#### **COURSE OBJECTIVES**

- To enable the students with various concepts like dimensioning, conventions and standards related to Engineering Drawing
- To impart knowledge on projection of points, lines and plane surfaces
- To improve the visualization skills for better understanding of projection of solids
- To develop the imaginative skills of the students required to understand Section of solids and Developments of surfaces
- To make the students understand the viewing persception of a solid object in Isometric and Perspective projections

# **Concepts and Conventions (Not for Examination)**

Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

#### PLANE CURVES AND FREE HAND SKETCHING **UNIT I**

8+6

**Curves used in engineering practices:** 

principal planes by rotating object method.

Conics – Construction of ellipse, Parabola and hyperbola by eccentricity method – Construction of cycloid, Epicycloid and Hypocycloid – construction of involutes of squad and circle – Drawing of tangents and normal to the above curves. Construction of Spiral curve.

#### Free hand sketching:

Representation of Three Dimensional objects – General principles of orthographic projection – Need for importance of multiple views and their placement – First angle projection – layout views – Developing visualization skills through free hand sketching of multiple views from pictorial views of objects.

PROJECTION OF POINTS, LINES AND PLANE SURFACES 8+6 Orthographic projection-principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes -Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes inclined to both the

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method.

#### UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES

8+6

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes.

## UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS

8+6

Principles of isometric projection – isometric scale –Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems. Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

## **INTRODUCTION TO INTERSECTION OF SOLIDS (Not for Examination)**

5

Introduction to intersection of surfaces – Line of intersection – Intersection of solids

**TOTAL (45+30): 75 PERIODS** 

#### **COURSE OUTCOMES**

On Completion of the course the student will be able to

- Perform free hand sketching of basic geometrical constructions and multiple views of objects.
- Draw the projections of points, straight lines and plane surfaces in given quadrant
- Understand the projection of solids in various positions in first quadrant
- Draw projections and solids and development of surfaces.
- Prepare isometric and perspective sections of simple solids.

## **TEXT BOOK**

- 1. Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.
- 2. Prabhakaran.S, Makesh.M, Subburam.V, "Engineering Graphics", Sams Publishers, Chennai, 2014.

## REFERENCES

- 1. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2007.
- Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 3. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.
- 4. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.

5. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.

## WEBLINK

- http://www.nptel.ac.in/courses/112103019
- http://www.engineeringdrawing.org/
- http://www.mechanical.in/engineering-graphics/

#### Publication of Bureau of Indian Standards:

- IS 10711 2001: Technical products Documentation Size and lay out of drawing sheets.
- IS 9609 (Parts 0 & 1) 2001: Technical products Documentation Lettering.
- IS 10714 (Part 20) 2001 & SP 46 2003: Lines for technical drawings.
- IS 11669 1986 & SP 46 2003: Dimensioning of Technical Drawings.
- IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods.

## **CO - PO Mapping**

| Mapping of Course Outcomes with Programme Outcomes (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak |     |     |     |     |     |     |     |     |     |       |      |      |      |      |
|-------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|------|------|------|------|
| Programme Outcomes(POs)                                                                                                 |     |     |     |     |     |     |     |     |     |       |      |      |      |      |
| COs                                                                                                                     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO 10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1                                                                                                                     | 3   | 3   | 3   | 3   | 3   | 1   | -   | -   | -   | -     | 1    | 1    | 2    | 1    |
| CO2                                                                                                                     | 3   | 3   | 3   | 3   | 3   | 1   | -   | -   | -   | -     | 1    | 1    | 2    | 1    |
| CO3                                                                                                                     | 3   | 3   | 3   | 3   | 3   | 1   | -   | -   | -   | -     | 1    | 1    | 2    | 1    |
| CO4                                                                                                                     | 3   | 3   | 3   | 3   | (3) | 1   | -   | -   | -   | -     | 1    | 1    | 2    | 1    |
| CO5                                                                                                                     | 3   | 3   | 3   | 3   | (3) | 1   | -   | -   | -   | -     | 1    | 1    | 2    | 1    |

