environmental effects of extracting and using mineral resources – case studies. Food resources: World food problems - changes caused by agriculture and overgrazing – effects of modern agriculture- fertilizer- pesticide problems - water logging - salinity -case studies. Energy resources-Growing energy needs - renewable and non renewable energy sources. Land resources: Land as resource- land degradation - soil erosion. Role of an individual in conservation of natural resources.

UNIT II ECOSYSTEMS AND BIODIVERSITY

9

Concept of an ecosystem: Structure and function of an ecosystem – producers - consumers – decomposers – energy flow in the ecosystem – ecological succession – food chains - food webs and ecological pyramids. Types of ecosystem: Introduction - characteristic features - forest ecosystem – grassland ecosystem – desert ecosystem - aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

Biodiversity: Introduction—definition (genetic - species —ecosystem) diversity. Value of biodiversity: Consumptive use - productive use - social values - ethical values - aesthetic values. Biodiversity level: Global - national - local levels- India as a mega diversity nation- hotspots of biodiversity. Threats to biodiversity Habitat loss - poaching of wildlife — man wildlife conflicts — endangered and endemic species of India

Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity –field study.

UNIT III POLLUTION 9

Pollution: Definition –air pollution - water pollution - soil pollution - marine pollution - noise pollution - thermal pollution – nuclearhazards. Solid waste management: Causes - effects - control measures of urban and industrial wastes. Role of an individual in prevention of pollution - pollution case studies. Disaster management: Floods – earthquake - cyclone- landslides. Electronic waste-Sources-Causes and its effects.

UNIT IV SOCIAL ISSUES AND ENVIRONMENT

Sustainable development: Unsustainable to sustainable development – urban problems related to energy. Water conservation - rain water harvesting - watershed management. Resettlement and rehabilitation of people. Environmental ethics: Issues - possible solutions – climate change - global warming and its effects on flora and fauna - acid rain - ozone layer depletion - nuclear accidents - nuclear holocaust - wasteland reclamation. consumerism and waste products. Environment protection act: Air (Prevention and Control of Pollution) act – water (Prevention and control of Pollution) act – wildlife protection act – forest conservation act – issues involved in enforcement of environmental legislation.

UNIT V HUMAN POPULATION AND ENVIRONMENT

9

Human population: Population growth - variation among nations – population explosion – family welfare programme and family planning – environment and human health– Human rights – value education – HIV/ AIDS Swine flu – women and child welfare. Role of information technology in environment and human health.

TOTAL PERIODS 45

COURSE OUTCOMES

At the end of this course, the students will be able to

- explain the relationship between the human population and environment.
- elaborate the basic concepts of environment studies and natural resources.
- gain the knowledge about ecosystem and biodiversity.
- Have knowledge about causes, effects and control measures of various types of pollution.
- Understand the social issues and various environmental acts.

TEXT BOOKS

- 1. Raman Sivakumar, Introduction to Environmental Science and Engineering, 2ndEdn, Tata McGraw Hill Education Private Limited, New Delhi,(2010).
- 2. Benny Joseph, "Environmental Science and Engineering", Tata McGraw Hill, (2010).

REFERENCES

- 1. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad India, 2010.
- 2. S. Divan, Environmental Law and Policy in India, Oxford University Press, New Delhi, 2001.
- 3. K.D. Wager, Environmental Management, W.B. Saunders Co., Philadelphia, USA, 1998.
- 4. W.P. Cunningham, Environmental Encyclopedia, Jaico Publising House, Mumbai, 2004.
- 5. Clair Nathan Sawyer, Perry L. McCarty, Gene F. Parkin, "Chemistry for Environmental

	(S/M	I/W in								nme O		s , W-Wea	ak=1.			
					<u> </u>		ramme					,				
CO	PO1															
CO1	-	1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 1 3 3 2 3 1 -														
CO2	-	=	2	-	-	1	-	3	-	2	-	3	1	-		
CO3	2	-	2	-	2	1	-	3	-	2	-	3	1	-		
CO4	2	2	2	-	2	1	EEBING	COSLE	Sk.	2	-	3	1	-		
CO5	-	2	-	-	-	150	BOARD AP	proved	(2)	2	-	2	1	-		

Chemistry 25 5115

- To apply the thermodynamic concepts into various thermal applications like IC engines, steam Generator, turbine and other thermal devices.
- To study valve timing diagram and performance of IC Engines
- To learn the characteristics of fuels/Lubricates used in IC Engines
- To analyze the Performance of steam generator/ turbine

LIST OF EXPERIMENTS

I.C Engine lab and Fuels lab

30

- Valve Timing and Port Timing Diagrams.
- Performance Test on 4-stroke Diesel Engine/Petrol Engine
- Heat Balance Test on 4-stroke Diesel Engine.
- Morse Test on Multi cylinder Petrol Engine.
- Retardation Test to find Frictional Power of a Diesel Engine.
- Determination of Viscosity Red Wood Viscometer.
- Determination of Flash Point and Fire Point.

STEAM LAB 30

- Study of Steam Generators and Turbines.
- Performance and Energy Balance Test on a Steam Generator.
- Performance and Energy Balance Test on Steam Turbine.

TOTAL: 60 PERIODS

COURSE OUTCOMES

At the end of the course the students will be able to

- learn the valve and port timing diagrams involved in the operation of engines
- evaluate the performance of an IC engine
- acquire knowledge in determining the viscosity of oils
- find out the flash and fire point of fuels

WEB LINKS

- http://web.csulb.edu/colleges/coe/mae/views/courses/upper/upper_337.shtml
- http://ocw.mit.edu/courses/architecture/4-411-building-technology-laboratory-spring-2004/lecture-notes/

						_				gramme or		Weak		
COs						Pr	ogramı	me Out	comes(l	POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	2	2	2	2	-	-	2	2	2	3	3
CO2	3	3	1	2	2	2	2	-	-	2	2	2	3	3
CO3	3	3	1	2	2	2	2	-	-	2	2	2	3	3
CO4	3	3	1	2	2	2	2	-	-	2	2	2	3	3

- To give practical hands-on exposure to students in the various metal cutting operations through commonly used machine tools
- To provide hands on experience on the working of general purpose machine tools and various manufacturing processes.
- To provide hands on experience on the manufacturing of various types of gears.
- To give the practical training on surface finishing operation by grinding machines.

List of Experiments

- 1. Measurement of Cutting Force using tool dynamometer
- 2. Single point tool profile
- 3. Dove Tail ,Surface Finishing,Spline
- 4. Generating of Contour Profile (Concave & Convex)
- 5. Making a Keyway(External & Internal)
- 6. Making Spur gear & Helical gear.
- 7. Cylindrical grinding & Surface Grinding opeartions

TOTAL: 60 PERIODS

COURSE OUTCOMES

At the end of the course the students will be able to

- fabricate spur gear, helical gear by gear hobbing machine and vertical milling machine.
- carry out cylindrical grinding and surface grinding operations.
- ability to manufacture tool by cutter grinder.
- perform the internal and external keyway using machine tools.

WEB LINKS

- http://home.iitk.ac.in/~bhattacs/LABORATORY_MANUAL.pdf
- http://ggnindia.dronacharya.info/medept/Downloads/Labmanuals/Odd/Sem_V/MT-II_LM-319F_VSem.pdf

	o map	88												
		Mapping of Course outcomes with Programme outcomes (1/2/3 indicates strength of correlation)3-Strong, 2-Medium, 1-Weak												
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2
CO1	3	1	-	-	-	-	-	-	2	1	2	2	3	2
CO2	3	1	-	_ 80	-	IG COLI	ECE]]-	2	1	2	2	3	2
CO3	3	1	-	_ "=	MEER	Approved	DIES- 17	<u> </u>	2	1	2	2	3	2
CO4	3	1	-	- /	BOA Mech	anical Engil	neering	PK -	2	1	2	2	3	2

STRENGTH OF MATERIALS LABORATORY

COURSE OBJECTIVES

- To conduct tension test on different metals.
- To conduct compressions test on Spring and Concrete.
- To conduct flexural and torsion test to determine elastic constants.
- To determine hardness of metals.

LIST OF EXPERIMENTS

- 1. Tension test on mild steel rod
- 2. Compression test on wood
- 3. Double shear test on metal
- 4. Torsion test on mild steel rod
- 5. Impact test on metal specimen (Izod and Charpy)
- 6. Hardness test on metals (Rockwell and Brinell Hardness Tests)
- 7. Deflection test on metal beam
- 8. Compression test on helical spring
- 9. Deflection test on carriage spring
- 10. Test on Cement

TOTAL: 60 PERIODS

COURSE OUTCOMES

At the end of the course the student will be able to

- apply the concepts of mechanics for determining stresses and strains from the member forces.
- solve the problems by knowing the effects of axial loads, bending, shear and torsion on structural components.
- determine the behavior of structural elements such as bars, beams and columns subjected to tensic compression, shear, bending and torsion by means of experiments.
- feel physically the behavior of materials and structural elements including distribution of strains, deformations and failure modes.

		Mapping of Course outcomes with Programme outcomes (1/2/3 indicates strength of correlation)3-Strong, 2-Medium, 1-Weak													
COs	Programme Outcomes(POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	2	-	-	-	-	-	-	-	2	2	2	
CO2	3	3	3	2	-	-	-	-	-	-	-	2	2	2	
CO3	3	2	3	2	-	-	-	-	-	-	-	2	2	2	
CO4	3	3	3	2	-	-	-	-	-	-	-	2	2	2	

EN15401

BUSINESS ENGLISH COURSE LABORATORY

0021

COURSE OBJECTIVES

To enable the students to

- develop the reading skills of the students and make them familiarized in skimming and scanning.
- instill the communication concepts to enhance the students' conversational skills through various practice sessions
- familiarize them with a variety of business correspondence.
- inculcate the receptive skills i.e. Listening and Reading and to make the students well versed in the Productive skills and

UNIT I READING & VOCABULARY

Understanding short, real notices, messages - detailed comprehension of factual material- skimming & scanning skills - interpreting visual information - reading for detailed factual information - reading for gist and specific information - reading for grammatical accuracy and understanding of text structure - reading and information transfer.

UNIT II WRITING

Re-arranging appointments - asking for permission - giving instructions - apologizing and offering compensation - making or altering reservations - dealing with requests - giving information about aproduct.

UNIT III LISTENING

Listening to short telephonic conversation - Listening to short conversation or monologue - Listening to specific information - Listening to conversation- interview, discussion.

UNIT IV SPEAKING

Conversation between the interlocutor and the candidate - general interaction and social language - A mini presentation by each candidate on a business theme - organizing a larger unit of discourse - giving information and expressing opinions - two way conversation between candidates followed by further prompting from the interlocutor- Expressing opinions- agreeing and disagreeing

TOTAL: 30 PERIODS

COURSE OUTCOMES

At the end of the course, the student will be able

- enrich the vocabulary through reading and to develop their pronunciation skills.
- prepare flawless reports and proposals.
- listen to speeches and conversations and answer the questions.
- communicate fluently and effectively on any given topic and appear with confidence for on-line tests.

TEXT BOOKS

- 1. Cambridge BEC Preliminary, Self-Study Edition, Cambridge University Press, New York, 2012.
- 2. Whitby, Norman. Business Benchmark, Pre-intermediate to intermediate, Business Preliminary, Shree

	Mapping of Course Outcomes with Programme Outcomes (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak													
	Programme Outcomes (POs)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	3	1	-	-	1	-	(3)	1	-	-	-
CO2	-	-	-	1	-	-	1	-		3	-	-	-	-
CO3	-	-	-	-	2	-	-	-		2	2	-	-	-
CO4	-	-	-	-	-	1	2	2	3	3	3	-	-	-

TEXT BOOKS:

1. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill Publishing Co.2007

REFERENCES:

- 1. Chris McMahon and Jimmie Browne "CAD/CAM Principles", "Practice and Manufacturing management "Second Edition, Pearson Education, 1999.
- 2. William M Neumann and Robert F.Sproul "Principles of Computer Graphics", McGraw Hill Book Co. Singapore, 1989.
- 3. Donald Hearn and M. Pauline Baker "Computer Graphics". Prentice Hall, Inc, 1992.
- 4. Foley, Wan Dam, Feiner and Hughes "Computer graphics principles & practice" Pearson Education 2003.

ME6502

HEAT AND MASS TRANSFER

L T P C 3 0 0 3

OBJECTIVES:

- To understand the mechanisms of heat transfer under steady and transient conditions.
- To understand the concepts of heat transfer through extended surfaces.
- To learn the thermal analysis and sizing of heat exchangers and to understand the basic concepts of mass transfer.

(Use of standard HMT data book permitted)

UNIT I CONDUCTION

9

General Differential equation of Heat Conduction— Cartesian and Polar Coordinates — One Dimensional Steady State Heat Conduction — plane and Composite Systems — Conduction with Internal Heat Generation — Extended Surfaces — Unsteady Heat Conduction — Lumped Analysis — Semi Infinite and Infinite Solids —Use of Heisler's charts.

UNIT II CONVECTION

9

Free and Forced Convection - Hydrodynamic and Thermal Boundary Layer. Free and Forced Convection during external flow over Plates and Cylinders and Internal flow through tubes.

UNIT III PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

9

Nusselt's theory of condensation - Regimes of Pool boiling and Flow boiling. Correlations in boiling and condensation. Heat Exchanger Types - Overall Heat Transfer Coefficient - Fouling Factors - Analysis - LMTD method - NTU method.

UNIT IV RADIATION

9

Black Body Radiation – Grey body radiation - Shape Factor – Electrical Analogy – Radiation Shields. Radiation through gases.

UNIT V MASS TRANSFER

9

Basic Concepts – Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Molecular Diffusion – Convective Mass Transfer – Momentum, Heat and Mass Transfer Analogy – Convective Mass Transfer Correlations.

OUTCOMES:

TOTAL: 45 PERIODS

• Upon completion of this course, the students can able to understand and apply different heat and mass transfer principles of different applications.

TEXT BOOK:

1. Yunus A. Cengel, "Heat Transfer A Practical Approach", Tata McGraw Hill, 2010

REFERENCE BOOKS:

- 1. Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley & Sons, 1998.
- 2. Venkateshan. S.P., "Heat Transfer", Ane Books, New Delhi, 2004.
- 3. Ghoshdastidar, P.S, "Heat Transfer", Oxford, 2004,
- 4. Nag, P.K., "Heat Transfer", Tata McGraw Hill, New Delhi, 2002
- 5. Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2000
- 6. Ozisik, M.N., "Heat Transfer", McGraw Hill Book Co., 1994.
- 7. Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Delhi, 1998.
- 8. Yadav, R., "Heat and Mass Transfer", Central Publishing House, 1995.
- 9. M.Thirumaleshwar: Fundamentals of Heat and Mass Transfer, "Heat and Mass Transfer", First Edition, Dorling Kindersley, 2009

ME6503

DESIGN OF MACHINE ELEMENTS

L T P C 3 0 0 3

OBJECTIVES

- To familiarize the various steps involved in the Design Process
- To understand the principles involved in evaluating the shape and dimensions of a component to satisfy functional and strength requirements.
- To learn to use standard practices and standard data
- To learn to use catalogues and standard machine components

(Use of P S G Design Data Book is permitted)

UNIT I STEADY STRESSES AND VARIABLE STRESSES IN MACHINE MEMBERS 10 Introduction to the design process - factors influencing machine design, selection of materials based on mechanical properties - Preferred numbers, fits and tolerances - Direct, Bending and torsional stress equations - Impact and shock loading - calculation of principle stresses for various load combinations, eccentric loading - curved beams - crane hook and 'C' frame- Factor of safety - theories of failure - Design based on strength and stiffness - stress concentration - Design for variable loading.

UNIT II SHAFTS AND COUPLINGS

8

Design of solid and hollow shafts based on strength, rigidity and critical speed – Keys, keyways and splines - Rigid and flexible couplings.

UNIT III TEMPORARY AND PERMANENT JOINTS

(

Threaded fastners - Bolted joints including eccentric loading, Knuckle joints, Cotter joints - Welded joints, riveted joints for structures - theory of bonded joints.

UNIT IV ENERGY STORING ELEMENTS AND ENGINE COMPONENTS

9

Various types of springs, optimization of helical springs - rubber springs - Flywheels considering stresses in rims and arms for engines and punching machines- Connecting Rods and crank shafts.

UNIT V BEARINGS

9

Sliding contact and rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number, Raimondi and Boyd graphs, -- Selection of Rolling Contact bearings.

TOTAL: 45 PERIODS

OUTCOMES:

 Upon completion of this course, the students can able to successfully design machine components

TEXT BOOK:

- 1. Bhandari V, "Design of Machine Elements", 3rd Edition, Tata McGraw-Hill Book Co, 2010.
- 2. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 8th Edition, Tata McGraw-Hill, 2008.

REFERENCES:

- 1. Sundararajamoorthy T. V. Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2003.
- 2. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Design", 4th Edition, Wiley, 2005
- 3. Alfred Hall, Halowenko, A and Laughlin, H., "Machine Design", Tata McGraw-Hill BookCo.(Schaum's Outline), 2010
- 4. Bernard Hamrock, Steven Schmid, Bo Jacobson, "Fundamentals of Machine Elements", 2nd Edition, Tata McGraw-Hill Book Co., 2006.
- 5. Orthwein W, "Machine Component Design", Jaico Publishing Co, 2003.
- 6. Ansel Ugural, "Mechanical Design An Integral Approach", 1st Edition, Tata McGraw-Hill Book Co, 2003.
- 7. Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger, "Design of Machine Elements" 8th Edition, Printice Hall, 2003.

ME6504

METROLOGY AND MEASUREMENTS

L T P C 3 0 0 3

OBJECTIVES:

- To provide knowledge on various Metrological equipments available to measure the dimension of the components.
- To provide knowledge on the correct procedure to be adopted to measure the dimension of the components.

UNIT I BASICS OF METROLOGY

5

Introduction to Metrology – Need – Elements – Work piece, Instruments – Persons – Environment – their effect on Precision and Accuracy – Errors – Errors in Measurements – Types – Control – Types of standards.

UNIT II LINEAR AND ANGULAR MEASUREMENTS

10

Linear Measuring Instruments – Evolution – Types – Classification – Limit gauges – gauge design – terminology – procedure – concepts of interchange ability and selective assembly – Angular measuring instruments – Types – Bevel protractor clinometers angle gauges, spirit levels sine bar – Angle alignment telescope – Autocollimator – Applications.

UNIT III ADVANCES IN METROLOGY

12

Basic concept of lasers Advantages of lasers – laser Interferometers – types – DC and AC Lasers interferometer – Applications – Straightness – Alignment. Basic concept of CMM – Types of CMM – Constructional features – Probes – Accessories – Software – Applications – Basic concepts of Machine Vision System – Element – Applications.

UNIT IV FORM MEASUREMENT

10

Principles and Methods of straightness – Flatness measurement – Thread measurement, gear measurement, surface finish measurement, Roundness measurement – Applications.

UNIT V MEASUREMENT OF POWER, FLOW AND TEMPERATURE

8

Force, torque, power - mechanical, Pneumatic, Hydraulic and Electrical type. Flow measurement: Venturimeter, Orifice meter, rotameter, pitot tube - Temperature: bimetallic strip, thermocouples, electrical resistance thermometer - Reliability and Calibration - Readability and Reliability.

TOTAL: 45 PERIODS

OUTCOMES:

• Upon completion of this course, the Students can demonstrate different measurement technologies and use of them in Industrial Components

TEXT BOOKS:

- 1. Jain R.K. "Engineering Metrology", Khanna Publishers, 2005.
- 2. Gupta. I.C., "Engineering Metrology", Dhanpatrai Publications, 2005.

REFERENCES:

- 1. Charles Reginald Shotbolt, "Metrology for Engineers", 5th edition, Cengage Learning EMEA.1990.
- 2. Backwith, Marangoni, Lienhard, "Mechanical Measurements", Pearson Education, 2006.

ME6505

DYNAMICS OF MACHINES

LT P C 3 0 0 3

OBJECTIVES:

- To understand the force-motion relationship in components subjected to external forces and analysis of standard mechanisms.
- To understand the undesirable effects of unbalances resulting from prescribed motions in mechanism.
- To understand the effect of Dynamics of undesirable vibrations.
- To understand the principles in mechanisms used for speed control and stability control.

UNIT I FORCE ANALYSIS

9

Dynamic force analysis – Inertia force and Inertia torque – D Alembert's principle –Dynamic Analysis in reciprocating engines – Gas forces – Inertia effect of connecting rod – Bearing loads – Crank shaft torque – Turning moment diagrams –Fly Wheels – Flywheels of punching presses - Dynamics of Camfollower mechanism.

UNIT II BALANCING

9

Static and dynamic balancing – Balancing of rotating masses – Balancing a single cylinder engine – Balancing of Multi-cylinder inline, V-engines – Partial balancing in engines – Balancing of linkages – Balancing machines-Field balancing of discs and rotors.

UNIT III SINGLE DEGREE FREE VIBRATION

9

Basic features of vibratory systems – Degrees of freedom – single degree of freedom – Free vibration – Equations of motion – Natural frequency – Types of Damping – Damped vibration – Torsional vibration of shaft – Critical speeds of shafts – Torsional vibration – Two and three rotor torsional systems.

UNIT IV FORCED VIBRATION

9

Response of one degree freedom systems to periodic forcing – Harmonic disturbances –Disturbance caused by unbalance – Support motion –transmissibility – Vibration isolation vibration measurement.

UNIT V MECHANISM FOR CONTROL

C

Governors – Types – Centrifugal governors – Gravity controlled and spring controlled centrifugal governors – Characteristics – Effect of friction – Controlling force curves. Gyroscopic forces and torques – Gyroscopic stabilization – Gyroscopic effects in Automobiles, ships and airplanes.

TOTAL: 45 PERIODS

OUTCOMES:

• Upon completion of this course, the Students can able to predict the force analysis in mechanical system and related vibration issues and can able to solve the problem

TEXT BOOK:

- 1. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 3rd Edition, Oxford University Press, 2009.
- 2. Rattan, S.S, "Theory of Machines", 3rd Edition, Tata McGraw-Hill, 2009

REFERENCES:

- 1. Thomas Bevan, "Theory of Machines", 3rd Edition, CBS Publishers and Distributors, 2005.
- 2. Cleghorn. W. L, "Mechanisms of Machines", Oxford University Press, 2005
- 3. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, 2nd Edition, 2007
- 4. Robert L. Norton, "Kinematics and Dynamics of Machinery", Tata McGraw-Hill, 2009.
- 5. Allen S. Hall Jr., "Kinematics and Linkage Design", Prentice Hall, 1961
- 6. Ghosh. A and Mallick, A.K., "Theory of Mechanisms and Machines", Affiliated East-West Pvt. Ltd., New Delhi, 1988.
- 7. Rao.J.S. and Dukkipati.R.V. "Mechanisms and Machine Theory", Wiley-Eastern Ltd., New Delhi, 1992.
- 8. John Hannah and Stephens R.C., "Mechanics of Machines", Viva Low-Prices Student Edition, 1999.
- 9. Grover. G.T., "Mechanical Vibrations", Nem Chand and Bros., 1996
- 10. William T. Thomson, Marie Dillon Dahleh, Chandramouli Padmanabhan, "Theory of Vibration with Application", 5th edition, Pearson Education, 2011
- 11. V.Ramamurthi, "Mechanics of Machines", Narosa Publishing House, 2002.
- 12. Khurmi, R.S., "Theory of Machines", 14th Edition, S Chand Publications, 2005.

GE6075

PROFESSIONAL ETHICS IN ENGINEERING

L T P C 3 0 0 3

OBJECTIVES:

• To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I HUMAN VALUES

10

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self confidence – Character – Spirituality – Introduction to Yoga and meditation for professional excellence and stress management.

15	Torque Measuring Setup	1
16	Coordinate measuring machine	1
17	Surface finish measuring equipment	1
18	Bore gauge	1
19	Telescope gauge	1

ME6601

DESIGN OF TRANSMISSION SYSTEMS

L T P C 3 0 0 3

OBJECTIVES:

- To gain knowledge on the principles and procedure for the design of Mechanical power Transmission components.
- To understand the standard procedure available for Design of Transmission of Mechanical elements
- To learn to use standard data and catalogues (Use of P S G Design Data Book permitted)

UNIT I DESIGN OF FLEXIBLE ELEMENTS

9

Design of Flat belts and pulleys - Selection of V belts and pulleys - Selection of hoisting wire ropes and pulleys - Design of Transmission chains and Sprockets.

UNIT II SPUR GEARS AND PARALLEL AXIS HELICAL GEARS

9

Speed ratios and number of teeth-Force analysis -Tooth stresses - Dynamic effects - Fatigue strength - Factor of safety - Gear materials - Design of straight tooth spur & helical gears based on strength and wear considerations - Pressure angle in the normal and transverse plane- Equivalent number of teeth-forces for helical gears.

UNIT III BEVEL, WORM AND CROSS HELICAL GEARS

q

Straight bevel gear: Tooth terminology, tooth forces and stresses, equivalent number of teeth. Estimating the dimensions of pair of straight bevel gears. Worm Gear: Merits and demerits-terminology. Thermal capacity, materials-forces and stresses, efficiency, estimating the size of the worm gear pair. Cross helical: Terminology-helix angles-Estimating the size of the pair of cross helical gears.

UNIT IV GEAR BOXES

9

Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi speed gear box for machine tool applications - Constant mesh gear box - Speed reducer unit. – Variable speed gear box, Fluid Couplings, Torque Converters for automotive applications.

UNIT V CAMS, CLUTCHES AND BRAKES

9

Cam Design: Types-pressure angle and under cutting base circle determination-forces and surface stresses. Design of plate clutches –axial clutches-cone clutches-internal expanding rim clutches-Electromagnetic clutches. Band and Block brakes - external shoe brakes – Internal expanding shoe brake.

OUTCOMES:

TOTAL: 45 PERIODS

 Upon completion of this course, the students can able to successfully design transmission components used in Engine and machines

UNIT III TRANSMISSION SYSTEMS

9

Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, Over drive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints, Differential and rear axle, Hotchkiss Drive and Torque Tube Drive.

UNIT IV STEERING, BRAKES AND SUSPENSION SYSTEMS

9

Steering geometry and types of steering gear box-Power Steering, Types of Front Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, Antilock Braking System (ABS), electronic brake force distribution (EBD) and Traction Control.

UNIT V ALTERNATIVE ENERGY SOURCES

9

Use of Natural Gas, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol and Hydrogen in Automobiles- Engine modifications required —Performance, Combustion and Emission Characteristics of SI and CI engines with these alternate fuels - Electric and Hybrid Vehicles, Fuel Cell Note: Practical Training in dismantling and assembling of Engine parts and Transmission Systems should be given to the students.

TOTAL: 45 PERIODS

OUTCOMES:

- Upon completion of this course, the students will be able to identify the different components in automobile engineering.
- Have clear understanding on different auxiliary and transmission systems usual.

TEXT BOOKS:

- 1. Kirpal Singh, "Automobile Engineering", Vol 1 & 2, Seventh Edition, Standard Publishers, New Delhi. 1997.
- 2. Jain K.K. and Asthana .R.B, "Automobile Engineering" Tata McGraw Hill Publishers, New Delhi, 2002.

REFERENCES:

- 1. Newton ,Steeds and Garet, "Motor Vehicles", Butterworth Publishers,1989.
- 2. Joseph Heitner, "Automotive Mechanics," Second Edition, East-West Press, 1999.
- 3. Martin W, Stockel and Martin T Stockle, "Automotive Mechanics Fundamentals," The Good heart –Will Cox Company Inc, USA, 1978.
- 4. Heinz Heisler, "Advanced Engine Technology," SAE International Publications USA, 1998.
- 5. Ganesan V. "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.

ME6603

FINITE ELEMENT ANALYSIS

L T P C 3 0 0 3

OBJECTIVES:

- To introduce the concepts of Mathematical Modeling of Engineering Problems.
- To appreciate the use of FEM to a range of Engineering Problems.

UNIT I INTRODUCTION

9

Historical Background – Mathematical Modeling of field problems in Engineering – Governing Equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems – Weighted Residual Methods – Variational Formulation of Boundary Value Problems – RitzTechnique – Basic concepts of the Finite Element Method.

UNIT II ONE-DIMENSIONAL PROBLEMS

9

One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order Elements – Derivation of Shape functions and Stiffness matrices and force vectors- Assembly of Matrices - Solution of problems from solid mechanics and heat transfer. Longitudinal vibration frequencies and mode shapes. Fourth Order Beam Equation – Transverse deflections and Natural frequencies of beams.

UNIT III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS

9

Second Order 2D Equations involving Scalar Variable Functions – Variational formulation –Finite Element formulation – Triangular elements – Shape functions and element matrices and vectors. Application to Field Problems - Thermal problems – Torsion of Non circular shafts –Quadrilateral elements – Higher Order Elements.

UNIT IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS

9

Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Body forces and temperature effects – Stress calculations - Plate and shell elements.

UNIT V ISOPARAMETRIC FORMULATION

9

Natural co-ordinate systems – Isoparametric elements – Shape functions for iso parametric elements – One and two dimensions – Serendipity elements – Numerical integration and application to plane stress problems - Matrix solution techniques – Solutions Techniques to Dynamic problems – Introduction to Analysis Software.

OUTCOMES:

TOTAL: 45 PERIODS

• Upon completion of this course, the students can able to understand different mathematical Techniques used in FEM analysis and use of them in Structural and thermal problem

TEXT BOOK:

- 1. Reddy. J.N., "An Introduction to the Finite Element Method", 3rd Edition, Tata McGraw-Hill, 2005
- 2. Seshu, P, "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt. Ltd., New Delhi, 2007.

REFERENCES:

- 1. Rao, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butterworth Heinemann, 2004
- 2. Logan, D.L., "A first course in Finite Element Method", Thomson Asia Pvt. Ltd., 2002
- 3. Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2002.
- 4. Chandrupatla & Belagundu, "Introduction to Finite Elements in Engineering", 3rd Edition, Prentice Hall College Div, 1990
- 5. Bhatti Asghar M, "Fundamental Finite Element Analysis and Applications", John Wiley & Sons, 2005 (Indian Reprint 2013)*

ME6604

GAS DYNAMICS AND JET PROPULSION

L T P C 3 0 0 3

OBJECTIVES:

- To understand the basic difference between incompressible and compressible flow.
- To understand the phenomenon of shock waves and its effect on flow. To gain some basic knowledge about jet propulsion and Rocket Propulsion. (Use of Standard Gas Tables permitted)

UNIT I BASIC CONCEPTS AND ISENTROPIC FLOWS

6

Energy and momentum equations of compressible fluid flows – Stagnation states, Mach waves and Mach cone – Effect of Mach number on compressibility – Isentropic flow through variable ducts – Nozzle and Diffusers

UNIT II FLOW THROUGH DUCTS

9

Flows through constant area ducts with heat transfer (Rayleigh flow) and Friction (Fanno flow) – variation of flow properties.

UNIT III NORMAL AND OBLIQUE SHOCKS

10

Governing equations – Variation of flow parameters across the normal and oblique shocks – Prandtl – Meyer relations – Applications.

UNIT IV JET PROPULSION

10

Theory of jet propulsion – Thrust equation – Thrust power and propulsive efficiency – Operating principle, cycle analysis and use of stagnation state performance of ram jet, turbojet, turbofan and turbo prop engines.

UNIT V SPACE PROPULSION

10

Types of rocket engines – Propellants-feeding systems – Ignition and combustion – Theory of rocket propulsion – Performance study – Staging – Terminal and characteristic velocity – Applications – space flights.

OUTCOMES:

TOTAL: 45 PERIODS

 Upon completion of this course, the students can able to successfully apply gas dynamics principles in the Jet and Space Propulsion

TEXT BOOKS:

- 1. Anderson, J.D., "Modern Compressible flow", 3rd Edition, McGraw Hill, 2003.
- 2. Yahya, S.M. "Fundamentals of Compressible Flow", New Age International (P) Limited, New Delhi, 1996.

- 1. Hill. P. and C. Peterson, "Mechanics and Thermodynamics of Propulsion", Addison Wesley Publishing company, 1992.
- 2. Zucrow. N.J., "Aircraft and Missile Propulsion", Vol.1 & II, John Wiley, 1975.
- 3. Zucrow. N.J., "Principles of Jet Propulsion and Gas Turbines", John Wiley, New York, 1970.
- 4. Sutton. G.P., "Rocket Propulsion Elements", John wiley, New York, 1986,.
- 5. Shapiro. A.H.," Dynamics and Thermodynamics of Compressible fluid Flow", John wiley, New York, 1953.
- 6. Ganesan. V., "Gas Turbines", Tata McGraw Hill Publishing Co., New Delhi, 1999.
- 7. Somasundaram. PR.S.L., "Gas Dynamics and Jet Propulsions", New Age International Publishers, 1996.
- 8. Babu. V., "Fundamentals of Gas Dynamics", ANE Books India, 2008.
- 9. Cohen. H., G.E.C. Rogers and Saravanamutto, "Gas Turbine Theory", Longman Group Ltd., 1980.

CAD / CAM LABORATORY

L T P C 0 0 3 2

OBJECTIVES:

- To gain practical experience in handling 2D drafting and 3D modelling software systems.
- To study the features of CNC Machine Tool.
- To expose students to modern control systems (Fanuc, Siemens etc.,)
- To know the application of various CNC machines like CNC lathe, CNC Vertical Machining centre, CNC EDM and CNC wire-cut and studying of Rapid prototyping.

LIST OF EXPERIMENTS

1. 3D GEOMETRIC MODELLING

24 PERIODS

List of Experiments

1. Introduction of 3D Modelling software

Creation of 3D assembly model of following machine elements using 3D Modelling software

- 2. Flange Coupling
- 3. Plummer Block
- 4. Screw Jack
- 5. Lathe Tailstock
- 6. Universal Joint
- 7. Machine Vice
- 8. Stuffing box
- 9. Crosshead
- 10. Safety Valves
- 11. Non-return valves
- 12. Connecting rod
- 13. Piston
- 14. Crankshaft

2. Manual Part Programming.

21 PERIODS

- (i) Part Programming CNC Machining Centre
- a) Linear Cutting.
- b) Circular cutting.
- c) Cutter Radius Compensation.
- d) Canned Cycle Operations.
- (ii) Part Programming CNC Turning Centre
- a) Straight, Taper and Radius Turning.
- b) Thread Cutting.
- c) Rough and Finish Turning Cycle.
- d) Drilling and Tapping Cycle.

3. Computer Aided Part Programming

- e) CL Data and Post process generation using CAM packages.
- f) Application of CAPP in Machining and Turning Centre.

^{*} Students may also be trained in manual drawing of some of the above components

TOTAL: 45 PERIODS

OUTCOMES

- Ability to develop 2D and 3D models using modeling softwares.
- Ability to understand the CNC control in modern manufacturing system.
- Ability to prepare CNC part programming and perform manufacturing.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S.No.	Description of Equipment	Qty	
HARD	WARE		
1.	Computer Server	1	
2.	Computer nodes or systems (High end CPU with atleast 1 GB main memory) networked to the server	30	
3.	A3 size plotter	1	
4.	Laser Printer	1	
5.	CNC Lathe	1	
6.	CNC milling machine	1	
SOFT	SOFTWARE		
7.	Any High end integrated modeling and manufacturing CAD / CAM software	15 licenses	
8.	CAM Software for machining centre and turning centre (CNC Programming and tool path simulation for FANUC / Sinumeric and Heidenhain controller)	15 licenses	
9.	Licensed operating system	Adequate	
10.	Support for CAPP	Adequate	

ME6612

DESIGN AND FABRICATION PROJECT

L T P C 0 4 2

OBJECTIVES:

 The main objective is to give an opportunity to the student to get hands on training in the fabrication of one or more components of a complete working model, which is designed by them.

GUIDELINE FOR REVIEW AND EVALUATION

The students may be grouped into 2 to 4 and work under a project supervisor. The device/system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL: 60 PERIODS

OUTCOMES:

- Use of design principles and develop conceptual and engineering design of any components.
- Ability to fabricate any components using different manufacturing tools.

TOTAL: 45 PERIODS

OBJECTIVES:

- To supplement the principles learnt in kinematics and Dynamics of Machinery.
- To understand how certain measuring devices are used for dynamic testing.

LIST OF EXPERIMENTS

- 1. a) Study of gear parameters.
 - b) Experimental study of velocity ratios of simple, compound, Epicyclic and differential gear trains.
- 2. a) Kinematics of Four Bar, Slider Crank, Crank Rocker, Double crank, Double rocker, Oscillating cylinder Mechanisms.
 - b) Kinematics of single and double universal joints.
- 3. a) Determination of Mass moment of inertia of Fly wheel and Axle system.
 - b) Determination of Mass Moment of Inertia of axisymmetric bodies using Turn Table apparatus.
 - c) Determination of Mass Moment of Inertia using bifilar suspension and compound pendulum.
- 4. Motorized gyroscope Study of gyroscopic effect and couple.
- 5. Governor Determination of range sensitivity, effort etc., for Watts, Porter, Proell, and Hartnell Governors.
- 6. Cams Cam profile drawing, Motion curves and study of jump phenomenon
- 7. a) Single degree of freedom Spring Mass System Determination of natural Frequency and verification of Laws of springs Damping coefficient determination.
 - b) Multi degree freedom suspension system Determination of influence coefficient.
- 8. a) Determination of torsional natural frequency of single and Double Rotor systems.-Undamped and Damped Natural frequencies.
 - b) Vibration Absorber Tuned vibration absorber.
- 9. Vibration of Equivalent Spring mass system undamped and damped vibration.
- 10. Whirling of shafts Determination of critical speeds of shafts with concentrated loads.
- 11. a) Balancing of rotating masses. (b) Balancing of reciprocating masses.
- 12. a) Transverse vibration of Free-Free beam with and without concentrated masses.
 - b) Forced Vibration of Cantilever beam Mode shapes and natural frequencies.
 - c) Determination of transmissibility ratio using vibrating table.

OUTCOME

- Ability to demonstrate the principles of kinematics and dynamics of machinery
- Ability to use the measuring devices for dynamic testing.

S.No.	NAME OF THE EQUIPMENT	Qty.
1	Cam follower setup.	1 No.
2	Motorised gyroscope.	1 No.
3	Governor apparatus - Watt, Porter, Proell and Hartnell governors.	1 No.
4	Whirling of shaft apparatus.	1 No.
5	Dynamic balancing machine.	1 No.
6	Two rotor vibration setup.	1 No.
7	Spring mass vibration system.	1 No.
8	Torsional Vibration of single rotor system setup.	1 No.
9	Gear Models	1 No.
10	Kinematic Models to study various mechanisms.	1 No.
11	Turn table apparatus.	1 No.
12	Transverse vibration setup of	1 No.
	a) cantilever	

b) Free-Free beam	
c) Simply supported beam.	

ME6512

THERMAL ENGINEERING LABORATORY - II

L T P C 0 0 3 2

OBJECTIVES

- To study the heat transfer phenomena predict the relevant coefficient using implementation
- To study the performance of refrigeration cycle / components

LIST OF EXPERIMENTS:

HEAT TRANSFER LAB:

30

- 1. Thermal conductivity measurement using guarded plate apparatus.
- 2. Thermal conductivity measurement of pipe insulation using lagged pipe apparatus.
- 3. Determination of heat transfer coefficient under natural convection from a vertical cylinder.
- 4. Determination of heat transfer coefficient under forced convection from a tube.
- 5. Determination of Thermal conductivity of composite wall.
- 6. Determination of Thermal conductivity of insulating powder.
- 7. Heat transfer from pin-fin apparatus (natural & forced convection modes)
- 8. Determination of Stefan Boltzmann constant.
- 9. Determination of emissivity of a grey surface.
- 10. Effectiveness of Parallel / counter flow heat exchanger.

REFRIGERATION AND AIR CONDITIONING LAB

15

TOTAL: 45 PERIODS

- 1. Determination of COP of a refrigeration system
- 2. Experiments on Psychrometric processes
- 3. Performance test on a reciprocating air compressor
- 4. Performance test in a HC Refrigeration System
- 5. Performance test in a fluidized Bed Cooling Tower

OUTCOMES

 Ability to demonstrate the fundamentals of heat and predict the coefficient used in that transfer application and also design refrigeration cycle.

S.No.	NAME OF THE EQUIPMENT	Qty.
1	Guarded plate apparatus	1 No.
2	Lagged pipe apparatus	1 No.
3	Natural convection-vertical cylinder apparatus	1 No.
4	Forced convection inside tube apparatus	1 No.
5	Composite wall apparatus	1 No.
6	Thermal conductivity of insulating powder apparatus	1 No.
7	Pin-fin apparatus	1 No.
8	Stefan-Boltzmann apparatus	1 No.
9	Emissivity measurement apparatus	1 No.
10	Parallel/counter flow heat exchanger apparatus	1 No.

11	Single/two stage reciprocating air compressor	1 No.
12	Refrigeration test rig	1 No.
13	Air-conditioning test rig	1 No.
14	HC Refrigeration System	1 No.
15.	Fluidized Bed Cooling Tower	1 No.

ME6513 METROLOGY AND MEASUREMENTS LABORATORY

L T P C 0 0 3 2

OBJECTIVES

• To familiar with different measurement equipments and use of this industry for quality inspection

LIST OF EXPERIMENTS

- 1. Tool Maker's Microscope
- 2. Comparator
- 3. Sine Bar
- 4. Gear Tooth Vernier Caliper
- 5. Floating gauge Micrometer
- 6. Co ordinate Measuring Machine
- 7. Surface Finish Measuring Equipment
- 8. Vernier Height Gauge
- 9. Bore diameter measurement using telescope gauge
- 10. Bore diameter measurement using micrometer
- 11. Force Measurement
- 12. Torque Measurement
- 13. Temperature measurement
- 14 Autocollimator

TOTAL: 45 PERIODS

OUTCOMES

• Ability to handle different measurement tools and perform measurements in quality impulsion

S.No.	NAME OF THE EQUIPMENT	Qty.
1	Micrometer	5
2	Vernier Caliper	5
3	Vernier Height Gauge	2
4	Vernier depth Gauge	2
5	Slip Gauge Set	1
6	Gear Tooth Vernier	1
7	Sine Bar	1
8	Floating Carriage Micrometer	1
9	Profile Projector / Tool Makers Microscope	1
10	Parallel / counter flow heat exchanger apparatus	1
11	Mechanical / Electrical / Pneumatic Comparator	1
12	Autocollimator	1
13	Temperature Measuring Setup	1
14	Force Measuring Setup	1

6. Robert M Sherfield and et al. "Developing Soft Skills" 4th edition, New Delhi: Pearson Education, 2009.

Web Sources:

http://www.slideshare.net/rohitjsh/presentation-on-group-discussion

http://www.washington.edu/doit/TeamN/present_tips.html

http://www.oxforddictionaries.com/words/writing-job-applications

http://www.kent.ac.uk/careers/cv/coveringletters.htm

http://www.mindtools.com/pages/article/newCDV_34.htm

ME6701

POWER PLANT ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

Providing an overview of Power Plants and detailing the role of Mechanical Engineers in their operation and maintenance.

UNIT I COAL BASED THERMAL POWER PLANTS

10

Rankine cycle - improvisations, Layout of modern coal power plant, Super Critical Boilers, FBC Boilers, Turbines, Condensers, Steam & Heat rate, Subsystems of thermal power plants - Fuel and ash handling, Draught system, Feed water treatment. Binary Cycles and Cogeneration systems.

UNIT II DIESEL. GAS TURBINE AND COMBINED CYCLE POWER PLANTS

Otto, Diesel, Dual & Brayton Cycle - Analysis & Optimisation. Components of Diesel and Gas Turbine power plants. Combined Cycle Power Plants. Integrated Gasifier based Combined Cycle systems.

UNIT III **NUCLEAR POWER PLANTS**

7

10

Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nuclear Reactors: Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANada Deuterium-Uranium reactor (CANDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants.

POWER FROM RENEWABLE ENERGY **UNIT IV**

10

8

Hydro Electric Power Plants - Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, Solar Photo Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.

ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLANTS

Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control

TOTAL: 45 PERIODS

technologies including Waste Disposal Options for Coal and Nuclear Power Plants.

OUTCOMES:

- Upon completion of this course, the students can able to understand different types of power plant, and its functions and their flow lines and issues related to them.
- Analyse and solve energy and economic related issues in power sectors.

TEXT BOOK:

1. Nag. P.K., "Power Plant Engineering", Third Edition, Tata McGraw – Hill Publishing Company Ltd., 2008.

REFERENCES:

- 1. El-Wakil. M.M., "Power Plant Technology", Tata McGraw Hill Publishing Company Ltd., 2010.
- 2. Black & Veatch, Springer, "Power Plant Engineering", 1996.
- 3. Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", Second Edition, Standard Handbook of McGraw Hill, 1998.
- 4. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.

ME6702 MECHATRONICS

L T P C 3 0 0 3

OBJECTIVES:

• To impart knowledge about the elements and techniques involved in Mechatronics systems which are very much essential to understand the emerging field of automation.

UNIT I INTRODUCTION

12

Introduction to Mechatronics – Systems – Concepts of Mechatronics approach – Need for Mechatronics – Emerging areas of Mechatronics – Classification of Mechatronics. Sensors and Transducers: Static and dynamic Characteristics of Sensor, Potentiometers – LVDT – Capacitance sensors – Strain gauges – Eddy current sensor – Hall effect sensor – Temperature sensors – Light sensors

UNIT II 8085 MICROPROCESSOR AND 8051 MICROCONTROLLER

10

Introduction – Architecture of 8085 – Pin Configuration – Addressing Modes –Instruction set, Timing diagram of 8085 – Concepts of 8051 microcontroller – Block diagram,.

UNIT III PROGRAMMABLE PERIPHERAL INTERFACE

8

Introduction – Architecture of 8255, Keyboard interfacing, LED display –interfacing, ADC and DAC interface, Temperature Control – Stepper Motor Control – Traffic Control interface.

UNIT IV PROGRAMMABLE LOGIC CONTROLLER

7

Introduction – Basic structure – Input and output processing – Programming – Mnemonics – Timers, counters and internal relays – Data handling – Selection of PLC.

UNIT V ACTUATORS AND MECHATRONIC SYSTEM DESIGN

8

Types of Stepper and Servo motors – Construction – Working Principle – Advantages and Disadvantages. Design process-stages of design process – Traditional and Mechatronics design concepts – Case studies of Mechatronics systems – Pick and place Robot – Engine Management system – Automatic car park barrier.

TOTAL: 45 PERIODS

OUTCOMES:

• Upon completion of this course, the students can able to design mechatronics system with the help of Microprocessor, PLC and other electrical and Electronics Circuits.

TEXT BOOKS:

- 1. Bolton, "Mechatronics", Printice Hall, 2008
- 2. Ramesh S Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", 5th Edition, Prentice Hall, 2008.

REFERENCES:

- 1. Michael B.Histand and Davis G.Alciatore, "Introduction to Mechatronics and Measurement systems", McGraw Hill International edition, 2007.
- 2. Bradley D.A, Dawson D, Buru N.C and Loader A.J, "Mechatronics", Chapman and Hall, 1993.
- 3. Smaili.A and Mrad.F, "Mechatronics Integrated Technologies for Intelligent Machines", Oxford University Press, 2007.
- 4. Devadas Shetty and Richard A. Kolk, "Mechatronics Systems Design", PWS publishing company, 2007.
- 5. Krishna Kant, "Microprocessors & Microcontrollers", Prentice Hall of India, 2007.
- 6. Clarence W, de Silva, "Mechatronics" CRC Press, First Indian Re-print, 2013

ME6703 COMPUTER INTEGRATED MANUFACTURING SYSTEMS

L T P C 3 0 0 3

OBJECTIVES:

 To understand the application of computers in various aspects of Manufacturing viz., Design, Proper planning, Manufacturing cost, Layout & Material Handling system.

UNIT I INTRODUCTION

10

Brief introduction to CAD and CAM – Manufacturing Planning, Manufacturing control- Introduction to CAD/CAM – Concurrent Engineering-CIM concepts – Computerised elements of CIM system –Types of production - Manufacturing models and Metrics – Mathematical models of Production Performance – Simple problems – Manufacturing Control – Simple Problems – Basic Elements of an Automated system – Levels of Automation – Lean Production and Just-In-Time Production.

UNIT II PRODUCTION PLANNING AND CONTROL AND COMPUTERISED PROCESS PLANNING

10

Process planning – Computer Aided Process Planning (CAPP) – Logical steps in Computer Aided Process Planning – Aggregate Production Planning and the Master Production Schedule – Material Requirement planning – Capacity Planning- Control Systems-Shop Floor Control-Inventory Control – Brief on Manufacturing Resource Planning-II (MRP-II) & Enterprise Resource Planning (ERP) - Simple Problems.

UNIT III CELLULAR MANUFACTURING

9

Group Technology(GT), Part Families – Parts Classification and coding – Simple Problems in Opitz Part Coding system – Production flow Analysis – Cellular Manufacturing – Composite part concept – Machine cell design and layout – Quantitative analysis in Cellular Manufacturing – Rank Order Clustering Method - Arranging Machines in a GT cell – Hollier Method – Simple Problems.

UNIT IV FLEXIBLE MANUFACTURING SYSTEM (FMS) AND AUTOMATED

GUIDED VEHICLE SYSTEM (AGVS)

8

Types of Flexibility - FMS - FMS Components - FMS Application & Benefits - FMS Planning and Control- Quantitative analysis in FMS - Simple Problems. Automated Guided Vehicle System (AGVS) - AGVS Application - Vehicle Guidance technology - Vehicle Management & Safety.

UNIT V INDUSTRIAL ROBOTICS

8

Robot Anatomy and Related Attributes – Classification of Robots- Robot Control systems – End Effectors – Sensors in Robotics – Robot Accuracy and Repeatability - Industrial Robot Applications – Robot Part Programming – Robot Accuracy and Repeatability – Simple Problems.

TOTAL: 45 PERIODS

OUTCOMES:

• Upon completion of this course, the student can able to understand the use of computers in process planning and use of FMS and Robotics in CIM

TEXT BOOK:

- 1. Mikell.P.Groover "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of India, 2008.
- 2. Radhakrishnan P, Subramanyan S.and Raju V., "CAD/CAM/CIM", 2nd Edition, New Age International (P) Ltd, New Delhi, 2000.

REFERENCES:

- 1. Kant Vajpayee S, "Principles of Computer Integrated Manufacturing", Prentice Hall India, 2003.
- 2. Gideon Halevi and Roland Weill, "Principles of Process Planning A Logical Approach" Chapman & Hall, London, 1995.
- 3. Rao. P, N Tewari &T.K. Kundra, "Computer Aided Manufacturing", Tata McGraw Hill Publishing Company, 2000.

GE6757

TOTAL QUALITY MANAGEMENT

L T P C 3 0 0 3

OBJECTIVES:

To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION

9

Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM - Quality statements - Customer focus - Customer orientation, Customer satisfaction, Customer complaints, Customer retention - Costs of quality.

UNIT II TQM PRINCIPLES

9

Leadership - Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Quality circles Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I

9

The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT IV TQM TOOLS AND TECHNIQUES II

9

Control Charts - Process Capability - Concepts of Six Sigma - Quality Function Development (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.

UNIT V QUALITY SYSTEMS

9

Need for ISO 9000 - ISO 9001-2008 Quality System - Elements, Documentation, Quality Auditing - QS 9000 - ISO 14000 - Concepts, Requirements and Benefits - TQM Implementation in manufacturing and service sectors..

TOTAL: 45 PERIODS

OUTCOMES:

• The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

TEXT BOOK:

1. Dale H. Besterfiled, et at., "Total quality Management", Third Edition, Pearson Education Asia, Indian Reprint, 2006.

REFERENCES:

- James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.
- 2. Suganthi.L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.
- 3. Janakiraman. B and Gopal .R.K., "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.

ME6711

SIMULATION AND ANALYSIS LABORATORY

L T P C 0 0 3 2

OBJECTIVES:

- To give exposure to software tools needed to analyze engineering problems.
- To expose the students to different applications of simulation and analysis tools.

LIST OF EXPERIMENTS

A. SIMULATION

- 1. MATLAB basics, Dealing with matrices, Graphing-Functions of one variable and two variables
- 2. Use of Matlab to solve simple problems in vibration
- 3. Mechanism Simulation using Multibody Dynamic software

B. ANALYSIS

- 1. Force and Stress analysis using link elements in Trusses, cables etc.
- 2. Stress and deflection analysis in beams with different support conditions.
- 3. Stress analysis of flat plates and simple shells.
- 4. Stress analysis of axi symmetric components.
- 5. Thermal stress and heat transfer analysis of plates.
- 6. Thermal stress analysis of cylindrical shells.
- 7. Vibration analysis of spring-mass systems.
- 8. Model analysis of Beams.
- 9. Harmonic, transient and spectrum analysis of simple systems.

TOTAL: 45 PERIODS

OUTCOMES:

74

 Upon completion of this course, the Students can model, analyse and simulate experiments to meet real world system and evaluate the performance.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S. NO.	NAME OF THE EQUIPMENT	Qty.
1	Computer Work Station	15
2	Color Desk Jet Printer	01
3	Multibody Dynamic Software Suitable for Mechanism	15 licenses
	simulation and analysis	
4	C / MATLAB	5 licenses

ME6712

MECHATRONICS LABORATORY

L T P C 0 0 3 2

OBJECTIVES:

 To know the method of programming the microprocessor and also the design, modeling & analysis of basic electrical, hydraulic & pneumatic Systems which enable the students to understand the concept of mechatronics.

LIST OF EXPERIMENTS:

- 1. Assembly language programming of 8085 Addition Subtraction Multiplication Division Sorting Code Conversion.
- 2. Stepper motor interface.
- 3. Traffic light interface.
- 4. Speed control of DC motor.
- 5. Study of various types of transducers.
- 6. Study of hydraulic, pneumatic and electro-pneumatic circuits.
- 7. Modelling and analysis of basic hydraulic, pneumatic and electrical circuits using Software.
- 8. Study of PLC and its applications.
- 9. Study of image processing technique.

TOTAL: 45 PERIODS

OUTCOMES:

 Upon completion of this course, the students can able to design mechatronics system with the help of Microprocessor, PLC and other electrical and Electronics Circuits.

SI. No.	NAME OF THE EQUIPMENT	Qty.
1	Basic Pneumatic Trainer Kit with manual and electrical	1 No.
	controls/ PLC Control each	
2	Basic Hydraulic Trainer Kit	1 No
3	Hydraulics and Pneumatics Systems Simulation Software	10 No
4	8051 - Microcontroller kit with stepper motor and drive	2 No
	circuit sets	
	Image processing system with hardware & software	1 No.

• To encourage the students to comprehend the knowledge acquired from the first Semester to Sixth Semester of B.E Degree Course through periodic exercise.

METHOD OF EVALUATION:

The students will be assessed 100% internally through weekly test with objective type questions on all the subject related topics

TOTAL: 30 PERIODS

OUTCOMES:

 ability to understand and comprehend any given problem related to mechanical engineering field.

MG6863

ENGINEERING ECONOMICS

L T P C 3 0 0 3

OBJECTIVES:

 To enable students to understand the fundamental economic concepts applicable to engineering and to learn the techniques of incorporating inflation factor in economic decision making.

UNIT I INTRODUCTION TO ECONOMICS

R

Introduction to Economics- Flow in an economy, Law of supply and demand, Concept of Engineering Economics – Engineering efficiency, Economic efficiency, Scope of engineering economics - Element of costs, Marginal cost, Marginal Revenue, Sunk cost, Opportunity cost, Break-even analysis - V ratio, Elementary economic Analysis – Material selection for product Design selection for a product, Process planning.

UNIT II VALUE ENGINEERING

10

Make or buy decision, Value engineering – Function, aims, Value engineering procedure. Interest formulae and their applications –Time value of money, Single payment compound amount factor, Single payment present worth factor, Equal payment series sinking fund factor, Equal payment series payment Present worth factor- equal payment series capital recovery factor - Uniform gradient series annual equivalent factor, Effective interest rate, Examples in all the methods.

UNIT III CASH FLOW

9

Methods of comparison of alternatives – present worth method (Revenue dominated cash flow diagram), Future worth method (Revenue dominated cash flow diagram, cost dominated cash flow diagram), Annual equivalent method (Revenue dominated cash flow diagram, cost dominated cash flow diagram), rate of return method, Examples in all the methods.

UNIT IV REPLACEMENT AND MAINTENANCE ANALYSIS

9

Replacement and Maintenance analysis – Types of maintenance, types of replacement problem, determination of economic life of an asset, Replacement of an asset with a new asset – capital recovery with return and concept of challenger and defender, Simple probabilistic model for items which fail completely.

UNIT V DEPRECIATION

9

Depreciation- Introduction, Straight line method of depreciation, declining balance method of depreciation-Sum of the years digits method of depreciation, sinking fund method of depreciation/Annuity method of depreciation, service output method of depreciation-Evaluation of public alternatives- introduction, Examples, Inflation adjusted decisions — procedure to adjust inflation, Examples on comparison of alternatives and determination of economic life of asset.

TOTAL: 45 PERIODS

OUTCOMES:

Upon successful completion of this course, students will acquire the skills to apply the basics
of economics and cost analysis to engineering and take economically sound decisions.

TEXT BOOKS:

1. Panneer Selvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, 2001.

REFERENCES:

- 1. Chan S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2011.
- 2. Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas. 2010.
- 3. Degarmo, E.P., Sullivan, W.G and Canada, J.R, "Engineering Economy", Macmillan, New York, 2011.
- 4. Zahid A khan: Engineering Economy, "Engineering Economy", Dorling Kindersley, 2012

ME6811 PROJECT WORK

L T P C 0 0 12 6

OBJECTIVES:

• To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL: 180 PERIODS

OUTCOMES:

• On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

• To enable students to deal with newer concepts of marketing concepts like strategic marketing segmentation, pricing, advertisement and strategic formulation. The course will enable a student to take up marketing as a professional career.

UNIT I MARKETING PROCESS

9

Definition, Marketing process, dynamics, needs, wants and demands, marketing concepts, environment, mix, types. Philosophies, selling versus marketing, organizations, industrial versus consumer marketing, consumer goods, industrial goods, product hierarchy.

UNIT II BUYING BEHAVIOUR AND MARKET SEGMENTATION

9

Cultural, demographic factors, motives, types, buying decisions, segmentation factors - demographic - Psycho graphic and geographic segmentation, process, patterns.

UNIT III PRODUCT PRICING AND MARKETING RESEARCH

9

Objectives, pricing, decisions and pricing methods, pricing management. Introduction, uses, process of marketing research.

UNIT IV MARKETING PLANNING AND STRATEGY FORMULATION

9

Components of marketing plan-strategy formulations and the marketing process, implementations, portfolio analysis, BCG, GEC grids.

UNIT V ADVERTISING, SALES PROMOTION AND DISTRIBUTION

9

Characteristics, impact, goals, types, and sales promotions - point of purchase - unique selling proposition. Characteristics, wholesaling, retailing, channel design, logistics, and modern trends in retailing, Modern Trends, e-Marketing.

TOTAL: 45 PERIODS

OUTCOMES:

 The learning skills of Marketing will enhance the knowledge about Marketer's Practices and create insights on Advertising, Branding, Retailing and Marketing Research.

TEXT BOOKS:

- 1. Philip Kolter & Keller, "Marketing Management", Prentice Hall of India, 14th edition, 2012.
- 2. Chandrasekar. K.S., "Marketing Management Text and Cases", 1st Edition, Tata McGraw Hill Vijaynicole, 2010.

REFERENCES:

- 1. Ramasamy and Nama kumari, "Marketing Environment: Planning, implementation and control the Indian context", 1990.
- 2. Czinkota&Kotabe, "Marketing management", Thomson learning, Indian edition 2007
- 3. Adrain palmer, "Introduction to marketing theory and practice", Oxford university press IE 2004.
- 4. Donald S. Tull and Hawkins, "Marketing Reasearch", Prentice Hall of Inida-1997.
- 5. Philip Kotler and Gary Armstrong "Principles of Marketing" Prentice Hall of India, 2000.
- 6. Steven J.Skinner, "Marketing", All India Publishers and Distributes Ltd. 1998.
- 7. Graeme Drummond and John Ensor, "Introduction to marketing concepts", Elsevier, Indian Reprint, 2007.

ME6001

QUALITY CONTROL AND RELIABILITY ENGINEERING

LTPC

- To introduce the concept of SQC
- To understand process control and acceptance sampling procedure and their application.
- To learn the concept of reliability.

UNIT I INTRODUCTION AND PROCESS CONTROL FOR VARIABLES

Introduction, definition of quality, basic concept of quality, definition of SQC, benefits and limitation of SQC, Quality assurance, Quality control: Quality cost-Variation in process causes of variation -Theory of control chart- uses of control chart - Control chart for variables - X chart, R chart and process capability – process capability studies and simple problems. Six sigma concepts

UNIT II PROCESS CONTROL FOR ATTRIBUTES

8

10

Control chart for attributes -control chart for non conformings-p chart and np chart - control chart for nonconformities- C and U charts. State of control and process out of control identification in charts. pattern study.

UNIT III **ACCEPTANCE SAMPLING**

9

Lot by lot sampling - types - probability of acceptance in single, double, multiple sampling techniques - O.C. curves - producer's Risk and consumer's Risk. AQL, LTPD, AQQL concepts-standard sampling plans for AQL and LTPD- uses of standard sampling plans.

UNIT IV LIFE TESTING – RELIABILITY

Life testing - Objective - failure data analysis, Mean failure rate, mean time to failure, mean time between failure, hazard rate - Weibull model, system reliability, series, parallel and mixed configuration - simple problems. Maintainability and availability - simple problems. Acceptance sampling based on reliability test – O.C Curves.

UNIT V QUALITY AND RELIABLITY

9

Reliability improvements – techniques- use of Pareto analysis – design for reliability – redundancy unit and standby redundancy - Optimization in reliability - Product design - Product analysis - Product development - Product life cycles.

TOTAL: 45 PERIODS

Note: Use of approved statistical table permitted in the examination.

OUTCOMES:

Upon successful completion of this course, the students can able to apply the concept of SQC in process control for reliable component production

TEXT BOOKS:

- Douglas.C. Montgomery, "Introduction to Statistical quality control", 4th edition, John Wiley
- 2. Srinath. L.S., "Reliability Engineering", Affiliated East west press, 1991.

REFERENCES:

- John.S. Oakland. "Statistical process control", 5th edition, Elsevier, 2005 1.
- 2. Connor, P.D.T.O., "Practical Reliability Engineering", John Wiley, 1993
- Grant, Eugene .L "Statistical Quality Control", McGraw-Hill, 1996 3.
- Monohar Mahajan, "Statistical Quality Control", Dhanpat Rai & Sons, 2001. 4.
- Gupta. R.C, "Statistical Quality control", Khanna Publishers, 1997. 5..
- Besterfield D.H., "Quality Control", Prentice Hall, 1993. 6.
- 7. Sharma S.C., "Inspection Quality Control and Reliability", Khanna Publishers, 1998.
- Danny Samson, "Manufacturing & Operations Strategy", Prentice Hall, 1991 8.

REFRIGERATION AND AIR CONDITIONING

LTPC

- To understand the underlying principles of operations in different Refrigeration & Air conditioning systems and components.
- To provide knowledge on design aspects of Refrigeration & Air conditioning systems

UNIT I INTRODUCTION

5

Introduction to Refrigeration - Unit of Refrigeration and C.O.P.- Ideal cycles- Refrigerants Desirable properties - Classification - Nomenclature - ODP & GWP.

UNIT II VAPOUR COMPRESSION REFRIGERATION SYSTEM

10

Vapor compression cycle: p-h and T-s diagrams - deviations from theoretical cycle – subcooling and super heating- effects of condenser and evaporator pressure on COP- multipressure system - low temperature refrigeration - Cascade systems – problems. Equipments: Type of Compressors, Condensers, Expansion devices, Evaporators.

UNIT III OTHER REFRIGERATION SYSTEMS

8

Working principles of Vapour absorption systems and adsorption cooling systems – Steam jet refrigeration- Ejector refrigeration systems- Thermoelectric refrigeration- Air refrigeration - Magnetic - Vortex and Pulse tube refrigeration systems.

UNIT IV PSYCHROMETRIC PROPERTIES AND PROCESSES

10

Properties of moist Air-Gibbs Dalton law, Specific humidity, Dew point temperature, Degree of saturation, Relative humidity, Enthalpy, Humid specific heat, Wet bulb temperature Thermodynamic wet bulb temperature, Psychrometric chart; Psychrometric of air-conditioning processes, mixing of air streams.

UNIT V AIR CONDITIONING SYSTEMS AND LOAD ESTIMATION

12

Air conditioning loads: Outside and inside design conditions; Heat transfer through structure, Solar radiation, Electrical appliances, Infiltration and ventilation, internal heat load; Apparatus selection; fresh air load, human comfort & IAQ principles, effective temperature & chart, calculation of summer & winter air conditioning load; Classifications, Layout of plants; Air distribution system; Filters; Air Conditioning Systems with Controls: Temperature, Pressure and Humidity sensors, Actuators & Safety controls.

OUTCOMES:

TOTAL: 45 PERIODS

 Upon completion of this course, the students can able to demonstrate the operations in different Refrigeration & Air conditioning systems and also able to design Refrigeration & Air conditioning systems.

TEXT BOOK:

1. Arora, C.P., "Refrigeration and Air Conditioning", 3rd edition, McGraw Hill, New Delhi, 2010.

REFERENCES:

- 1. Roy J. Dossat, "Principles of Refrigeration", 4th edition, Pearson Education Asia, 2009.
- 2. Stoecker, W.F. and Jones J. W., "Refrigeration and Air Conditioning", McGraw Hill, New Delhi, 1986.
- 3. ASHRAE Hand book, Fundamentals, 2010
- 4. Jones W.P., "Air conditioning engineering", 5th edition, Elsevier Butterworth-Heinemann, 2001

ME6003

RENEWABLE SOURCES OF ENERGY

LTPC

• At the end of the course, the students are expected to identify the new methodologies / technologies for effective utilization of renewable energy sources.

UNIT I INTRODUCTION

9

World Energy Use – Reserves of Energy Resources – Environmental Aspects of Energy Utilisation – Renewable Energy Scenario in Tamil nadu, India and around the World – Potentials - Achievements / Applications – Economics of renewable energy systems.

UNIT II SOLAR ENERGY

9

Solar Radiation – Measurements of Solar Radiation - Flat Plate and Concentrating Collectors – Solar direct Thermal Applications – Solar thermal Power Generation - Fundamentals of Solar Photo Voltaic Conversion – Solar Cells – Solar PV Power Generation – Solar PV Applications.

UNIT III WIND ENERGY

9

Wind Data and Energy Estimation – Types of Wind Energy Systems – Performance – Site Selection – Details of Wind Turbine Generator – Safety and Environmental Aspects

UNIT IV BIO - ENERGY

9

Biomass direct combustion – Biomass gasifiers – Biogas plants – Digesters – Ethanol production – Bio diesel – Cogeneration - Biomass Applications

UNIT V OTHER RENEWABLE ENERGY SOURCES

9

Tidal energy – Wave Energy – Open and Closed OTEC Cycles – Small Hydro-Geothermal Energy – Hydrogen and Storage - Fuel Cell Systems – Hybrid Systems.

OUTCOMES:

TOTAL: 45 PERIODS

 Upon completion of this course, the students can able to identify the new methodologies / technologies for effective utilization of renewable energy sources.

TEXT BOOKS:

- 1. Rai. G.D., "Non Conventional Energy Sources", Khanna Publishers, New Delhi, 2011.
- 2. Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, 2006.

- 1. Sukhatme. S.P., "Solar Energy", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.
- 2. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 1996.
- 3. Tiwari. G.N., Solar Energy "Fundamentals Design, Modelling & Applications", Narosa Publishing House, New Delhi, 2002.
- 4. Freris. L.L., "Wind Energy Conversion Systems", Prentice Hall, UK, 1990.
- 5. Johnson Gary, L. "Wind Energy Systems", Prentice Hall, New York, 1985
- 6. David M. Mousdale "Introduction to Biofuels", CRC Press, Taylor & Francis Group, USA 2010
- 7. Chetan Singh Solanki, Solar Photovoltaics, "Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, 2009.

• To learn about various unconventional machining processes, the various process parameters and their influence on performance and their applications

UNIT I INTRODUCTION

6

Unconventional machining Process – Need – classification – Brief overview.

UNIT II MECHANICAL ENERGY BASED PROCESSES

(

Abrasive Jet Machining – Water Jet Machining – Abrasive Water Jet Machining - Ultrasonic Machining.(AJM, WJM, AWJM and USM). Working Principles – equipment used – Process parameters – MRR- Applications.

UNIT III ELECTRICAL ENERGY BASED PROCESSES

9

Electric Discharge Machining (EDM)- working Principle-equipments-Process Parameters-Surface Finish and MRR- electrode / Tool – Power and control Circuits-Tool Wear – Dielectric – Flushing – Wire cut EDM – Applications.

UNIT IV CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES

11

Chemical machining and Electro-Chemical machining (CHM and ECM)-Etchants – Maskant - techniques of applying maskants - Process Parameters – Surface finish and MRR-Applications. Principles of ECM- equipments-Surface Roughness and MRR Electrical circuit-Process Parameters-ECG and ECH - Applications.

UNIT V THERMAL ENERGY BASED PROCESSES

10

Laser Beam machining and drilling (LBM), plasma Arc machining (PAM) and Electron Beam Machining (EBM). Principles – Equipment –Types - Beam control techniques – Applications.

TOTAL: 45 PERIODS

OUTCOMES:

 Upon completion of this course, the students can able to demonstrate different unconventional machining processes and know the influence of difference process parameters on the performance and their applications.

TEXT BOOKS:

- 1. Vijay.K. Jain "Advanced Machining Processes" Allied Publishers Pvt. Ltd., New Delhi, 2007
- 2. Pandey P.C. and Shan H.S. "Modern Machining Processes" Tata McGraw-Hill, New Delhi, 2007.

- 1. Benedict. G.F. "Nontraditional Manufacturing Processes", Marcel Dekker Inc., New York, 1987.
- 2. Mc Geough, "Advanced Methods of Machining", Chapman and Hall, London, 1998.
- 3. Paul De Garmo, J.T.Black, and Ronald.A.Kohser, "Material and Processes in Manufacturing" Prentice Hall of India Pvt. Ltd., 8thEdition, New Delhi, 2001.

ME6005 PROCESS PLANNING AND COST ESTIMATION

L T P C 3 0 0 3

OBJECTIVES:

 To introduce the process planning concepts to make cost estimation for various products after process planning

UNIT I INTRODUCTION TO PROCESS PLANNING

10

Introduction- methods of process planning-Drawing interpretation-Material evaluation – steps in process selection-. Production equipment and tooling selection

UNIT II PROCESS PLANNING ACTIVITIES

10

Process parameters calculation for various production processes-Selection jigs and fixtures election of quality assurance methods - Set of documents for process planning-Economics of process planning- case studies

UNIT III INTRODUCTION TO COST ESTIMATION

8

Importance of costing and estimation –methods of costing-elements of cost estimation –Types of estimates – Estimating procedure- Estimation labor cost, material cost- allocation of over head charges- Calculation of depreciation cost

UNIT IV PRODUCTION COST ESTIMATION

8

Estimation of Different Types of Jobs - Estimation of Forging Shop, Estimation of Welding Shop, Estimation of Foundry Shop

UNIT V MACHINING TIME CALCULATION

9

Estimation of Machining Time - Importance of Machine Time Calculation - Calculation of Machining Time for Different Lathe Operations , Drilling and Boring - Machining Time Calculation for Milling, Shaping and Planning - Machining Time Calculation for Grinding

TOTAL: 45 PERIODS

OUTCOMES:

 Upon completion of this course, the students can able to use the concepts of process planning and cost estimation for various products.

TEXT BOOKS:

1. Peter scalon, "Process planning, Design/Manufacture Interface", Elsevier science technology Books, Dec 2002.

REFERENCES:

- 1. Ostwalal P.F. and Munez J., "Manufacturing Processes and systems", 9th Edition, John Wiley, 1998.
- 2. Russell R.S and Tailor B.W, "Operations Management", 4th Edition, PHI, 2003.
- 3. Chitale A.V. and Gupta R.C., "Product Design and Manufacturing", 2nd Edition, PHI, 2002.

ME6006

DESIGN OF JIGS, FIXTURES AND PRESS TOOLS

L T P C 3 0 0 3

OBJECTIVES:

- To understand the functions and design principles of Jigs, fixtures and press tools
- To gain proficiency in the development of required views of the final design.

UNIT I LOCATING AND CLAMPING PRINCIPLES:

Objectives of tool design- Function and advantages of Jigs and fixtures – Basic elements – principles of location – Locating methods and devices – Redundant Location – Principles of clamping – Mechanical actuation – pneumatic and hydraulic actuation Standard parts – Drill bushes and Jig buttons – Tolerances and materials used.

UNIT II JIGS AND FIXTURES

10

Design and development of jigs and fixtures for given component- Types of Jigs – Post, Turnover, Channel, latch, box, pot, angular post jigs – Indexing jigs – General principles of milling, Lathe, boring, broaching and grinding fixtures – Assembly, Inspection and Welding fixtures – Modular fixturing systems- Quick change fixtures.

UNIT III PRESS WORKING TERMINOLOGIES AND ELEMENTS OF CUTTING DIES 10

Press Working Terminologies - operations - Types of presses - press accessories - Computation of press capacity - Strip layout - Material Utilization - Shearing action - Clearances - Press Work Materials - Center of pressure- Design of various elements of dies - Die Block - Punch holder, Die set, guide plates - Stops - Strippers - Pilots - Selection of Standard parts - Design and preparation of four standard views of simple blanking, piercing, compound and progressive dies.

UNIT IV BENDING AND DRAWING DIES

10

Difference between bending and drawing – Blank development for above operations – Types of Bending dies – Press capacity – Spring back – knockouts – direct and indirect – pressure pads – Ejectors – Variables affecting Metal flow in drawing operations – draw die inserts – draw beadsironing – Design and development of bending, forming, drawing, reverse redrawing and combination dies – Blank development for axisymmetric, rectangular and elliptic parts – Single and double action dies.

UNIT V OTHER FORMING TECHNIQUES

7

Bulging, Swaging, Embossing, coining, curling, hole flanging, shaving and sizing, assembly, fine Blanking dies – recent trends in tool design- computer Aids for sheet metal forming Analysis – basic introduction - tooling for numerically controlled machines- setup reduction for work holding – Single minute exchange of dies – Poka Yoke.

TOTAL: 45 PERIODS

Note: (Use of P S G Design Data Book is permitted in the University examination) **OUTCOMES:**

Upon completion of this course, the students can able to design jigs, fixtures and press tools.

TEXT BOOKS:

- 1. Joshi, P.H. "Jigs and Fixtures", Second Edition, Tata McGraw Hill Publishing Co., Ltd., New Delhi. 2004.
- 2. Joshi P.H "Press tools Design and Construction", wheels publishing, 1996

- 1. Venkataraman. K., "Design of Jigs Fixtures & Press Tools", Tata McGraw Hill, New Delhi, 2005.
- 2. Donaldson, Lecain and Goold "Tool Design", 3rd Edition, Tata McGraw Hill, 2000.
- 3. Kempster, "Jigs and Fixture Design", Third Edition, Hoddes and Stoughton, 1974.
- 4. Hoffman "Jigs and Fixture Design", Thomson Delmar Learning, Singapore, 2004.
- 5. ASTME Fundamentals of Tool Design Prentice Hall of India.
- 6. Design Data Hand Book, PSG College of Technology, Coimbatore.

COMPOSITE MATERIALS AND MECHANICS

L T P C 3 0 0 3

ME6007

OBJECTIVES:

- To understand the fundamentals of composite material strength and its mechanical behavior Understanding the analysis of fiber reinforced Laminate design for different
- combinations of plies with different orientations of the fiber.
- Thermo-mechanical behavior and study of residual stresses in Laminates during processing.
 Implementation of Classical Laminate Theory (CLT) to study and analysis for residual stresses in an isotropic layered structure such as electronic chips.

UNIT I INTRODUCTION, LAMINA CONSTITUTIVE EQUATIONS & MANUFACTURING 12

Definition –Need – General Characteristics, Applications. Fibers – Glass, Carbon, Ceramic and Aramid fibers. Matrices – Polymer, Graphite, Ceramic and Metal Matrices – Characteristics of fibers and matrices. Lamina Constitutive Equations: Lamina Assumptions – Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Typical Commercial material properties, Rule of Mixtures. Generally Orthotropic Lamina – Transformation Matrix, Transformed Stiffness. Manufacturing: Bag Moulding Compression Moulding – Pultrusion – Filament Winding – Other Manufacturing Processes

UNIT II FLAT PLATE LAMINATE CONSTITUTE EQUATIONS

10

Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates.

UNIT III LAMINA STRENGTH ANALYSIS

5

Introduction - Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials. Generalized Hill's Criterion for Anisotropic materials. Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion. Prediction of Iaminate Failure

UNIT IV THERMAL ANALYSIS

8

Assumption of Constant C.T.E's. Modification of Hooke's Law. Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's. C.T.E's for special Laminate Configurations – Unidirectional, Off-axis, Symmetric Balanced Laminates, Zero C.T.E laminates, Thermally Quasi-Isotropic Laminates

UNIT V ANALYSIS OF LAMINATED FLAT PLATES

10

TOTAL: 45 PERIODS

Equilibrium Equations of Motion. Energy Formulations. Static Bending Analysis. Buckling Analysis. Free Vibrations – Natural Frequencies

OUTCOMES:

 Upon completion of this course, the students can able to analyse the fiber reinforced Laminate for optimum design

Apply classical laminate theory to study and analyse the residual stresses in Laminate.

TEXT BOOKS:

- 1. Gibson, R.F., "Principles of Composite Material Mechanics", Second Edition, McGraw-Hill, CRC press in progress, 1994, -.
- 2. Hyer, M.W., "Stress Analysis of Fiber Reinforced Composite Materials", McGraw Hill, 1998

REFERENCES:

- 1. Issac M. Daniel and Ori Ishai, "Engineering Mechanics of Composite Materials", Oxford University Press-2006, First Indian Edition 2007
- 2. Mallick, P.K., Fiber, "Reinforced Composites: Materials, Manufacturing and Design", Maneel Dekker Inc, 1993.
- 3. Halpin, J.C., "Primer on Composite Materials, Analysis", Technomic Publishing Co., 1984.
- 4. Agarwal, B.D., and Broutman L.J., "Analysis and Performance of Fiber Composites", John Wiley and Sons, New York, 1990.
- 5. Mallick, P.K. and Newman, S., (edition), "Composite Materials Technology: Processes and Properties", Hansen Publisher, Munish, 1990.

ME6008

WELDING TECHNOLOGY

L T P C 3 0 0 3

OBJECTIVES

 To understand the basics of welding and to know about the various types of welding processes

UNIT I GAS AND ARC WELDING PROCESSES:

9

Fundamental principles – Air Acetylene welding, Oxyacetylene welding, Carbon arc welding, Shielded metal arc welding, Submerged arc welding, TIG & MIG welding, Plasma arc welding and Electroslag welding processes - advantages, limitations and applications.

UNIT II RESISTANCE WELDING PROCESSES:

9

Spot welding, Seam welding, Projection welding, Resistance Butt welding, Flash Butt welding, Percussion welding and High frequency resistance welding processes - advantages, limitations and applications.

UNIT III SOLID STATE WELDING PROCESSES:

9

Cold welding, Diffusion bonding, Explosive welding, Ultrasonic welding, Friction welding, Forge welding, Roll welding and Hot pressure welding processes - advantages, limitations and applications.

UNIT IV OTHER WELDING PROCESSES:

9

Thermit welding, Atomic hydrogen welding, Electron beam welding, Laser Beam welding, Friction stir welding, Under Water welding, Welding automation in aerospace, nuclear and surface transport vehicles.

UNIT V DESIGN OF WELD JOINTS, WELDABILITY AND TESTING OF WELDMENTS 9
Various weld joint designs – Weldability of Aluminium, Copper, and Stainless steels. Destructive and non destructive testing of weldments.

TOTAL: 45 HOURS

OUTCOMES:

 Upon completion of this course, the students can able to compare different types of Welding process for effective Welding of Structural components.

TEXT BOOKS:

- 1. Parmer R.S., "Welding Engineering and Technology", 1st edition, Khanna Publishers, New Delhi, 2008.
- 2. Parmer R.S., "Welding Processes and Technology", Khanna Publishers, New Delhi, 1992.

3. Little R.L., "Welding and welding Technology", Tata McGraw Hill Publishing Co., Ltd., New Delhi, 34th reprint, 2008.

REFERENCES:

- 1. Schwartz M.M. "Metals Joining Manual". McGraw Hill Books, 1979.
- 2. Tylecote R.F. "The Solid Phase Welding of Metals". Edward Arnold Publishers Ltd. London, 1968.
- 3. AWS- Welding Hand Book. 8th Edition. Vol- 2. "Welding Process"
- 4. Nadkarni S.V. "Modern Arc Welding Technology", 1st edition, Oxford IBH Publishers, 2005.
- 5. Christopher Davis. "Laser Welding- Practical Guide". Jaico Publishing House, 1994.
- 6. Davis A.C., "The Science and Practice of Welding", Cambridge University Press, Cambridge, 1993

ME6009 ENERGY CONSERVATION AND MANAGEMENT

L T P C 3 0 0 3

OBJECTIVES:

At the end of the course, the student is expected to

- understand and analyse the energy data of industries
- carryout energy accounting and balancing
- conduct energy audit and suggest methodologies for energy savings and
- utilise the available resources in optimal ways

UNIT I INTRODUCTION

ρ

Energy - Power - Past & Present scenario of World; National Energy consumption Data - Environmental aspects associated with energy utilization - Energy Auditing: Need, Types, Methodology and Barriers. Role of Energy Managers. Instruments for energy auditing.

UNIT II ELECTRICAL SYSTEMS

12

Components of EB billing – HT and LT supply, Transformers, Cable Sizing, Concept of Capacitors, Power Factor Improvement, Harmonics, Electric Motors - Motor Efficiency Computation, Energy Efficient Motors, Illumination – Lux, Lumens, Types of lighting, Efficacy, LED Lighting and scope of Encon in Illumination.

UNIT III THERMAL SYSTEMS

12

Stoichiometry, Boilers, Furnaces and Thermic Fluid Heaters – Efficiency computation and encon measures. Steam: Distribution &U sage: Steam Traps, Condensate Recovery, Flash Steam Utilization, Insulators & Refractories

UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES

8

Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems – Cooling Towers – D.G. sets

UNIT V ECONOMICS

5

TOTAL: 45 PERIODS

Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concept

OUTCOMES:

Upon completion of this course, the students can able to analyse the energy data of industries.

Can carryout energy accounting and balancing

Can suggest methodologies for energy savings

TEXT BOOKS:

 Energy Manager Training Manual (4 Volumes) available at www.energymanager training.com, a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India, 2004.

REFERENCES:

- 1. Witte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" Hemisphere Publ, Washington, 1988.
- 2. Callaghn, P.W. "Design and Management for Energy Conservation", Pergamon Press, Oxford, 1981.
- 3. Dryden. I.G.C., "The Efficient Use of Energy" Butterworths, London, 1982
- 4. Turner. W.C., "Energy Management Hand book", Wiley, New York, 1982.
- 5. Murphy. W.R. and G. Mc KAY, "Energy Management", Butterworths, London 1987.

GE6083

DISASTER MANAGEMENT

L T P C 3 0 0 3

OBJECTIVES:

- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

UNIT I INTRODUCTION TO DISASTERS

ć

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters.

UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR)

9

Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processess and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.

UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA

9

9

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and

Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation - Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster - Disaster Damage Assessment.

UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

OUTCOMES:

The students will be able to

- Differentiate the types of disasters, causes and their impact on environment and society
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarious in the Indian context, Disaster damage assessment and management.

TEXTBOOK:

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10:** 1259007367, **ISBN-13:** 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

REFERENCES

- 1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005
- 2. Government of India, National Disaster Management Policy, 2009.

ME6010 ROBOTICS L T P C 3 0 0 3

OBJECTIVES:

- To understand the functions of the basic components of a Robot.
- To study the use of various types of End of Effectors and Sensors
- To impart knowledge in Robot Kinematics and Programming
- To learn Robot safety issues and economics.

UNIT I FUNDAMENTALS OF ROBOT

6

TOTAL: 45 PERIODS

Robot - Definition - Robot Anatomy - Co ordinate Systems, Work Envelope Types and Classification-Specifications-Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load- Robot Parts and their Functions-Need for Robots-Different Applications.

UNIT II ROBOT DRIVE SYSTEMS AND END EFFECTORS

9

Pneumatic Drives-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo Motors, Stepper Motors, A.C. Servo Motors-Salient Features, Applications and Comparison of all these Drives, End Effectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- Grippers, Magnetic Grippers,

Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations.

UNIT III SENSORS AND MACHINE VISION

12

Requirements of a sensor, Principles and Applications of the following types of sensors- Position sensors - Piezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumatic Position Sensors, Range Sensors Triangulations Principles, Structured, Lighting Approach, Time of Flight, Range Finders, Laser Range Meters, Touch Sensors ,binary Sensors., Analog Sensors, Wrist Sensors, Compliance Sensors, Slip Sensors, Camera, Frame Grabber, Sensing and Digitizing Image Data-Signal Conversion, Image Storage, Lighting Techniques, Image Processing and Analysis-Data Reduction, Segmentation, Feature Extraction, Object Recognition, Other Algorithms, Applications-Inspection, Identification, Visual Serving and Navigation.

UNIT IV ROBOT KINEMATICS AND ROBOT PROGRAMMING

13

Forward Kinematics, Inverse Kinematics and Difference; Forward Kinematics and Reverse Kinematics of manipulators with Two, Three Degrees of Freedom (in 2 Dimension), Four Degrees of freedom (in 3 Dimension) Jacobians, Velocity and Forces-Manipulator Dynamics, Trajectory Generator, Manipulator Mechanism Design-Derivations and problems. Lead through Programming, Robot programming Languages-VAL Programming-Motion Commands, Sensor Commands, End Effector commands and simple Programs.

UNIT V IMPLEMENTATION AND ROBOT ECONOMICS

5

RGV, AGV; Implementation of Robots in Industries-Various Steps; Safety Considerations for Robot Operations - Economic Analysis of Robots.

TOTAL: 45 PERIODS

OUTCOMES:

 Upon completion of this course, the students can able to apply the basic engineering knowledge for the design of robotics

TEXT BOOKS:

- 1. Klafter R.D., Chmielewski T.A and Negin M., "Robotic Engineering An Integrated Approach", Prentice Hall. 2003.
- 2. Groover M.P., "Industrial Robotics -Technology Programming and Applications", McGraw Hill, 2001.

REFERENCES:

- 1. Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008.
- 2. Deb S.R., "Robotics Technology and Flexible Automation" Tata McGraw Hill Book Co., 1994.
- 3. Koren Y., "Robotics for Engineers", Mc Graw Hill Book Co., 1992.
- 4. Fu.K.S., Gonzalz R.C. and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book Co., 1987.
- 5. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.
- 6. Rajput R.K., "Robotics and Industrial Automation", S.Chand and Company, 2008.
- 7. Surender Kumar, "Industrial Robots and Computer Integrated Manufacturing", Oxford and IBH Publishing Co. Pvt. Ltd., 1991.

GE6081

FUNDAMENTALS OF NANOSCIENCE

L T P C 3 0 0 3

OBJECTIVES

• To learn about basis of nanomaterial science, preparation method, types and application

UNIT I INTRODUCTION

8

Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- nano particles- quantum dots, nanowires-ultra-thinfilms-multilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

UNIT II GENERAL METHODS OF PREPARATION

9

Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.

UNIT III NANOMATERIALS

12

Nanoforms of Carbon - Buckminster fullerene- graphene and carbon nanotube, Single wall carbon Nanotubes (SWCNT) and Multi wall carbon nanotubes (MWCNT)- methods of synthesis(arc-growth, laser ablation, CVD routes, Plasma CVD), structure-property Relationships applications- Nanometal oxides-ZnO, TiO2,MgO, ZrO2, NiO, nanoalumina, CaO, AgTiO2, Ferrites, Nanoclays-functionalization and applications-Quantum wires, Quantum dots-preparation, properties and applications

UNIT IV CHARACTERIZATION TECHNIQUES

9

X-ray diffraction technique, Scanning Electron Microscopy - environmental techniques, Transmission Electron Microscopy including high-resolution imaging, Surface Analysis techniques- AFM, SPM, STM, SNOM, ESCA, SIMS-Nanoindentation

UNIT V APPLICATIONS

7

NanoInfoTech: Information storage- nanocomputer, molecular switch, super chip, nanocrystal, Nanobiotechlogy: nanoprobes in medical diagnostics and biotechnology, Nano medicines, Targetted drug delivery, Bioimaging - Micro Electro Mechanical Systems (MEMS), Nano Electro Mechanical Systems (NEMS)- Nanosensors, nano crystalline silver for bacterial inhibition, Nanoparticles for sunbarrier products - In Photostat, printing, solar cell, battery

TOTAL: 45 PERIODS

OUTCOMES

- Will familiarize about the science of nanomaterials
- Will demonstrate the preparation of nanomaterials
- Will develop knowledge in characteristic nanomaterial

TEXT BOOKS

- 1. Edelstein. A.S. and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Publishing, Bristol and Philadelphia, 1996.
- 2. John Dinardo. N, "Nanoscale charecterisation of surfaces & Interfaces", 2nd edition, Weinheim Cambridge, Wiley-VCH, 2000

- 1. Timp .G, "Nanotechnology", AIP press/Springer, 1999.
- 2. Akhlesh Lakhtakia (Editor), "The Hand Book of Nano Technology, Nanometer Structure, Theory, Modeling and Simulations". Prentice-Hall of India (P) Ltd, New Delhi, 2007.

ME6011

THERMAL TURBO MACHINES

L T P C 3 0 0 3

OBJECTIVES:

 To understand the various systems, principles, operations and applications of different types of turbo machinery components.

UNIT I PRINCIPLES

9

Energy transfer between fluid and rotor-classification of fluid machinery,-dimensionless parametersspecific speed-applications-stage velocity triangles-work and efficiency.

UNIT II CENTRIFUGAL FANS AND BLOWERS

9

Types- stage and design parameters-flow analysis in impeller blades-volute and diffusers, losses, characteristic curves and selection, fan drives and fan noise.

UNIT III CENTRIFUGAL COMPRESSOR

9

Construction details, impeller flow losses, slip factor, diffuser analysis, losses and performance curves.

UNIT IV AXIAL FLOW COMPRESSOR

9

Stage velocity diagrams, enthalpy-entropy diagrams, stage losses and efficiency, work done simple stage design problems and performance characteristics.

UNIT V AXIAL AND RADIAL FLOW TURBINES

TOTAL: 45 PERIODS

Stage velocity diagrams, reaction stages, losses and coefficients, blade design principles, testing and performance characteristics.

OUTCOMES:

• Upon completion of this course, the students can able to explain the various systems, principles and applications and different types of turbo machinery components.

TEXT BOOKS:

1. Yahya, S.H., Turbines, Compressor and Fans, Tata McGraw Hill Publishing Company, 1996.

- 1. Bruneck, Fans, Pergamom Press, 1973.
- 2. Earl Logan, Jr., Hand book of Turbomachinery, Marcel Dekker Inc., 1992.
- 3. Dixon, S.I., "Fluid Mechanics and Thermodynamics of Turbomachinery", Pergamon Press, 1990.
- 4. Shepherd, D.G., "Principles of Turbomachinery", Macmillan, 1969.
- 5. Ganesan, V., "Gas Turbines", Tata McGraw Hill Pub. Co., 1999.
- 6. Gopalakrishnan .G and Prithvi Raj .D, "A Treatise on Turbo machines", Scifech Publications (India) Pvt. Ltd., 2002.

ME6012

MAINTENANCE ENGINEERING

L T P C 3 0 0 3

OBJECTIVES:

- To enable the student to understand the principles, functions and practices adapted in industry for the successful management of maintenance activities.
- To explain the different maintenance categories like Preventive maintenance, condition monitoring and repair of machine elements.
- To illustrate some of the simple instruments used for condition monitoring in industry.

UNIT I PRINCIPLES AND PRACTICES OF MAINTENANCE PLANNING

9

Basic Principles of maintenance planning – Objectives and principles of planned maintenance activity – Importance and benefits of sound Maintenance systems – Reliability and machine availability – MTBF, MTTR and MWT – Factors of availability – Maintenance organization – Maintenance economics.

UNIT II MAINTENANCE POLICIES – PREVENTIVE MAINTENANCE

9

Maintenance categories – Comparative merits of each category – Preventive maintenance, maintenance schedules, repair cycle - Principles and methods of lubrication – TPM.

UNIT III CONDITION MONITORING

9

Condition Monitoring – Cost comparison with and without CM – On-load testing and offload testing – Methods and instruments for CM – Temperature sensitive tapes – Pistol thermometers – wear-debris analysis

UNIT IV REPAIR METHODS FOR BASIC MACHINE ELEMENTS

10

Repair methods for beds, slide ways, spindles, gears, lead screws and bearings – Failure analysis – Failures and their development – Logical fault location methods – Sequential fault location.

UNIT V REPAIR METHODS FOR MATERIAL HANDLING EQUIPMENT

Repair methods for Material handling equipment - Equipment records -Job order systems -Use of computers in maintenance.

OUTCOMES:

TOTAL: 45 PERIODS

- Upon completion of the programme, the students can able to implement the maintenance function and different practices in industries for the successful management of maintenance activities
- To identify the different maintenance categories like Preventive maintenance, condition monitoring and repair of machine elements.

TEXT BOOKS:

- 1. Srivastava S.K., "Industrial Maintenance Management", S. Chand and Co., 1981
- 2. Venkataraman .K "Maintancence Engineering and Management", PHI Learning, Pvt. Ltd., 2007

- 1. Bhattacharya S.N., "Installation, Servicing and Maintenance", S. Chand and Co., 1995
- 2. White E.N., "Maintenance Planning", I Documentation, Gower Press, 1979.
- 2. Gard M.R., "Industrial Maintenance", S. Chand & Co., 1986.
- 3. Higgins L.R., "Maintenance Engineering Hand book", 5th Edition, McGraw Hill, 1988.
- 4. Armstrong, "Condition Monitoring", BSIRSA, 1988.
- 5. Davies, "Handbook of Condition Monitoring", Chapman & Hall, 1996.
- 6. "Advances in Plant Engineering and Management", Seminar Proceedings IIPE, 1996.

ME6021 HYDRAULICS AND PNEUMATICS

L T P C 3 0 0 3

OBJECTIVES:

 This course will give an appreciation of the fundamental principles, design and operation of hydraulic and pneumatic machines, components and systems and their application in recent automation revolution.

UNIT I FLUID POWER PRINCIPLES AND FUNDEMENTALS (REVIEW)

3

Introduction to Fluid power- Advantages and Applications- Fluid power systems – Types of fluids-Properties of fluids Basics of Hydraulics – Pascal's Law- Principles of flow – Work, Power and Torque. Properties of air– Perfect Gas Laws.

UNIT II HYDRAULIC SYSTEM AND COMPONENTS

13

Sources of Hydraulic power: Pumping Theory – Pump Classification- Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criterion of Linear, Rotary- Fixed and Variable displacement pumps, Hydraulic Actuators: Cylinders – Types and construction, Hydraulic motors Control Components: Direction control, Flow control and Pressure control valves- Types, Construction and Operation- Applications – Types of actuation. Accessories: Reservoirs, Accumulators, Intensifiers, Pressure Switches- Applications- Fluid Power ANSI Symbol.

UNIT III HYDRAULIC CIRCUITS

9

Industrial hydraulic circuits- Regenerative, Pump Unloading, Double-pump, Pressure Intensifier, Airover oil, Sequence, Reciprocation, Synchronization, Fail-safe, Speed control, Hydrostatic transmission, Accumulators, Electro hydraulic circuits, Mechanical Hydraulic servo systems.

UNIT IV PNEUMATIC SYSTEM

8

Compressors- Filter, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust valves, Pneumatic actuators, Servo systems. Introduction to Fluidics, Pneumatic logic circuits.

UNIT V DESIGN OF HYDRALIC AND PNEMATIC CIRCUITS

12

TOTAL: 45 PERIODS

Design of circuits using the components of hydraulic system for Drilling, Planning, Shaping, Punching, Press. – Selection, fault finding and maintenance of hydraulic components- Sequential circuit design for simple application using cascade method, Electro pneumatic circuits. Selection criteria of pneumatic components – Installation fault finding and maintenance of pneumatic components. Microprocessor and PLC- Applications in Hydraulic and Pneumatics- Low cost Automation – Hydraulic and Pneumatic power packs.

OUTCOMES:

Identify hydraulic and pneumatics components.

Ability to design hydraulic and pneumatic circuits.

TEXT BOOK

1. Anthony Esposito," Fluid Power with Applications", PHI / Pearson Education, 2005.

REFRENCES

- 1. Shanmugasundaram.K, "Hydraulic and Pneumatic controls", Chand & Co, 2006.
- 2. Majumdar, S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata McGraw Hill, 2001
- 3. Majumdar, S.R., "Pneumatic Systems Principles and Maintenance", Tata McGraw Hill, 2007.
- 4. Micheal J, Pinches and Ashby, J.G., "Power Hydraulics", Prentice Hall, 1989.
- 5. Dudelyt, A Pease and John J Pippenger, "Basic Fluid Power", Prentice Hall, 1987.
- 6. Srinivasan. R, "Hydraulic and Pneumatic Control", IInd Edition, Tata McGraw Hill Education, 2012.

PRODUCTION PLANNING AND CONTROL

L T P C 3 0 0 3

IE6605

OBJECTIVES:

- To understand the various components and functions of production planning and control such as work study, product planning, process planning, production scheduling, Inventory Control.
- To know the recent trends like manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

UNIT I INTRODUCTION

9

Objectives and benefits of planning and control-Functions of production control-Types of production-job- batch and continuous-Product development and design-Marketing aspect - Functional aspects-Operational aspect-Durability and dependability aspect aesthetic aspect. Profit consideration-Standardization, Simplification & specialization- Break even analysis-Economics of a new design.

UNIT II WORK STUDY

9

Method study, basic procedure-Selection-Recording of process - Critical analysis, Development - Implementation - Micro motion and memo motion study - work measurement - Techniques of work measurement - Time study - Production study - Work sampling - Synthesis from standard data - Predetermined motion time standards.

UNIT III PRODUCT PLANNING AND PROCESS PLANNING

9

Product planning-Extending the original product information-Value analysis-Problems in lack of product planning-Process planning and routing-Pre requisite information needed for process planning-Steps in process planning-Quantity determination in batch production-Machine capacity, balancing-Analysis of process capabilities in a multi product system.

UNIT IV PRODUCTION SCHEDULING

9

Production Control Systems-Loading and scheduling-Master Scheduling-Scheduling rules-Gantt charts-Perpetual loading-Basic scheduling problems - Line of balance - Flow production scheduling-Batch production scheduling-Product sequencing - Production Control systems-Periodic batch control-Material requirement planning kanban - Dispatching-Progress reporting and expediting-Manufacturing lead time-Techniques for aligning completion times and due dates.

UNIT V INVENTORY CONTROL AND RECENT TRENDS IN PPC

9

Inventory control-Purpose of holding stock-Effect of demand on inventories-Ordering procedures. Two bin system -Ordering cycle system-Determination of Economic order quantity and economic lot size-ABC analysis-Recorder procedure-Introduction to computer integrated production planning systems-elements of JUST IN TIME SYSTEMS-Fundamentals of MRP II and ERP.

TOTAL: 45 PERIODS

OUTCOMES:

- Upon completion of this course, the students can able to prepare production planning and control activities such as work study, product planning, production scheduling, Inventory Control.
- They can plan manufacturing requirements manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

TEXT BOOKS:

- 1. Martand Telsang, "Industrial Engineering and Production Management", First edition, S. Chand and Company, 2000.
- 2. James.B.Dilworth,"Operations management Design, Planning and Control for manufacturing and services" Mcgraw Hill International edition 1992.

- 1. Samson Eilon, "Elements of Production Planning and Control", Universal Book Corpn.1984
- 2. Elwood S.Buffa, and Rakesh K.Sarin, "Modern Production / Operations Management", 8th Edition, John Wiley and Sons, 2000.
- 3. Kanishka Bedi, "Production and Operations management", 2nd Edition, Oxford university press, 2007.
- 4. Melynk, Denzler, "Operations management A value driven approach" Irwin Mcgraw hill.
- 5. Norman Gaither, G. Frazier, "Operations Management", 9th edition, Thomson learning IE, 2007
- 6. Jain. K.C & L.N. Aggarwal, "Production Planning Control and Industrial Management", Khanna Publishers. 1990.
- 7. Chary. S.N. "Theory and Problems in Production & Operations Management", Tata McGraw Hill, 1995.
- 8. Upendra Kachru, "Production and Operations Management Text and cases", 1st Edition, Excel books 2007.

MG6071

ENTERPRENEURSHIP DEVELOPMENT

L T P C 3 0 0 3

OBJECTIVES:

• To develop and strengthen entrepreneurial quality and motivation in students and to impart basic entrepreneurial skills and understanding to run a business efficiently and effectively.

UNIT I ENTREPRENEURSHIP

9

Entrepreneur – Types of Entrepreneurs – Difference between Entrepreneur and Intrapreneur Entrepreneurship in Economic Growth, Factors Affecting Entrepreneurial Growth.

UNIT II MOTIVATION

9

Major Motives Influencing an Entrepreneur – Achievement Motivation Training, Self Rating, Business Games, Thematic Apperception Test – Stress Management, Entrepreneurship Development Programs – Need, Objectives.

UNIT III BUSINESS

9

Small Enterprises – Definition, Classification – Characteristics, Ownership Structures – Project Formulation – Steps involved in setting up a Business – identifying, selecting a Good Business opportunity, Market Survey and Research, Techno Economic Feasibility Assessment – Preparation of Preliminary Project Reports – Project Appraisal – Sources of Information – Classification of Needs and Agencies.

UNIT IV FINANCING AND ACCOUNTING

9

Need – Sources of Finance, Term Loans, Capital Structure, Financial Institution, Management of working Capital, Costing, Break Even Analysis, Taxation – Income Tax, Excise Duty – Sales Tax.

UNIT V SUPPORT TO ENTREPRENEURS

9

Sickness in small Business – Concept, Magnitude, Causes and Consequences, Corrective Measures - Business Incubators – Government Policy for Small Scale Enterprises – Growth Strategies in small industry – Expansion, Diversification, Joint Venture, Merger and Sub Contracting.

OUTCOMES:

TOTAL: 45 PERIODS

• Upon completion of the course, students will be able to gain knowledge and skills needed to run a business successfully.

TEXT BOOKS:

1. Khanka. S.S., "Entrepreneurial Development" S.Chand & Co. Ltd., Ram Nagar, New Delhi, 2013.

2. Donald F Kuratko, "Entreprenuership – Theory, Process and Practice", 9th Edition, Cengage Learning, 2014.

REFERENCES:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, "Entrepreneurship" 2nd Edition, Oxford University Press, 2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

ME6013 DESIGN OF PRESSURE VESSELS AND PIPING

LT P C 3 0 0 3

OBJECTIVES:

- To understand the Mathematical knowledge to design pressure vessels and piping
- To understand the ability to carry of stress analysis in pressure vessels and piping

UNIT I INTRODUCTION

3

Methods for determining stresses – Terminology and Ligament Efficiency – Applications.

UNIT II STRESSES IN PRESSURE VESSELS

15

Introduction – Stresses in a circular ring, cylinder –Dilation of pressure vessels, Membrane stress Analysis of Vessel – Cylindrical, spherical and, conical heads – Thermal Stresses – Discontinuity stresses in pressure vessels.

UNIT III DESIGN OF VESSELS

15

Design of Tall cylindrical self supporting process columns – Supports for short vertical vessels – Stress concentration at a variable Thickness transition section in a cylindrical vessel, about a circular hole, elliptical openings. Theory of Reinforcement – Pressure Vessel Design.

UNIT IV BUCKLING AND FRACTURE ANALYSIS IN VESSELS

8

Buckling phenomenon – Elastic Buckling of circular ring and cylinders under external pressure – collapse of thick walled cylinders or tubes under external pressure – Effect of supports on Elastic Buckling of Cylinders – Buckling under combined External pressure and axial loading.

UNIT V PIPING

4

Introduction – Flow diagram – piping layout and piping stress Analysis.

OUTCOMES:

TOTAL: 45 PERIODS

 Upon completion of this course, the students can able to apply the mathematical fundamental for the design of pressure vessels and pipes. Further they can able to analyse and design of pressure vessels and piping.

TEXT BOOKS:

1. John F. Harvey, "Theory and Design of Pressure Vessels", CBS Publishers and Distributors, 1987.

- 1. Henry H. Bedner, "Pressure Vessels, Design Hand Book", CBS publishers and Distributors, 1987.
- 2. Stanley, M. Wales, "Chemical process equipment, selection and Design". Buterworths series in Chemical Engineering, 1988.
- 3. William. J., Bees, "Approximate Methods in the Design and Analysis of Pressure Vessels and Piping", Pre ASME Pressure Vessels and Piping Conference, 1997.
- 4. Sam Kannapan, "Introduction to Pipe Stress Analysis". John Wiley and Sons, 1985.

ME6014

COMPUTATIONAL FLUID DYNAMICS

LT P C 3 0 0 3

OBJECTIVES:

- To introduce Governing Equations of viscous fluid flows
- To introduce numerical modeling and its role in the field of fluid flow and heat transfer
- To enable the students to understand the various discretization methods, solution procedures and turbulence modeling.
- To create confidence to solve complex problems in the field of fluid flow and heat transfer by using high speed computers.

UNIT I GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

8

Basics of computational fluid dynamics – Governing equations of fluid dynamics – Continuity, Momentum and Energy equations – Chemical species transport – Physical boundary conditions – Time-averaged equations for Turbulent Flow – Turbulent–Kinetic Energy Equations – Mathematical behaviour of PDEs on CFD - Elliptic, Parabolic and Hyperbolic equations.

UNIT II FINITE DIFFERENCE AND FINITE VOLUME METHODS FOR DIFFUSION

Derivation of finite difference equations – Simple Methods – General Methods for first and second order accuracy – Finite volume formulation for steady state One, Two and Three -dimensional diffusion problems –Parabolic equations – Explicit and Implicit schemes – Example problems on elliptic and parabolic equations – Use of Finite Difference and Finite Volume methods.

UNIT III FINITE VOLUME METHOD FOR CONVECTION DIFFUSION

10

Steady one-dimensional convection and diffusion – Central, upwind differencing schemes properties of discretization schemes – Conservativeness, Boundedness, Transportiveness, Hybrid, Power-law, QUICK Schemes.

UNIT IV FLOW FIELD ANALYSIS

9

Finite volume methods -Representation of the pressure gradient term and continuity equation – Staggered grid – Momentum equations – Pressure and Velocity corrections – Pressure Correction equation, SIMPLE algorithm and its variants – PISO Algorithms.

UNIT V TURBULENCE MODELS AND MESH GENERATION

9

Turbulence models, mixing length model, Two equation (k-) models – High and low Reynolds number models – Structured Grid generation – Unstructured Grid generation – Mesh refinement – Adaptive mesh – Software tools.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of this course, the students can able

- To create numerical modeling and its role in the field of fluid flow and heat transfer
- To use the various discretization methods, solution procedures and turbulence modeling to solve flow and heat transfer problems.

TEXT BOOKS:

- 1. Versteeg, H.K., and Malalasekera, W., "An Introduction to Computational Fluid Dynamics: The finite volume Method", Pearson Education Ltd.Second Edition, 2007.
- 2. Ghoshdastidar, P.S., "Computer Simulation of flow and heat transfer", Tata McGraw Hill Publishing Company Ltd., 1998.

REFERENCES:

- 1. Patankar, S.V. "Numerical Heat Transfer and Fluid Flow", Hemisphere Publishing Corporation, 2004.
- 2. Chung, T.J. "Computational Fluid Dynamics", Cambridge University, Press, 2002.
- 3. Ghoshdastidar P.S., "Heat Transfer", Oxford University Press, 2005
- 4. Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa Publishing House, New Delhi, 1995.
- 5. ProdipNiyogi, Chakrabarty, S.K., Laha, M.K. "Introduction to Computational Fluid Dynamics", Pearson Education, 2005.
- 6. Anil W. Date "Introduction to Computational Fluid Dynamics" Cambridge University Press, 2005.

ME6015

OPERATIONS RESEARCH

L T P C 3 0 0 3

OBJECTIVES:

• To provide knowledge and training in using optimization techniques under limited resources for the engineering and business problems.

UNIT I LINEAR MODELS

15

The phase of an operation research study – Linear programming – Graphical method– Simplex algorithm – Duality formulation – Sensitivity analysis.

UNIT II TRANSPORTATION MODELS AND NETWORK MODELS

8

Transportation Assignment Models –Traveling Salesman problem-Networks models – Shortest route – Minimal spanning tree – Maximum flow models –Project network – CPM and PERT networks – Critical path scheduling – Sequencing models.

UNIT III INVENTORY MODELS

6

Inventory models – Economic order quantity models – Quantity discount models – Stochastic inventory models – Multi product models – Inventory control models in practice.

UNIT IV QUEUEING MODELS

6

Queueing models - Queueing systems and structures - Notation parameter - Single server and multi server models - Poisson input - Exponential service - Constant rate service - Infinite population - Simulation.

UNIT V DECISION MODELS

10

Decision models – Game theory – Two person zero sum games – Graphical solution- Algebraic solution– Linear Programming solution – Replacement models – Models based on service life – Economic life– Single / Multi variable search technique – Dynamic Programming – Simple Problem.

TOTAL: 45 PERIODS

OUTCOMES:

• Upon completion of this course, the students can able to use the optimization techniques for use engineering and Business problems

TEXT BOOK:

1. Taha H.A., "Operations Research", Sixth Edition, Prentice Hall of India, 2003.

REFERENCES:

- 1. Shennoy G.V. and Srivastava U.K., "Operation Research for Management", Wiley Eastern, 1994.
- 2. Bazara M.J., Jarvis and Sherali H., "Linear Programming and Network Flows", John Wiley, 1990.
- 3. Philip D.T. and Ravindran A., "Operations Research", John Wiley, 1992.
- 4. Hillier and Libeberman, "Operations Research", Holden Day, 1986
- 5. Budnick F.S., "Principles of Operations Research for Management", Richard D Irwin, 1990.
- 6. Tulsian and Pasdey V., "Quantitative Techniques", Pearson Asia, 2002.

GE6084 HUMAN RIGHTS

L T P C 3 0 0 3

OBJECTIVES:

To sensitize the Engineering students to various aspects of Human Rights.

UNIT I 9

Human Rights – Meaning, origin and Development. Notion and classification of Rights – Natural, Moral and Legal Rights. Civil and Political Rights, Economic, Social and Cultural Rights; collective / Solidarity Rights.

UNIT II 9

Evolution of the concept of Human Rights Magana carta – Geneva convention of 1864. Universal Declaration of Human Rights, 1948. Theories of Human Rights.

UNIT III 9

Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

UNIT IV 9

Human Rights in India – Constitutional Provisions / Guarantees.

UNIT V 9

Human Rights of Disadvantaged People – Women, Children, Displaced persons and Disabled persons, including Aged and HIV Infected People. Implementation of Human Rights – National and State Human Rights Commission – Judiciary – Role of NGO's, Media, Educational Institutions, Social Movements.

TOTAL: 45 PERIODS

OUTCOME:

• Engineering students will acquire the basic knowledge of human rights.

REFERENCES:

- 1. Kapoor S.K., "Human Rights under International law and Indian Laws", Central Law Agency, Allahabad, 2014.
- 2. Chandra U., "Human Rights", Allahabad Law Agency, Allahabad, 2014.
- 3. Upendra Baxi, The Future of Human Rights, Oxford University Press, New Delhi.

ME6016

ADVANCED I.C ENGINES

L T P C 3 0 0 3

OBJECTIVES:

- To understand the underlying principles of operation of different IC Engines and components.
- To provide knowledge on pollutant formation, control, alternate fuel etc.

UNIT I SPARK IGNITION ENGINES

9

Mixture requirements – Fuel injection systems – Monopoint, Multipoint & Direct injection - Stages of combustion – Normal and Abnormal combustion – Knock - Factors affecting knock – Combustion chambers.

UNIT II COMPRESSION IGNITION ENGINES

9

Diesel Fuel Injection Systems - Stages of combustion - Knocking - Factors affecting knock - Direct and Indirect injection systems - Combustion chambers - Fuel Spray behaviour - Spray structure and spray penetration - Air motion - Introduction to Turbocharging.

UNIT III POLLUTANT FORMATION AND CONTROL

9

Pollutant – Sources – Formation of Carbon Monoxide, Unburnt hydrocarbon, Oxides of Nitrogen, Smoke and Particulate matter – Methods of controlling Emissions – Catalytic converters, Selective Catalytic Reduction and Particulate Traps – Methods of measurement – Emission norms and Driving cycles.

UNIT IV ALTERNATIVE FUELS

9

Alcohol, Hydrogen, Compressed Natural Gas, Liquefied Petroleum Gas and Bio Diesel - Properties, Suitability, Merits and Demerits - Engine Modifications.

UNIT V RECENT TRENDS

9

Air assisted Combustion, Homogeneous charge compression ignition engines – Variable Geometry turbochargers – Common Rail Direct Injection Systems - Hybrid Electric Vehicles – NOx Adsorbers - Onboard Diagnostics.

OUTCOME:

TOTAL : 45 PERIODS

• Upon completion of this course, the students can able to compare the operations of different IC Engine and components and can evaluate the pollutant formation, control, alternate fuel

TEXT BOOKS:

- 1. Ramalingam. K.K., "Internal Combustion Engine Fundamentals", Scitech Publications, 2002.
- 2. Ganesan, "Internal Combustion Engines", II Edition, TMH, 2002.

- 1. Mathur. R.B. and R.P. Sharma, "Internal Combustion Engines"., Dhanpat Rai & Sons 2007.
- 2. Duffy Smith, "Auto Fuel Systems", The Good Heart Willcox Company, Inc., 1987.
- 3. Eric Chowenitz, "Automobile Electronics", SAE Publications, 1995

ME6017

DESIGN OF HEAT EXCHANGERS

L T P C 3 0 0 3

OBJECTIVES:

- To learn the thermal and stress analysis on various parts of the heat exchangers
- To analyze the sizing and rating of the heat exchangers for various applications

UNIT I INTRODUCTION

9

Types of heat exchangers, shell and tube heat exchangers – regenerators and recuperators - Temperature distribution and its implications - Parts description, Classification as per Tubular Exchanger Manufacturers Association (TEMA)

UNIT II PROCESS DESIGN OF HEAT EXCHANGERS

9

Heat transfer correlations, Overall heat transfer coefficient, analysis of heat exchangers – LMTD and effectiveness method. Sizing of finned tube heat exchangers, U tube heat exchangers, Design of shell and tube heat exchangers, fouling factors, pressure drop calculations.

UNIT III STRESS ANALYSIS

9

Stress in tubes – header sheets and pressure vessels – thermal stresses, shear stresses - types of failures, buckling of tubes, flow induced vibration.

UNIT IV COMPACT AND PLATE HEAT EXCHANGER

9

Types- Merits and Demerits- Design of compact heat exchangers, plate heat exchangers, performance influencing parameters, limitations.

UNIT V CONDENSERS AND COOLING TOWERS

9

Design of surface and evaporative condensers – cooling tower – performance characteristics.

TOTAL: 45 PERIODS

OUTCOMES:

• Upon completion of this course, the students can able to apply the mathematical knowledge for thermal and stress analysis on various parts of the heat exchangers components.

TEXT BOOKS:

- 1. SadikKakac and Hongtan Liu, "Heat Exchangers Selection", Rating and Thermal Design, CRC Press, 2002.
- 2. Shah,R. K., Dušan P. Sekuli, "Fundamentals of heat exchanger design", John Wiley & Sons, 2003.

- 1. Robert W. Serth, "Process heat transfer principles and applications", Academic press, Elesevier, 2007.
- 2. Sarit Kumar Das, "Process heat transfer", Alpha Science International, 2005
- 3. John E. Hesselgreaves, "Compact heat exchangers: selection, design, and operation", Elsevier science Ltd, 2001.
- 4. Kuppan. T., "Heat exchanger design hand book", New York: Marcel Dekker, 2000.

5. Eric M. Smith, "Advances in thermal design of heat exchangers: a numerical approach: direct-sizing, step-wise rating, and transients", John Wiley & Sons, 1999.

ME6018

ADDITIVE MANUFACTURING

L T P C 3 0 0 3

OBJECTIVES:

- To know the principle methods, areas of usage, possibilities and limitations as well as environmental effects of the Additive Manufacturing technologies
- To be familiar with the characteristics of the different materials those are used in Additive Manufacturing.

UNIT I INTRODUCTION

10

Overview – History - Need-Classification -Additive Manufacturing Technology in product development-Materials for Additive Manufacturing Technology – Tooling - Applications.

UNIT II CAD & REVERSE ENGINEERING

10

Basic Concept – Digitization techniques – Model Reconstruction – Data Processing for Additive Manufacturing Technology: CAD model preparation – Part Orientation and support generation – Model Slicing –Tool path Generation – Softwares for Additive Manufacturing Technology: MIMICS, MAGICS.

UNIT III LIQUID BASED AND SOLID BASED ADDITIVE MANUFACTURING SYSTEMS 10 Classification – Liquid based system – Stereolithography Apparatus (SLA)- Principle, process, advantages and applications - Solid based system –Fused Deposition Modeling - Principle, process, advantages and applications, Laminated Object Manufacturing

UNIT IV POWDER BASED ADDITIVE MANUFACTURING SYSTEMS

10

Selective Laser Sintering – Principles of SLS process - Process, advantages and applications, Three Dimensional Printing - Principle, process, advantages and applications- Laser Engineered Net Shaping (LENS), Electron Beam Melting.

UNIT V MEDICAL AND BIO-ADDITIVE MANUFACTURING

5

Customized implants and prosthesis: Design and production. Bio-Additive Manufacturing- Computer Aided Tissue Engineering (CATE) – Case studies

TOTAL: 45 PERIODS

OUTCOMES:

 Upon completion of this course, the students can able to compare different method and discuss the effects of the Additive Manufacturing technologies and analyse the characteristics of the different materials in Additive Manufacturing.

TEXT BOOKS:

- 1. Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third Edition, World Scientific Publishers, 2010.
- 2. Gebhardt A., "Rapid prototyping", Hanser Gardener Publications, 2003.

REFERENCES:

1. Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, 2007.

- 2. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.
- 3. Hilton P.D. and Jacobs P.F., "Rapid Tooling: Technologies and Industrial Applications", CRC press, 2000.

ME6019

NON DESTRUCTIVE TESTING AND MATERIALS

L T P C 3 0 0 3

OBJECTIVES:

 To study and understand the various Non Destructive Evaluation and Testing methods, theory and their industrial applications.

UNIT I OVERVIEW OF NDT

7

NDT Versus Mechanical testing, Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterisation. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT., Visual inspection – Unaided and aided.

UNIT II SURFACE NDE METHODS

8

Liquid Penetrant Testing - Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. Magnetic Particle Testing- Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism.

UNIT III THERMOGRAPHY AND EDDY CURRENT TESTING (ET)

10

Thermography- Principles, Contact and non contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation - infrared radiation and infrared detectors, Instrumentations and methods, applications. Eddy Current Testing-Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Types of arrangement, Applications, advantages, Limitations, Interpretation/Evaluation.

UNIT IV ULTRASONIC TESTING (UT) AND ACOUSTIC EMISSION (AE)

10

Ultrasonic Testing-Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique –Principle, AE parameters, Applications

UNIT V RADIOGRAPHY (RT)

10

Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, Inverse square, law, characteristics of films - graininess, density, speed, contrast, characteristic curves, Penetrameters, Exposure charts, Radiographic equivalence. Fluoroscopy- Xero-Radiography, Computed Radiography, Computed Tomography

OUTCOMES:

TOTAL: 45 PERIODS

 Upon completion of this course, the students can able to use the various Non Destructive Testing and Testing methods understand for defects and characterization of industrial components

TEXT BOOKS:

1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa Publishing House, 2009.

2. Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International Publishers, 2010

REFERENCES:

- 1. ASM Metals Handbook,"Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17.
- 2. Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley, 2nd Edition New Jersey, 2005
- 3. Charles, J. Hellier, "Handbook of Nondestructive evaluation", McGraw Hill, New York 2001.
- 4. ASNT, American Society for Non Destructive Testing, Columbus, Ohio, NDT Handbook, Vol. 1, Leak Testing, Vol. 2, Liquid Penetrant Testing, Vol. 3, Infrared and Thermal Testing Vol. 4, Radiographic Testing, Vol. 5, Electromagnetic Testing, Vol. 6, Acoustic Emission Testing, Vol. 7, Ultrasonic Testing

ME6020

VIBRATION AND NOISE CONTROL

L T P C 3 0 0 3

OBJECTIVES:

 The student will be able to understand the sources of vibration and noise in automobiles and make design modifications to reduce the vibration and noise and improve the life of the components

UNIT I BASICS OF VIBRATION

g

Introduction, classification of vibration: free and forced vibration, undamped and damped vibration, linear and non linear vibration, response of damped and undamped systems under harmonic force, analysis of single degree and two degree of freedom systems, torsional vibration, determination of natural frequencies.

UNIT II BASICS OF NOISE

9

Introduction, amplitude, frequency, wavelength and sound pressure level, addition, subtraction and averaging decibel levels, noise dose level, legislation, measurement and analysis of noise, measurement environment, equipment, frequency analysis, tracking analysis, sound quality analysis.

UNIT III AUTOMOTIVE NOISE SOURCES

9

Noise Characteristics of engines, engine overall noise levels, assessment of combustion noise, assessment of mechanical noise, engine radiated noise, intake and exhaust noise, engine necessary contributed noise, transmission noise, aerodynamic noise, tire noise, brake noise.

UNIT IV CONTROL TECHNIQUES

9

Vibration isolation, tuned absorbers, un-tuned viscous dampers, damping treatments, application dynamic forces generated by IC engines, engine isolation, crank shaft damping, modal analysis of the mass elastic model shock absorbers.

UNIT V SOURCE OF NOISE AND CONTROL

9

Methods for control of engine noise, combustion noise, mechanical noise, predictive analysis, palliative treatments and enclosures, automotive noise control principles, sound in enclosures, sound energy absorption, sound transmission through barriers

TOTAL: 45 PERIODS

OUTCOMES:

- Understanding causes, source and types of vibrations in machineries
- Gaining knowledge in sources and measurement standard of noise
- Ability to design and develop vibrations and noise control systems.

TEXT BOOKS:

1. Singiresu S.Rao, "Mechanical Vibrations", 5th Edition, Pearson Education, 2010

- 1. Benson H. Tongue, "Principles of Vibrations", 2nd Edition, Oxford University, 2007
- 2. David Bies and Colin Hansen, "Engineering Noise Control Theory and Practice",4th Edition, E and FN Spon. Taylore & Francise e-Library, 2009
- 3. William T. Thomson, Marie Dillon Dahleh, Chandramouli Padmanabhan, "**Theory of Vibration with Application**", 5th Edition Pearson Education, 2011
- 4. Grover. G.T., "Mechanical Vibrations", Nem Chand and Bros., 1996
- 5. Bernard Challen and Rodica Baranescu "Diesel Engine Reference Book", Second Edition, SAE International, 1999.
- 6. Julian Happian-Smith "An Introduction to Modern Vehicle Design"- Butterworth-Heinemann, 2004
- 7. Rao, J.S and Gupta, K., "Introductory course on Theory and Practice of Mechanical Vibration", 2nd Edition, New Age International Publications, 2010
- 8. Shabana. A.A., "Theory of vibrations An introduction", 2nd Edition, Springer, 2010
- 9. Balakumar Balachandran and Edward B. Magrab, "Fundamentals of Vibrations", 1st Editon, Cengage Learning, 2009
- 10. John Fenton, "Handbook of Automotive body Construction and Design Analysis Professional Engineering Publishing, 1998