PAAVAI ENGINEERING COLLEGE, NAMAKKAL – 637 018 (AUTONOMOUS) B.TECH INFORMATION TECHNOLOGY REGULATONS 2015

CURRICULUM SEMESTER I

Course Code	Course Title	L	T	P	С
MA 15101	Matrices and Calculus	3	2	0	4
EN 15101	Technical English I	3	0	0	3
PH 15101	Engineering Physics	3	0	0	3
CH 15101	Engineering Chemistry I	3	0	0	3
CS 15101	Computer Programming	3	0	0	3
ME 15102	Basic Civil & Mechanical Engineering	3	0	0	3
PC 15101	Physics & Chemistry Laboratory I	0	0	2	1
CS 15102	Computer Programming Laboratory	0	0	2	1
GE 15101	Engineering Practices Laboratory	0	0	4	2

SEMESTER II

Course Code	Course Title	L	T	P	С
MA 15201	Differential Equations and Complex Analysis	3	2	0	4
EN 15201	Technical English II	3	0	0	3
PH 15201	Solid State Physics	3	0	0	3
CH 15201	Engineering Chemistry II	3	0	0	3
ME 15202	Engineering Graphics	3	2	0	4
CS 15203	Data Structures and Algorithms	3	0	0	3
PC 15201	Physics & Chemistry Laboratory II	0	0	2	1
CS15204	Data Structures and Algorithms Laboratory	0	0	2	1
EN 15202	English Communication Skills Laboratory	0	0	2	1

COURSE OBJECTIVES

The stu	idents should be made to:
	Demonstrate familiarity with major algorithms and data structures.
	Analyze performance of algorithms.
	Choose the appropriate data structure and algorithm design method for a specified application.
	Determine which algorithm or data structure to use in different scenarios.

LIST OF EXPERIMENTS

- 1. Implement singly and doubly linked lists.
- 2. Represent a polynomial as a linked list and write functions for polynomial addition.
- 3. Implement stack and use it to convert infix to postfix expression
- 4. Implement an expression tree. Produce its pre-order, in-order, and post-order traversals.
- 5. Implement binary search tree.
- 6. Implement priority queue using heaps
- 7. Implement hashing techniques.
- 8. Implement Dijkstra's algorithm using priority queues
- 9. Implement Greedy algorithm using C.
- 10. Implement Branch and bound, Divide and Conquer algorithm using C.

TOTAL PERIODS: 30

COURSE OUTCOMES

At the end of the course, the student should be able to:

Understand the importance of structure and abstract data type, and their basic usability in
different applications through C programming.
Understand the linked implementation, and its uses both in linear and non-linear data structure.
Understand various data structure such as stacks, queues, trees, graphs, etc. to solvevarious
computing problems.
Implement various kinds of searching and sorting techniques, and know when to choosewhich
technique.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C compiler 30 Nos.

(or)

Server with C compiler supporting 30 terminals or more.

	Mapping of Course Outcomes with Programming Outcomes (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak													
COs					Prog	ramme	Outcom	nes(POs))				Spe Outc	ramme cific comes SOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1	3	-	-	-	-	-	-	-	3	3	3
CO2	3	2	3	3	-	-	-	-	-	-	-	2	3	1
CO3	2	3	2	-	1	-	1	-	-	-	-	2	2	3
CO4	3	3	3	3	-	-	-	-	-	-	-	1	1	3

ANNA UNIVERSITY, CHENNAI AFFILIATED INSTITUTIONS R-2013

B.TECH INFORMATION TECHNOLOGY I - VIII SEMESTERS CURRICULUM AND SYLLABUS

SEMESTER I

SL. No.	COURSE CODE	COURSE TITLE	L	Т	Р	С
THEO	RY					
1.	HS6151	<u>Technical English – I</u>	3	1	0	4
2.	MA6151	Mathematics – I	3	1	0	4
3.	PH6151	Engineering Physics – I	3	0	0	3
4.	CY6151	Engineering Chemistry – I	3	0	0	3
5.	GE6151	Computer Programming	3	0	0	3
6.	GE6152	Engineering Graphics	2	0	3	4
PRAC	TICALS					
7.	GE6161	Computer Practices Laboratory	0	0	3	2
8.	GE6162	Engineering Practices Laboratory	0	0	3	2
9.	GE6163	Physics and Chemistry Laboratory - I	0	0	2	1
		TOTAL	17	2	11	26

SEMESTER II

SL. No.	COURSE CODE	COURSE TITLE	L	Т	Р	С
THEO	RY					
1.	HS6251	Technical English – II	3	1	0	4
2.	MA6251	Mathematics – II	3	1	0	4
3.	PH6251	Engineering Physics – II	3	0	0	3
4.	CY6251	Engineering Chemistry – II	3	0	0	3
5.	CS6201	Digital Principles and System Design	3	0	0	3
	CS6202	Programming and Data Structures I	3	0	0	3
PRAC	TICALS					
7.	GE6262	Physics and Chemistry Laboratory - II	0	0	2	1
8.	IT6211	Digital Laboratory	0	0	3	2
9.	IT6212	Programming and Data Structures Laboratory I	0	0	3	2
		TOTAL	18	2	8	25

SEMESTER III

SL. No.	COURSE CODE	COURSE TITLE	L	Т	Р	С		
THEOF	THEORY							
1.	MA6351	Transforms and Partial Differential Equations	3	1	0	4		
2.	CS6301	Programming and Data Structures II	3	0	0	3		
3.	CS6302	Database Management Systems	3	0	0	3		
4.	CS6303	Computer Architecture	3	0	0	3		
5.	CS6304	Analog and Digital Communication	3	0	0	3		
6.	GE6351	Environmental Science and Engineering	3	0	0	3		
PRAC	ΓICAL							
7.	IT6311	Programming and Data Structures Laboratory II	0	0	3	2		
8.	IT6312	Database Management Systems Laboratory	0	0	3	2		
9.	IT6313	Digital Communication Laboratory	0	0	3	2		
	•	TOTAL	18	1	9	25		

SEMESTER IV

SL. No.	COURSE CODE	COURSE TITLE	L	Т	Р	С
THEOF	RY					
1.	MA6453	Probability and Queuing Theory	3	1	0	4
2.	EC6504	Microprocessor and Microcontroller	3	0	0	3
3.	CS6402	Design and Analysis of Algorithms	3	0	0	3
4.	CS6401	Operating Systems	3	0	0	3
5.	CS6403	Software Engineering	3	0	0	3
PRACT	ΓΙCAL					
6.	IT6411	Microprocessor and Microcontroller Laboratory	0	0	3	2
7.	IT6412	Operating Systems Laboratory	0	0	3	2
8.	IT6413	Software Engineering Laboratory	0	0	3	2
		TOTAL	15	1	9	22

SEMESTER V

SL. No.	COURSE CODE	COURSE TITLE	L	Т	Р	С			
THEOF	THEORY								
1.	CS6551	Computer Networks	3	0	0	3			
2.	IT6501	Graphics and Multimedia	3	0	0	3			
3.	CS6502	Object Oriented Analysis and Design	3	0	0	3			
4.	IT6502	Digital Signal Processing	3	1	0	4			
5.	IT6503	Web Programming	3	1	0	4			
6.	EC6801	Wireless Communication	3	0	0	3			
PRAC1	ΓΙCAL								
7.	IT6511	Networks Laboratory	0	0	3	2			
8.	IT6512	Web Programming Laboratory	0	0	3	2			
9.	IT6513	Case Tools Laboratory	0	0	3	2			
		TOTAL	18	2	9	26			

SEMESTER VI

SL. No.	COURSE	COURSE TITLE	L	Т	Р	С
THEOF						
1.	CS6601	<u>Distributed Systems</u>	3	0	0	3
2.	IT6601	Mobile Computing	3	0	0	3
3.	CS6659	Artificial Intelligence	3	0	0	3
4.	CS6660	Compiler Design	3	0	0	3
5.	IT6602	Software Architectures	3	0	0	3
6.		Elective I	3	0	0	3
PRACT	ΓICAL					
7.	IT6611	Mobile Application Development Laboratory	0	0	3	2
8.	IT6612	Compiler Laboratory	0	0	3	2
9.	GE6674	Communication and Soft Skills - Laboratory Based	0	0	4	2
		TOTAL	18	0	10	24

SEMESTER VII

SL. No.	COURSE CODE	COURSE TITLE	L	Т	Р	С			
THEOF	THEORY								
1.	IT6701	Information Management	3	0	0	3			
2.	CS6701	Cryptography and Network Security	3	0	0	3			
3.	IT6702	Data Ware Housing and Data Mining	3	0	0	3			
4.	CS6703	Grid and Cloud Computing	3	0	0	3			
5.		Elective II	3	0	0	3			
PRAC	ΓΙCAL								
6.	IT6711	Data Mining Laboratory	0	0	3	2			
7.	IT6712	Security Laboratory	0	0	3	2			
8.	IT6713	Grid and Cloud Computing Laboratory	0	0	3	2			
	•	TOTAL	15	0	9	21			

SEMESTER VIII

SL. No.	COURSE CODE	COURSE TITLE	L	Т	Р	С	
THEORY							
1.	IT6801	Service Oriented Architecture	3	0	0	3	
2.		Elective III	3	0	0	3	
3.		Elective IV	3	0	0	3	
		Elective V	3	0	0	3	
PRACTICAL							
4.	IT6811	Project Work	0	0	12	6	
		TOTAL	12	0	12	18	

TOTAL NO. OF CREDITS: 187

LIST OF ELECTIVES

SEMESTER VI – ELECTIVE I

S.NO.	COURSE CODE	COURSE TITLE	L	T	Р	С
1.	IT6001	Advanced Database Technology	3	0	0	3
2.	IT6002	Information Theory and Coding Techniques	3	0	0	3
3.	CS6001	C# and .Net Programming	3	0	0	3
4.	GE6757	Total Quality Management	3	0	0	3
5.	CS6012	Soft Computing	3	0	0	3
6.	GE6084	Human Rights	3	0	0	3

UNIT IV FOURIER TRANSFORMS

9+3

Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS

9+3

Z- transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

 The understanding of the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.

TEXT BOOKS:

- 1. Veerarajan. T., "Transforms and Partial Differential Equations", Second reprint, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2012.
- 2. Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi, 2012.
- 3. Narayanan.S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students" Vol. II & III, S.Viswanathan Publishers Pvt Ltd. 1998.

REFERENCES:

- 1. Bali.N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7th Edition, Laxmi Publications Pvt Ltd , 2007.
- 2. Ramana.B.V., "Higher Engineering Mathematics", Tata Mc-GrawHill Publishing Company Limited, New Delhi, 2008.
- 3. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007.
- 4. Erwin Krevszig, "Advanced Engineering Mathematics", 8th Edition, Wiley India, 2007.
- 5. Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata Mc Graw Hill Education Pvt Ltd, Sixth Edition, New Delhi, 2012.
- 6. Datta.K.B., "Mathematical Methods of Science and Engineering", Cengage Learning India Pvt Ltd, Delhi, 2013.

CS6301

PROGRAMMING AND DATA STRUCTURES II

L T PC 3 0 0 3

OBJECTIVES:

The student should be made to:

- Be familiar with the C++ concepts of abstraction, encapsulation, constructor, polymorphism, overloading and Inheritance.
- Learn advanced nonlinear data structures.
- Be exposed to graph algorithms
- Learn to apply Tree and Graph structures

UNIT I OBJECT ORIENTED PROGRAMMING FUNDAMENTALS

Ç

C++ Programming features - Data Abstraction - Encapsulation - class - object - constructors - static members - constant members - member functions - pointers - references - Role of **this** pointer - Storage classes - function as arguments.

UNIT II OBJECT ORIENTED PROGRAMMING CONCEPTS

String Handling – Copy Constructor - Polymorphism – compile time and run time polymorphisms – function overloading – operators overloading – dynamic memory allocation - Nested classes - Inheritance – virtual functions.

UNIT III C++ PROGRAMMING ADVANCED FEATURES

9

Abstract class – Exception handling - Standard libraries - Generic Programming - templates – class template - function template – STL – containers – iterators – function adaptors – allocators - Parameterizing the class - File handling concepts.

UNIT IV ADVANCED NON-LINEAR DATA STRUCTURES

9

9

TOTAL: 45 PERIODS

AVL trees – B-Trees – Red-Black trees – Splay trees - Binomial Heaps – Fibonacci Heaps – Disjoint Sets – Amortized Analysis – accounting method – potential method – aggregate analysis.

UNIT V GRAPHS

Representation of Graphs – Breadth-first search – Depth-first search – Topological sort – Minimum Spanning Trees – Kruskal and Prim algorithm – Shortest path algorithm – Dijkstra's algorithm – Bellman-Ford algorithm – Floyd-Warshall algorithm.

OUTCOMES:

At the end of the course, the student should be able to:

- Design problem solutions using Object Oriented Techniques.
- Apply the concepts of data abstraction, encapsulation and inheritance for problem solutions.
- Use the control structures of C++ appropriately.
- Critically analyse the various algorithms.
- Apply the different data structures to problem solutions.

TEXT BOOKS:

- 1. Bjarne Stroustrup, "The C++ Programming Language", 3rd Edition, Pearson Education, 2007.
- 2. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", 2nd Edition, Pearson Education, 2005.

REFERENCES:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", Second Edition, Mc Graw Hill, 2002.
- 2. Michael T Goodrich, Roberto Tamassia, David Mount, "Data Structures and Algorithms in C++", 7th Edition, Wiley Publishers, 2004.

CS6302

DATABASE MANAGEMENT SYSTEMS

LTPC

3 0 0 3

OBJECTIVES:

- To expose the students to the fundamentals of Database Management Systems.
- To make the students understand the relational model.
- To familiarize the students with ER diagrams.
- To expose the students to SQL.
- To make the students to understand the fundamentals of Transaction Processing and Query Processing.
- To familiarize the students with the different types of databases.
- To make the students understand the Security Issues in Databases.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

6

Population growth, variation among nations – population explosion – family welfare programme – environment and human health – human rights – value education – HIV / AIDS – women and child welfare –Environmental impact analysis (EIA)- -GIS-remote sensing-role of information technology in environment and human health – Case studies.

TOTAL: 45 PERIODS

OUTCOMES:

Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.

- Public awareness of environmental is at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions.
- Development and improvement in std. of living has lead to serious environmental disasters.

TEXT BOOKS:

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd Edition, Pearson Education 2004.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2006.

REFERENCES:

- 1. R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press 2005.

IT6311

PROGRAMMING AND DATA STRUCTURES LABORATORY II

L T P C 0 0 3 2

OBJECTIVES:

The student should be made to:

- Be familiarized with good programming design methods, particularly Top- Down design.
- Getting exposure in implementing the different data structures using C++
- Appreciate recursive algorithms.

LIST OF EXPERIMENTS:

IMPLEMENTATION IN THE FOLLOWING TOPICS:

- 1. Constructors & Destructors, Copy Constructor.
- 2. Friend Function & Friend Class.
- 3. Inheritance.
- 4. Polymorphism & Function Overloading.
- 5. Virtual Functions.
- 6. Overload Unary & Binary Operators Both as Member Function & Non Member Function.
- 7. Class Templates & Function Templates.
- 8. Exception Handling Mechanism.
- 9. Standard Template Library concept.

- 10. File Stream classes.
- 11. Applications of Stack and Queue
- 12. Binary Search Tree
- 13. Tree traversal Techniques
- 14. Minimum Spanning Trees
- 15. Shortest Path Algorithms

REFERENCE:

spoken-tutorial.org.

OUTCOMES:

At the end of the course, the student should be able to:

- Design and implement C++ programs for manipulating stacks, queues, linked lists, trees, and graphs.
- Apply good programming design methods for program development.
- Apply the different data structures for implementing solutions to practical problems.
- Develop recursive programs using trees and graphs.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C++ compiler 30 Nos.

(or)

Server with C++ compiler supporting 30 terminals or more.

IT6312 DATABASE MANAGEMENT SYSTEMS LABORATORY

LT P C 0 0 3 2

TOTAL: 45 PERIODS

OBJECTIVES:

The student should be made to:

- · Learn to create and use a database
- Be familiarized with a query language
- Have hands on experience on DDL Commands
- Have a good understanding of DML Commands and DCL commands
- Familiarize advanced SQL queries.
- Be Exposed to different applications

LIST OF EXPERIMENTS:

- 1. Creation of a database and writing SQL queries to retrieve information from the database.
- 2. Performing Insertion, Deletion, Modifying, Altering, Updating and Viewing records based on conditions.
- 3. Creation of Views, Synonyms, Sequence, Indexes, Save point.
- 4. Creating an Employee database to set various constraints.
- 5. Creating relationship between the databases.
- 6. Study of PL/SQL block.
- 7. Write a PL/SQL block to satisfy some conditions by accepting input from the user.
- 8. Write a PL/SQL block that handles all types of exceptions.
- 9. Creation of Procedures.
- 10. Creation of database triggers and functions
- 11. Mini project (Application Development using Oracle/ Mysql)
 - a) Inventory Control System.

- b) Material Requirement Processing.
- c) Hospital Management System.
- d) Railway Reservation System.
- e) Personal Information System.
- f) Web Based User Identification System.
- g) Timetable Management System.
- h) Hotel Management System

REFERENCE:

spoken-tutorial.org

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Design and implement a database schema for a given problem-domain
- Populate and query a database
- Create and maintain tables using PL/SQL.
- Prepare reports.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS HARDWARE:

Standalone desktops 30 Nos.

(or)

Server supporting 30 terminals or more.

SOFTWARE:

Front end: VB/VC ++/JAVA or Equivalent

Back end: Oracle / SQL / MySQL/ PostGress / DB2 or Equivalent

IT6313

DIGITAL COMMUNICATION LABORATORY

L T PC 0 0 3 2

OBJECTIVES:

The purpose of this lab is to explore digital communications with a software radio to understand how each component works together. The lab will cover, analog to digital conversion, modulation, pulse shaping, and noise analysis.

LIST OF EXPERIMENTS

EXPERIMENTS IN THE FOLLOWING TOPICS:

- 1. Signal Sampling and reconstruction
- 2. Amplitude modulation and demodulation
- 3. Frequency modulation and demodulation
- 4. Pulse code modulation and demodulation.
- 5. Delta modulation, adaptive delta Modulation
- 6. Line Coding Schemes
- 7. BFSK modulation and Demodulation (Hardware(Kit based) & Simulation using MATLAB / SCILAB / Equivalent)
- 8. (BPSK modulation and Demodulation (Hardware& Simulation using MATLAB/SCILAB/ Equivalent)
- 9. FSK, PSK and DPSK schemes (Simulation)
- 10. Error control coding schemes (Simulation)

- 11. Spread spectrum communication (Simulation)
- 12. Communication link simulation
- 13. TDM and FDM

OUTCOME:

To develop necessary skill in designing, analyzing and constructing digital electronic circuits.

LAB FREQUIREMENT FOR A BATCH OF 30 STUDENTS, 3 STUDENTS / EXPERIMENT:

- i) Kits for Signal Sampling, TDM, AM, FM, PCM, DM and Line Coding Schemes
- ii) Software Defined Radio platform for link simulation studies
- iii) MATLAB / SCILAB for simulation experiments
- iv) PCs 10 Nos
- v) Signal generator / Function generators / Power Supply / CRO / Bread Board each -15 nos

MA6453

PROBABILITY AND QUEUING THEORY

L T P C 3 1 0 4

TOTAL: 45 PERIODS

OBJECTIVES:

To provide the required mathematical support in real life problems and develop probabilistic models which can be used in several areas of science and engineering.

UNIT I RANDOM VARIABLES

9+3

Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions.

UNIT II TWO - DIMENSIONAL RANDOM VARIABLES

9+3

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression – Transformation of random variables.

UNIT III RANDOM PROCESSES

9+3

Classification – Stationary process – Markov process - Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions.

UNIT IV QUEUEING MODELS

9+3

Markovian queues – Birth and Death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging.

UNIT V ADVANCED QUEUEING MODELS

9+3

Finite source models - M/G/1 queue - Pollaczek Khinchin formula - M/D/1 and M/E $_{\mbox{\tiny K}}$ /1 as special cases - Series queues - Open Jackson networks.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

- The students will have a fundamental knowledge of the probability concepts.
- Acquire skills in analyzing queueing models.
- It also helps to understand and characterize phenomenon which evolve with respect to time in a probabilistic manner.

UNIT V INTERFACING MICROCONTROLLER

9

Programming 8051 Timers - Serial Port Programming - Interrupts Programming - LCD & Keyboard Interfacing - ADC, DAC & Sensor Interfacing - External Memory Interface- Stepper Motor and Waveform generation.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Design and implement programs on 8086 microprocessor.
- Design I/O circuits.
- Design Memory Interfacing circuits.
- Design and implement 8051 microcontroller based systems.

TEXT BOOKS:

- 1. Yu-Cheng Liu, Glenn A.Gibson, "Microcomputer Systems: The 8086 / 8088 Family Architecture, Programming and Design", Second Edition, Prentice Hall of India, 2007.
- 2. Mohamed Ali Mazidi, Janice Gillispie Mazidi, Rolin McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Second Edition, Pearson Education, 2011.

REFERENCE:

1. Doughlas V.Hall, "Microprocessors and Interfacing, Programming and Hardware", TMH,2012

CS6402 DESIGN AND ANALYSIS OF ALGORITHMS

L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Learn the algorithm analysis techniques.
- Become familiar with the different algorithm design techniques.
- Understand the limitations of Algorithm power.

UNIT I INTRODUCTION

9

Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving – Important Problem Types – Fundamentals of the Analysis of Algorithm Efficiency – Analysis Framework – Asymptotic Notations and its properties – Mathematical analysis for Recursive and Non-recursive algorithms.

UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER

9

Brute Force - Closest-Pair and Convex-Hull Problems-Exhaustive Search - Traveling Salesman Problem - Knapsack Problem - Assignment problem.

<u>Divide and conquer methodology</u> – Merge sort – Quick sort – Binary search – Multiplication of Large Integers – <u>Strassen's Matrix Multiplication-</u>Closest-Pair and Convex-Hull Problems.

UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE

9

Computing a Binomial Coefficient – Warshall's and Floyd' algorithm – Optimal Binary Search Trees – Knapsack Problem and Memory functions. Greedy Technique – Prim's algorithm- Kruskal's Algorithm-Dijkstra's Algorithm-Huffman Trees.

UNIT IV ITERATIVE IMPROVEMENT

9

The Simplex MeFthod-The Maximum-Flow Problem – Maximm Matching in Bipartite Graphs- The Stable marriage Problem.

UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER

Limitations of Algorithm Power-Lower-Bound Arguments-Decision Trees-P, NP and NP-Complete Problems--Coping with the Limitations - Backtracking - n-Queens problem - Hamiltonian Circuit Problem - Subset Sum Problem-Branch and Bound - Assignment problem - Knapsack Problem - Traveling Salesman Problem- Approximation Algorithms for NP - Hard Problems - Traveling Salesman problem - Knapsack problem.

OUTCOMES:

At the end of the course, the student should be able to:

- Design algorithms for various computing problems.
- Analyze the time and space complexity of algorithms.
- Critically analyze the different algorithm design techniques for a given problem.
- Modify existing algorithms to improve efficiency.

TEXT BOOK:

1. Anany Levitin, "Introduction to the Design and Analysis of Algorithms", Third Edition, Pearson Education, 2012.

REFERENCES:

- 1. Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", Third Edition, PHI Learning Private Limited, 2012.
- 2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, Reprint 2006.
- 3. Donald E. Knuth, "The Art of Computer Programming", Volumes 1& 3 Pearson Education, 2009. Steven S. Skiena, "The Algorithm Design Manual", Second Edition, Springer, 2008.
- 4. http://nptel.ac.in/

CS6401

OPERATING SYSTEMS

L T P C 3 0 0 3

TOTAL: 45 PERIODS

OBJECTIVES:

The student should be made to:

- Study the basic concepts and functions of operating systems.
- Understand the structure and functions of OS.
- Learn about Processes, Threads and Scheduling algorithms.
- Understand the principles of concurrency and Deadlocks.
- Learn various memory management schemes.
- Study I/O management and File systems.
- Learn the basics of Linux system and perform administrative tasks on Linux Servers.

UNIT I OPERATING SYSTEMS OVERVIEW

9

Computer System Overview-Basic Elements, Instruction Execution, Interrupts, Memory Hierarchy, Cache Memory, Direct Memory Access, Multiprocessor and Multicore Organization. Operating system overview-objectives and functions, Evolution of Operating System.- Computer System Organization-Operating System Structure and Operations- System Calls, System Programs, OS Generation and System Boot.

REFERENCES:

- 1. Ian Sommerville, "Software Engineering", 9th Edition, Pearson Education Asia, 2011.
- 2. Rajib Mall, "Fundamentals of Software Engineering", Third Edition, PHI Learning Private Limited, 2009.
- 3. Pankaj Jalote, "Software Engineering, A Precise Approach", Wiley India, 2010.
- 4. Kelkar S.A., "Software Engineering", Prentice Hall of India Pvt Ltd, 2007.
- 5. Stephen R.Schach, "Software Engineering", Tata McGraw-Hill Publishing Company Limited, 2007.
- 6. http://nptel.ac.in/.

IT6411 MICROPROCESSOR AND MICROCONTROLLER LABORATORY

LT PC 0 03 2

TOTAL: 45 PERIODS

OBJECTIVES:

The student should be made to:

- Introduce ALP concepts and features
- Write ALP for arithmetic and logical operations in 8086 and 8051
- Differentiate Serial and Parallel Interface
- Interface different I/Os with Microprocessors
- Be familiar with MASM

LIST OF EXPERIMENTS:

8086 Programs using kits and MASM

- 1. Basic arithmetic and Logical operations
- 2. Move a data block without overlap
- 3. Code conversion, decimal arithmetic and Matrix operations.
- 4. Floating point operations, string manipulations, sorting and searching
- 5. Password checking, Print RAM size and system date
- 6. Counters and Time Delay

Peripherals and Interfacing Experiments

- 7. Traffic light control
- 8. Stepper motor control
- 9. Digital clock
- 10. Key board and Display
- 11. Printer status
- 12. Serial interface and Parallel interface
- 13. A/D and D/A interface and Waveform Generation

8051 Experiments using kits and MASM

- 14. Basic arithmetic and Logical operations
- 15. Square and Cube program, Find 2's complement of a number
- 16. Unpacked BCD to ASCII

OUTCOMES:

At the end of the course, the student should be able to:

- Write ALP Programmes for fixed and Floating Point and Arithmetic
- Interface different I/Os with processor
- Generate waveforms using Microprocessors
- Execute Programs in 8051
- Explain the difference between simulator and Emulator

LAB EQUIPMENT FOR A BATCH OF 30 STUDENTS:

HARDWARE:

8086 development kits - 30 nos Interfacing Units - Each 10 nos Microcontroller - 30 nos

SOFTWARE:

Intel Desktop Systems with MASM - 30 nos 8086 Assembler

8051 Cross Assembler

IT6412

LT PC 0 0 3 2

TOTAL: 45 PERIODS

OBJECTIVES:

The student should be made to:

- Learn shell programming and the use of filters in the UNIX environment.
- Be exposed to programming in C using system calls.
- Learn to use the file system related system calls.
- Be exposed to process creation and inter process communication.
- Be familiar with implementation of CPU Scheduling Algorithms, page replacement algorithms and Deadlock avoidance

OPERATING SYSTEMS LABORATORY

LIST OF EXPERIMENTS:

- 1. Basics of UNIX commands.
- 2. Shell Programming.
- 3. Implement the following CPU scheduling algorithms
 - a) Round Robin b) SJF c) FCFS d) Priority
- 4. Implement all file allocation strategies
 - a) Sequential b) Indexed c) Linked
- 5. Implement Semaphores
- 6. Implement all File Organization Techniques
 - a) Single level directory b) Two level c) Hierarchical d) DAG
- 7. Implement Bankers Algorithm for Dead Lock Avoidance
- 8. Implement an Algorithm for Dead Lock Detection
- 9. Implement e all page replacement algorithms
 - a) FIFO b) LRU c) LFU
- 10. Implement Shared memory and IPC
- 11. Implement Paging Technique of memory management.
- 12. Implement Threading & Synchronization Applications

REFERENCE:

spoken-tutorial.org

OUTCOMES:

At the end of the course, the student should be able to

- Implement deadlock avoidance, and Detection Algorithms
- Compare the performance of various CPU Scheduling Algorithm
- Critically analyze the performance of the various page replacement algorithms
- Create processes and implement IPC

LAB EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C / C++ / Java / Equivalent complier 30 Nos. (or)

Server with C / C++ / Java / Equivalent complier supporting 30 terminals or more.

IT6413

SOFTWARE ENGINEERING LABORATORY

LT P C 0 0 3 2

OBJECTIVES:

- To understand the software engineering methodologies for project development.
- To gain knowledge about open source tools for Computer Aided Software Engineering.
- To develop an efficient software using case tools.

SOFTWARE REQUIRED:

Open source Tools: StarUML / UMLGraph / Topcased

Prepare the following documents for each experiment and develop the software using software engineering methodology.

- **1. Problem Analysis and Project Planning -**Thorough study of the problem Identify Project scope, Objectives and Infrastructure.
- 2. Software Requirement Analysis Describe the individual Phases/modules of the project and Identify deliverables.
- **3. Data Modelling -** Use work products data dictionary, use case diagrams and activity diagrams, build and test class diagrams, sequence diagrams and add interface to class diagrams.
- 4. Software Development and Debugging implement the design by coding
- **5. Software Testing** Prepare test plan, perform validation testing, coverage analysis, memory leaks, develop test case hierarchy, Site check and site monitor.

Sample Experiments:

Academic domain

- 1. Course Registration System
- 2. Student marks analysing system

Railway domain

- 3. Online ticket reservation system
- 4. Platform assignment system for the trains in a railway station

Medicine domain

- 5. Expert system to prescribe the medicines for the given symptoms
- 6. Remote computer monitoring

Finance domain

- 7. ATM system
- 8. Stock maintenance

Human Resource management

- 9. Quiz System
- 10. E-mail Client system.

TOTAL: 45 PERIODS

OUTCOMES:

Upon Completion of the course, the students should be able to:

- Use open source case tools to develop software.
- Analyze and design software requirements in efficient manner.

LAB EQUIPMENT FOR A BATCH OF 30 STUDENTS:

SOFTWARE:

Argo UML / StarUML / UMLGraph / Topcased or Equivalent.

HARDWARE:

Standalone desktops

30 Nos

CS6551 COMPUTER NETWORKS

LTPC 3 0 0 3

OBJECTIVES:

The student should be made to:

- Understand the division of network functionalities into layers.
- Be familiar with the components required to build different types of networks
- Be exposed to the required functionality at each layer
- Learn the flow control and congestion control algorithms

UNIT I FUNDAMENTALS & LINK LAYER

9

Building a network – Requirements - Layering and protocols - Internet Architecture – Network software – Performance; Link layer Services - Framing - Error Detection - Flow control

UNIT II MEDIA ACCESS & INTERNETWORKING

9

Media access control - Ethernet (802.3) - Wireless LANs - 802.11 - Bluetooth - Switching and bridging - Basic Internetworking (IP, CIDR, ARP, DHCP,ICMP)

UNIT III ROUTING 9

Routing (RIP, OSPF, metrics) – Switch basics – Global Internet (Areas, BGP, IPv6), Multicast – addresses – multicast routing (DVMRP, PIM)

UNIT IV TRANSPORT LAYER

9

Overview of Transport layer - UDP - Reliable byte stream (TCP) - Connection management - Flow control - Retransmission - TCP Congestion control - Congestion avoidance (DECbit, RED) - QoS - Application requirements

UNIT V APPLICATION LAYER

9

TOTAL: 45 PERIODS

Traditional applications -Electronic Mail (SMTP, POP3, IMAP, MIME) - HTTP - Web Services - DNS - SNMP

OUTCOMES:

At the end of the course, the student should be able to:

- Identify the components required to build different types of networks
- Choose the required functionality at each layer for given application
- Identify solution for each functionality at each layer
- Trace the flow of information from one node to another node in the network

TEXT BOOK:

1. Larry L. Peterson, Bruce S. Davie, "Computer Networks: A systems approach", Fifth Edition, Morgan Kaufmann Publishers, 2011.

REFERENCES:

- 1. James F. Kurose, Keith W. Ross, "Computer Networking A Top-Down Approach Featuring the Internet". Fifth Edition. Pearson Education. 2009.
- 2. Nader. F. Mir, "Computer and Communication Networks", Pearson Prentice Hall Publishers, 2010.
- 3. Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", Mc Graw Hill Publisher, 2011.
- 4. Behrouz A. Forouzan, "Data communication and Networking", Fourth Edition, Tata McGraw Hill, 2011.

IT6501

GRAPHICS AND MULTIMEDIA

LT P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Develop an understanding and awareness of how issues such as content, information architecture, motion, sound, design, and technology merge to form effective and compelling interactive experiences for a wide range of audiences and end users.
- Be familiar with various software programs used in the creation and implementation of multimedia (interactive, motion/animation, presentation, etc.).
- Be aware of current issues relative between new emerging electronic technologies and graphic design (i.e. social, cultural, cognitive, etc). understand the relationship between critical analysis and the practical application of design.
- Appreciate the importance of technical ability and creativity within design practice.

UNIT I OUTPUT PRIMITIVES

a

Basic - Line - Curve and ellipse drawing algorithms - Examples - Applications - Attributes - Two- Dimensional geometric transformations - Two-Dimensional clipping and viewing - Input techniques.

UNIT II THREE-DIMENSIONAL CONCEPTS

9

Three-Dimensional object representations - Three-Dimensional geometric and modeling transformations - Three-Dimensional viewing - Hidden surface elimination - Color models - Virtual reality - Animation.

UNIT III MULTIMEDIA SYSTEMS DESIGN

.

Multimedia basics – Multimedia applications – Multimedia system architecture – Evolving technologies for multimedia – Defining objects for multimedia systems – Multimedia data interface standards – Multimedia databases.

UNIT IV MULTIMEDIA FILE HANDLING

9

Compression and decompression – Data and file format standards – Multimedia I/O technologies – Digital voice and audio – Video image and animation – Full motion video – Storage and retrieval technologies.

UNIT V HYPERMEDIA

9

Multimedia authoring and user interface – Hypermedia messaging – Mobile messaging – Hypermedia message component – Creating hypermedia message – Integrated multimedia message standards – Integrated document management – Distributed multimedia systems.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the student should be able to:

- Effectively and creatively solve a wide range of graphic design problems
- Form effective and compelling interactive experiences for a wide range of audiences.
- Use various software programs used in the creation and implementation of multi-media (interactive, motion/animation, presentation, etc.).
- Discuss issues related to emerging electronic technologies and graphic design

TEXT BOOKS:

- 1. Donald Hearn and M. Pauline Baker, "Computer Graphics C Version", Pearson Education, 2003
- 2. Andleigh, P. K and Kiran Thakrar, "Multimedia Systems and Design", PHI, 2003.

REFERENCES:

- 1. Judith Jeffcoate, "Multimedia in practice: Technology and Applications", PHI, 1998.
- 2. Foley, Vandam, Feiner and Huges, "Computer Graphics: Principles and Practice", 2nd Edition, Pearson Education, 2003.

CS6502

OBJECT ORIENTED ANALYSIS AND DESIGN

LTP C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Learn the basics of OO analysis and design skills
- Learn the UML design diagrams
- Learn to map design to code
- Be exposed to the various testing techniques.

UNIT I UML DIAGRAMS

9

Introduction to OOAD – Unified Process - UML diagrams – Use Case – Class Diagrams – Interaction Diagrams – State Diagrams – Activity Diagrams – Package, component and Deployment Diagrams

UNIT II DESIGN PATTERNS

S

GRASP: Designing objects with responsibilities – Creator – Information expert – Low Coupling – High Cohesion – Controller - Design Patterns – creational - factory method - structural – Bridge – Adapter - behavioral – Strategy – observer

UNIT III CASE STUDY

9

Case study – the Next Gen POS system, Inception -Use case Modeling - Relating Use cases – include, extend and generalization - Elaboration - Domain Models - Finding conceptual classes and description classes – Associations – Attributes – Domain model refinement – Finding conceptual class Hierarchies - Aggregation and Composition

UNIT IV APPLYING DESIGN PATTERNS

9

System sequence diagrams - Relationship between sequence diagrams and use cases Logical architecture and UML package diagram - Logical architecture refinement - UML class diagrams - UML interaction diagrams - Applying GoF design patterns

UNIT V CODING AND TESTING

9

TOTAL: 45 PERIODS

Mapping design to code – Testing: Issues in OO Testing – Class Testing – OO Integration Testing – GUI Testing – OO System Testing

OUTCOMES:

At the end of the course, the student should be able to:

- Design and implement projects using OO concepts
- Use the UML analysis and design diagrams
- Apply appropriate design patterns
- Create code from design
- Compare and contrast various testing techniques

TEXT BOOK:

1. Craig Larman, "Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development", Third Edition, Pearson Education, 2005.

REFERENCES:

- 1. Simon Bennett, Steve Mc Robb and Ray Farmer, "Object Oriented Systems Analysis and Design Using UML", Fourth Edition, Mc-Graw Hill Education, 2010.
- 2. Erich Gamma, and Richard Helm, Ralph Johnson, John Vlissides, "Design patterns: Elements of Reusable Object-Oriented Software", Addison-Wesley, 1995.
- 3. Martin Fowler, "UML Distilled: A Brief Guide to the Standard Object Modeling Language", Third edition, Addison Wesley, 2003.
- 4. Paul C. Jorgensen, "Software Testing:- A Craftsman's Approach", Third Edition, Auerbach Publications, Taylor and Francis Group, 2008.

IT6502

DIGITAL SIGNAL PROCESSING

LTPC

3 1 0 4

OBJECTIVES:

- To introduce discrete Fourier transform and its applications.
- To teach the design of infinite and finite impulse response filters for filtering undesired signals.
- To introduce signal processing concepts in systems having more than one sampling frequency.

UNIT I SIGNALS AND SYSTEMS

ξ

Basic elements of DSP – concepts of frequency in Analog and Digital Signals – sampling theorem – Discrete – time signals, systems – Analysis of discrete time LTI systems – Z transform – Convolution – Correlation.

UNIT II FREQUENCY TRANSFORMATIONS

ç

Introduction to DFT – Properties of DFT – Circular Convolution - Filtering methods based on DFT – FFT Algorithms - Decimation – in – time Algorithms, Decimation – in – frequency Algorithms – Use of FFT in Linear Filtering – DCT – Use and Application of DCT.

UNIT III IIR FILTER DESIGN

9

Structures of IIR – Analog filter design – Discrete time IIR filter from analog filter – IIR filter design by Impulse Invariance, Bilinear transformation, Approximation of derivatives – (LPF, HPF, BPF, BRF) filter design using frequency translation.

UNIT IV FIR FILTER DESIGN

9

Structures of FIR – Linear phase FIR filter – Fourier Series - Filter design using windowing techniques (Rectangular Window, Hamming Window, Hanning Window), Frequency sampling techniques

UNIT V FINITE WORD LENGTH EFFECTS IN DIGITAL FILTERS

9

Binary fixed point and floating point number representations — Comparison - Quantization noise — truncation and rounding — quantization noise power- input quantization error- coefficient quantization error — limit cycle oscillations-dead band- Overflow error-signal scaling.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to

- Perform frequency transforms for the signals.
- Design IIR and FIR filters.
- Finite word length effects in digital filters

TEXT BOOK:

1. John G. Proakis and Dimitris G.Manolakis, "Digital Signal Processing – Principles, Algorithms & Applications", Fourth Edition, Pearson Education, Prentice Hall, 2007.

REFERENCES:

- 1. Emmanuel C.Ifeachor, and Barrie.W.Jervis, "Digital Signal Processing", Second Edition, Pearson Education, Prentice Hall, 2002.
- 2. Sanjit K. Mitra, "Digital Signal Processing A Computer Based Approach", Third Edition, Tata Mc Graw Hill, 2007.
- 3. A.V.Oppenheim, R.W. Schafer and J.R. Buck, Discrete-Time Signal Processing, 8th Indian Reprint, Pearson, 2004.
- 4. Andreas Antoniou, "Digital Signal Processing", Tata McGraw Hill, 2006.

IT6503 WEB PROGRAMMING

L TP C 3 1 0 4

OBJECTIVES:

The student should be made to:

- Understand the technologies used in Web Programming.
- Know the importance of object oriented aspects of Scripting.
- Understand creating database connectivity using JDBC.
- Learn the concepts of web based application using sockets.

UNIT I SCRIPTING.

c

Web page Designing using HTML, Scripting basics- Client side and server side scripting. Java Script-Object, names, literals, operators and expressions- statements and features- events - windows - documents - frames - data types - built-in functions- Browser object model - Verifying forms.-HTML5-CSS3- HTML 5 canvas - Web site creation using tools.

UNIT II JAVA 9

Introduction to object oriented programming-Features of Java – Data types, variables and arrays – Operators – Control statements – Classes and Methods – Inheritance. Packages and Interfaces – Exception Handling – Multithreaded Programming – Input/Output – Files – Utility Classes – String Handling.

UNIT III JDBC 9

JDBC Overview – JDBC implementation – Connection class – Statements - Catching Database Results, handling database Queries. Networking– InetAddress class – URL class- TCP sockets - UDP sockets, Java Beans –RMI.

UNIT IV APPLETS 9

Java applets- Life cycle of an applet – Adding images to an applet – Adding sound to an applet. Passing parameters to an applet. Event Handling. Introducing AWT: Working with Windows Graphics and Text. Using AWT Controls, Layout Managers and Menus. Servlet – life cycle of a servlet. The Servlet API, Handling HTTP Request and Response, using Cookies, Session Tracking. Introduction to JSP.

UNIT V XML AND WEB SERVICES

9

Xml – Introduction-Form Navigation-XML Documents- XSL – XSLT- Web services-UDDI-WSDL-Java web services – Web resources.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Upon Completion of the course, the students will be able to

- Design web pages.
- Use technologies of Web Programming.
- Apply object oriented aspects to Scripting.
- Create databases with connectivity using JDBC.
- Build web based application using sockets.

TEXT BOOKS:

- 1. Harvey Deitel, Abbey Deitel, Internet and World Wide Web: How To Program 5th Edition.
- 2. Herbert Schildt, Java The Complete Reference, 7th Edition. Tata McGraw- Hill Edition.
- 3. Michael Morrison XML Unleashed Tech media SAMS.

REFERENCES:

- 1. John Pollock, Javascript A Beginners Guide, 3rd Edition Tata McGraw-Hill Edition.
- 2. Keyur Shah, Gateway to Java Programmer Sun Certification, Tata McGraw Hill, 2002.

EC6801

WIRELESS COMMUNICATION

LTPC 3 0 0 3

OBJECTIVES:

The student should be made to:

- Know the characteristic of wireless channel
- Learn the various cellular architectures
- Understand the concepts behind various digital signaling schemes for fading channels
- Be familiar the various multipath mitigation techniques
- Understand the various multiple antenna systems

UNIT I WIRELESS CHANNELS

Large scale path loss – Path loss models: Free Space and Two-Ray models -Link Budget design – Small scale fading- Parameters of mobile multipath channels – Time dispersion parameters-Coherence bandwidth – Doppler spread & Coherence time, Fading due to Multipath time delay spread – flat fading – frequency selective fading – Fading due to Doppler spread – fast fading – slow fading.

UNIT II CELLULAR ARCHITECTURE

9

Multiple Access techniques - FDMA, TDMA, CDMA - Capacity calculations-Cellular concept-Frequency reuse - channel assignment- hand off- interference & system capacity- trunking & grade of service - Coverage and capacity improvement.

UNIT III DIGITAL SIGNALING FOR FADING CHANNELS

a

Structure of a wireless communication link, Principles of Offset-QPSK, p/4-DQPSK, Minimum Shift Keying, Gaussian Minimum Shift Keying, Error performance in fading channels, OFDM principle – Cyclic prefix, Windowing, PAPR.

UNIT IV MULTIPATH MITIGATION TECHNIQUES

9

Equalisation – Adaptive equalization, Linear and Non-Linear equalization, Zero forcing and LMS Algorithms. Diversity – Micro and Macrodiversity, Diversity combining techniques, Error probability in fading channels with diversity reception, Rake receiver,

UNIT V MULTIPLE ANTENNA TECHNIQUES

9

MIMO systems – spatial multiplexing -System model -Pre-coding - Beam forming - transmitter diversity, receiver diversity- Channel state information-capacity in fading and non-fading channels.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Characterize wireless channels
- Design and implement various signaling schemes for fading channels
- Design a cellular system
- Compare multipath mitigation techniques and analyze their performance
- Design and implement systems with transmit/receive diversity and MIMO systems and analyze their performance

TEXTBOOKS:

- 1. Rappaport, T.S., "Wireless communications", Second Edition, Pearson Education, 2010.
- 2. Andreas.F. Molisch, "Wireless Communications", John Wiley India, 2006.

REFERENCES:

- 1. David Tse and Pramod Viswanath, "Fundamentals of Wireless Communication", Cambridge University Press, 2005.
- 2. Upena Dalal, "Wireless Communication", Oxford University Press, 2009.
- 3. Van Nee, R. and Ramji Prasad, "OFDM for wireless multimedia communications", Artech House, 2000.

OBJECTIVES:

The student should be made to:

- Learn socket programming.
- Be familiar with simulation tools.
- Have hands on experience on various networking protocols.

LIST OF EXPERIMENTS:

- 1. Implementation of Stop and Wait Protocol and Sliding Window Protocol.
- 2. Study of Socket Programming and Client Server model
- 3. Write a code simulating ARP /RARP protocols.
- 4. Write a code simulating PING and TRACEROUTE commands
- 5. Create a socket for HTTP for web page upload and download.
- 6. Write a program to implement RPC (Remote Procedure Call)
- 7. Implementation of Subnetting.
- 8. Applications using TCP Sockets like
 - a. Echo client and echo server
 - b. Chat
 - c. File Transfer
- 9. Applications using TCP and UDP Sockets like
 - d. DNS
 - e. SNMP
 - f. File Transfer
- 10. Study of Network simulator (NS).and Simulation of Congestion Control Algorithms using NS
- 11. Perform a case study about the different routing algorithms to select the network path with its optimum and economical during data transfer.
 - i. Link State routing
 - ii. Flooding
 - iii. Distance vector

TOTAL: 45 PERIODS

REFERENCE:

spoken-tutorial.org

OUTCOMES:

At the end of the course, the student should be able to

- Use simulation tools
- Implement the various protocols.
- Analyse the performance of the protocols in different layers.
- Analyze various routing algorithms

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS SOFTWARE

C / C++ / Java / Equivalent Compiler

 Network simulator like NS2/Glomosim/OPNET/ Equivalent

HARDWARE

Standalone desktops 30 Nos

30

LAB EXERCISES

(For IT branch)

OBJECTIVES:

The student should be made to:

- Be familiar with Web page design using HTML / DHTML and style sheets
- Be exposed to creation of user interfaces using Java frames and applets.
- Learn to create dynamic web pages using server side scripting.
- Learn to write PHP database functions.
- Learn .Net frame work and RMI.

LIST OF EXPERIMENTS:

- 1. Write a html program for Creation of web site with forms, frames, links, tables etc
- 2. Design a web site using HTML and DHTML. Use Basic text Formatting, Images,
- 3. Create a script that asks the user for a name, then greets the user with "Hello" and the user name on the page
- 4. Create a script that collects numbers from a page and then adds them up and prints them to a blank field on the page.
- 5. Create a script that prompts the user for a number and then counts from 1 to that number displaying only the odd numbers.
- 6. Create a script that will check the field in Assignment 1 for data and alert the user if it is blank. This script should run from a button.
- 7. Using CSS for creating web sites
- 8. Creating simple application to access data base using JDBC Formatting HTML with CSS.
- 9. Program for manipulating Databases and SQL.
- 10. Program using PHP database functions.
- 11. Write a web application that functions as a simple hand calculator, but also keeps a "paper trail" of all your previous work
- 12. Install Tomcat and use JSP and link it with any of the assignments above
- 13. Reading and Writing the files using .Net
- 14. Write a program to implement web service for calculator application
- 15. Implement RMI concept for building any remote method of your choice.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to

- Design Web pages using HTML/DHTML and style sheets
- Design and Implement database applications.
- Create dynamic web pages using server side scripting.
- Write Client Server applications.

LAB REQUIREMENTS FOR A BATCH OF 30 STUDENTS:

SOFTWARE:

Java, Dream Weaver or Equivalent, MySQL or Equivalent, Apache Server

HARDWARE:

Standalone desktops 30 Nos

TOTAL: 45 PERIODS

OBJECTIVES:

The student should be made to:

- Learn the basics of OO analysis and design skills.
- Be exposed to the UML design diagrams.
- Learn to map design to code.
- Be familiar with the various testing techniques

LIST OF EXPERIMENTS:

To develop a mini-project by following the 9 exercises listed below.

- 1. To develop a problem statement.
- 2. Identify Use Cases and develop the Use Case model.
- 3. Identify the conceptual classes and develop a domain model with UML Class diagram.
- 4. Using the identified scenarios, find the interaction between objects and represent them using UML Sequence diagrams.
- 5. Draw relevant state charts and activity diagrams.
- 6. Identify the User Interface, Domain objects, and Technical services. Draw the partial layered, logical architecture diagram with UML package diagram notation.
- 7. Develop and test the Technical services layer.
- 8. Develop and test the Domain objects layer.
- 9. Develop and test the User interface layer.

Suggested domains for Mini-Project:

- 1. Passport automation system.
- 2. Book bank
- 3. Exam Registration
- 4. Stock maintenance system.
- 5. Online course reservation system
- 6. E-ticketing
- 7. Software personnel management system
- 8. Credit card processing
- 9. e-book management system
- 10. Recruitment system
- 11. Foreign trading system
- 12. Conference Management System
- 13. BPO Management System
- 14. Library Management System
- 15. Student Information System

OUTCOMES:

At the end of the course, the student should be able to

- Design and implement projects using OO concepts.
- Use the UML analysis and design diagrams.
- Apply appropriate design patterns.
- Create code from design.
- Compare and contrast various testing techniques

LAB EQUIPMENTS FOR A BATCH OF 30 STUDENTS:

SUGGESTED SOFTWARETOOLS:

Rational Suite (or) Argo UML (or) equivalent, Eclipse IDE and Junit

SOFTWARE TOOLS

30 user License

Rational Suite

Open Source Alternatives: ArgoUML, Visual

Paradigm

Eclipse IDE and JUnit

PCs 30

CS6601

DISTRIBUTED SYSTEMS

L T PC 3 0 0 3

OBJECTIVES:

The student should be made to:

- Understand foundations of Distributed Systems
- Introduce the idea of peer to peer services and file system
- Understand in detail the system level and support required for distributed system
- Understand the issues involved in studying process and resource management

UNIT I INTRODUCTION

7

Introduction – Examples of Distributed Systems–Trends in Distributed Systems – Focus on resource sharing – Challenges. **Case study:** World Wide Web.

UNIT II COMMUNICATION IN DISTRIBUTED SYSTEM

10

System Model – Inter process Communication - the API for internet protocols – External data representation and Multicast communication. **Network virtualization:** Overlay networks. **Case study:** MPI **Remote Method Invocation And Objects:** Remote Invocation – Introduction - Request-reply protocols - Remote procedure call - Remote method invocation. **Case study:** Java RMI - Group communication - Publish-subscribe systems - Message queues - Shared memory approaches - Distributed objects - Case study: Enterprise Java Beans -from objects to components

UNIT III PEER TO PEER SERVICES AND FILE SYSTEM

10

Peer-to-peer Systems – Introduction - Napster and its legacy - Peer-to-peer – Middleware - Routing overlays. Overlay case studies: Pastry, Tapestry- Distributed File Systems –Introduction - File service architecture – Andrew File system. File System: Features-File model -File accessing models - File sharing semantics Naming: Identifiers, Addresses, Name Resolution – Name Space Implementation – Name Caches – LDAP.

UNIT IV SYNCHRONIZATION AND REPLICATION

9

Introduction - Clocks, events and process states - Synchronizing physical clocks- Logical time and logical clocks - Global states - Coordination and Agreement - Introduction - Distributed mutual exclusion - Elections - Transactions and Concurrency Control- Transactions - Nested transactions - Locks - Optimistic concurrency control - Timestamp ordering - Atomic Commit protocols -Distributed deadlocks - Replication - Case study - Coda.

UNIT V PROCESS & RESOURCE MANAGEMENT

9

Process Management: Process Migration: Features, Mechanism - Threads: Models, Issues, Implementation. Resource Management: Introduction- Features of Scheduling Algorithms –Task Assignment Approach – Load Balancing Approach – Load Sharing Approach.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Discuss trends in Distributed Systems.
- Apply network virtualization.
- Apply remote method invocation and objects.
- Design process and resource management systems.

TEXT BOOK:

1. George Coulouris, Jean Dollimore and Tim Kindberg, "Distributed Systems Concepts and Design", Fifth Edition, Pearson Education, 2012.

REFERENCES:

- 1. Pradeep K Sinha, "Distributed Operating Systems: Concepts and Design", Prentice Hall of India, 2007
- 2. Tanenbaum A.S., Van Steen M., "Distributed Systems: Principles and Paradigms", Pearson Education, 2007.
- 3. Liu M.L., "Distributed Computing, Principles and Applications", Pearson Education, 2004.
- 4. Nancy A Lynch, "Distributed Algorithms", Morgan Kaufman Publishers, USA, 2003.

IT6601 MOBILE COMPUTING L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Understand the basic concepts of mobile computing.
- Be familiar with the network protocol stack.
- Learn the basics of mobile telecommunication system.
- Be exposed to Ad-Hoc networks.
- Gain knowledge about different mobile platforms and application development.

UNIT I INTRODUCTION

9

Mobile Computing – Mobile Computing Vs wireless Networking – Mobile Computing Applications – Characteristics of Mobile computing – Structure of Mobile Computing Application. MAC Protocols – Wireless MAC Issues – Fixed Assignment Schemes – Random Assignment Schemes – Reservation Based Schemes.

UNIT II MOBILE INTERNET PROTOCOL AND TRANSPORT LAYER

9

Overview of Mobile IP – Features of Mobile IP – Key Mechanism in Mobile IP – route Optimization. Overview of TCP/IP – Architecture of TCP/IP- Adaptation of tCP Window – Improvement in TCP Performance.

UNIT III MOBILE TELECOMMUNICATION SYSTEM

S

Global System for Mobile Communication (GSM) – General Packet Radio Service (GPRS) – Universal Mobile Telecommunication System (UMTS).

UNIT IV MOBILE AD-HOC NETWORKS

9

Ad-Hoc Basic Concepts – Characteristics – Applications – Design Issues – Routing – Essential of Traditional Routing Protocols –Popular Routing Protocols – Vehicular Ad Hoc networks (VANET) – MANET Vs VANET – Security .

UNIT II REPRESENTATION OF KNOWLEDGE

Game playing - Knowledge representation, Knowledge representation using Predicate logic, Introduction to predicate calculus, Resolution, Use of predicate calculus, Knowledge representation using other logic-Structured representation of knowledge.

UNIT III KNOWLEDGE INFERENCE

9

9

Knowledge representation -Production based system, Frame based system. Inference - Backward chaining, Forward chaining, Rule value approach, Fuzzy reasoning - Certainty factors, Bayesian Theory-Bayesian Network-Dempster - Shafer theory.

UNIT IV PLANNING AND MACHINE LEARNING

9

Basic plan generation systems - Strips -Advanced plan generation systems - K strips -Strategic explanations -Why, Why not and how explanations. Learning- Machine learning, adaptive Learning.

UNIT V EXPERT SYSTEMS

9

Expert systems - Architecture of expert systems, Roles of expert systems - Knowledge Acquisition – Meta knowledge, Heuristics. Typical expert systems - MYCIN, DART, XOON, Expert systems shells.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Identify problems that are amenable to solution by AI methods.
- Identify appropriate AI methods to solve a given problem.
- Formalise a given problem in the language/framework of different AI methods.
- Implement basic AI algorithms.
- Design and carry out an empirical evaluation of different algorithms on a problem formalisation, and state the conclusions that the evaluation supports.

TEXT BOOKS:

- 1. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", McGraw Hill- 2008. (Unit-1,2,4,5).
- 2. Dan W. Patterson, "Introduction to AI and ES", Pearson Education, 2007. (Unit-III)

REFERENCES:

- 1. Peter Jackson, "Introduction to Expert Systems", 3rd Edition, Pearson Education, 2007.
- 2. Stuart Russel and Peter Norvig "AI A Modern Approach", 2nd Edition, Pearson Education 2007.
- 3. Deepak Khemani "Artificial Intelligence", Tata Mc Graw Hill Education 2013.
- 4. http://nptel.ac.in/

CS6660 COMPILER DESIGN

L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Learn the design principles of a Compiler.
- Learn the various parsing techniques and different levels of translation.
- Learn how to optimize and effectively generate machine codes.

UNIT I INTRODUCTION TO COMPILERS

5

Translators-Compilation and Interpretation-Language processors -The Phases of Compiler-Errors Encountered in Different Phases-The Grouping of Phases-Compiler Construction Tools - Programming Language basics.

UNIT II LEXICAL ANALYSIS

ç

Need and Role of Lexical Analyzer-Lexical Errors-Expressing Tokens by Regular Expressions-Converting Regular Expression to DFA- Minimization of DFA-Language for Specifying Lexical Analyzers-LEX-Design of Lexical Analyzer for a sample Language.

UNIT III SYNTAX ANALYSIS

10

Need and Role of the Parser-Context Free Grammars -Top Down Parsing -General Strategies-Recursive Descent Parser Predictive Parser-LL(1) Parser-Shift Reduce Parser-LR Parser-LR (0)Item-Construction of SLR Parsing Table -Introduction to LALR Parser - Error Handling and Recovery in Syntax Analyzer-YACC-Design of a syntax Analyzer for a Sample Language.

UNIT IV SYNTAX DIRECTED TRANSLATION & RUN TIME ENVIRONMENT

12

Syntax directed Definitions-Construction of Syntax Tree-Bottom-up Evaluation of S-Attribute Definitions- Design of predictive translator - Type Systems-Specification of a simple type checker-Equivalence of Type Expressions-Type Conversions.

RUN-TIME ENVIRONMENT: Source Language Issues-Storage Organization-Storage Allocation-Parameter Passing-Symbol Tables-Dynamic Storage Allocation-Storage Allocation in FORTAN.

UNIT V CODE OPTIMIZATION AND CODE GENERATION

9

Principal Sources of Optimization-DAG- Optimization of Basic Blocks-Global Data Flow Analysis-Efficient Data Flow Algorithms-Issues in Design of a Code Generator - A Simple Code Generator Algorithm.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Design and implement a prototype compiler.
- Apply the various optimization techniques.
- Use the different compiler construction tools.

TEXTBOOK:

1. Alfred V Aho, Monica S. Lam, Ravi Sethi and Jeffrey D Ullman, "Compilers – Principles, Techniques and Tools", 2nd Edition, Pearson Education, 2007.

REFERENCES:

- 1. Randy Allen, Ken Kennedy, "Optimizing Compilers for Modern Architectures: A Dependence-based Approach", Morgan Kaufmann Publishers, 2002.
- 2. Steven S. Muchnick, "Advanced Compiler Design and Implementation", Morgan Kaufmann Publishers Elsevier Science, India, Indian Reprint 2003.
- 3. Keith D Cooper and Linda Torczon, "Engineering a Compiler", Morgan Kaufmann Publishers Elsevier Science, 2004.
- 4. Charles N. Fischer, Richard. J. LeBlanc, "Crafting a Compiler with C", Pearson Education, 2008.

IT6602

SOFTWARE ARCHITECTURES

LTPC 3 0 0 3

OBJECTIVES:

- Understand software architectural requirements and drivers
- Be exposed to architectural styles and views
- Be familiar with architectures for emerging technologies

UNIT I INTRODUCTION AND ARCHITECTURAL DRIVERS

9

Introduction – What is software architecture? – Standard Definitions – Architectural structures – Influence of software architecture on organization-both business and technical – Architecture Business Cycle- Introduction – Functional requirements – Technical constraints – Quality Attributes.

UNIT II QUALITY ATTRIBUTE WORKSHOP

9

Quality Attribute Workshop - Documenting Quality Attributes - Six part scenarios - Case studies.

UNIT III ARCHITECTURAL VIEWS

9

Introduction – Standard Definitions for views – Structures and views - Representing views-available notations – Standard views – 4+1 view of RUP, Siemens 4 views, SEI's perspectives and views – Case studies

UNIT IV ARCHITECTURAL STYLES

9

Introduction – Data flow styles – Call-return styles – Shared Information styles – Event styles – Case studies for each style.

UNIT V DOCUMENTING THE ARCHITECTURE

9

Good practices – Documenting the Views using UML – Merits and Demerits of using visual languages – Need for formal languages - Architectural Description Languages – ACME – Case studies.

Special topics: SOA and Web services – Cloud Computing – Adaptive structures

OUTCOMES:

Upon Completion of the course, the students will be able to

- Explain influence of software architecture on business and technical activities
- Identify key architectural structures
- Use styles and views to specify architecture
- Design document for a given architecture

TEXT BOOKS:

- 1. Len Bass, Paul Clements, and Rick Kazman, "Software Architectures Principles and Practices", 2nd Edition, Addison-Wesley, 2003.
- 2. Anthony J Lattanze, "Architecting Software Intensive System. A Practitioner's Guide", Auerbach Publications, 2010.

REFERENCES:

- Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Paulo Merson, Robert Nord, and Judith Stafford, "Documenting Software Architectures. Views and Beyond", 2nd Edition, Addison-Wesley, 2010.
- Paul Clements, Rick Kazman, and Mark Klein, "Evaluating software architectures: Methods and case studies. Addison-Wesley, 2001.
- Rajkumar Buyya, James Broberg, and Andrzej Goscinski, "Cloud Computing. Principles and Paradigms", John Wiley & Sons, 2011
- Mark Hansen, "SOA Using Java Web Services", Prentice Hall, 2007

David Garlan, Bradley Schmerl, and Shang-Wen Cheng, "Software Architecture-Based Self-Adaptation," 31-56. Mieso K Denko, Laurence Tianruo Yang, and Yan Zang (eds.), "Autonomic Computing and Networking". Springer Verlag, 2009

IT6611 MOBILE APPLICATION DEVELOPMENT LABORATORY

LTPC 0 0 3 2

OBJECTIVES:

The student should be made to:

- Know the components and structure of mobile application development frameworks for Android and windows OS based mobiles.
- Understand how to work with various mobile application development frameworks.
- Learn the basic and important design concepts and issues of development of mobile applications.
- Understand the capabilities and limitations of mobile devices.

LIST OF EXPERIMENTS

- 1. Develop an application that uses GUI components, Font and Colours
- 2. Develop an application that uses Layout Managers and event listeners.
- 3. Develop a native calculator application.
- 4. Write an application that draws basic graphical primitives on the screen.
- 5. Develop an application that makes use of database.
- 6. Develop an application that makes use of RSS Feed.
- 7. Implement an application that implements Multi threading
- 8. Develop a native application that uses GPS location information.
- 9. Implement an application that writes data to the SD card.
- 10. Implement an application that creates an alert upon receiving a message.
- 11. Write a mobile application that creates alarm clock

OUTCOMES:

At the end of the course, the student should be able to:

- Design and Implement various mobile applications using emulators.
- Deploy applications to hand-held devices

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

Standalone desktops with Windows or Android or

iOS or Equivalent Mobile Application Development

Tools with appropriate emulators and debuggers - 30 Nos.

IT6612 COMPILER LABORATORY

LTPC 0 0 3 2

TOTAL: 45 PERIODS

OBJECTIVES:

The student should be made to:

- Be exposed to compiler writing tools.
- Learn to implement the different Phases of compiler
- Be familiar with control flow and data flow analysis
- Learn simple optimization techniques

LIST OF EXPERIMENTS:

- 1. Implementation of Symbol Table
- 2. Develop a lexical analyzer to recognize a few patterns in C. (Ex. identifiers, constants, comments, operators etc.)
- 3. Implementation of Lexical Analyzer using Lex Tool
- 4. Generate YACC specification for a few syntactic categories.
 - a) Program to recognize a valid arithmetic expression that usesoperator +, -, * and /.
 - b) Program to recognize a valid variable which starts with a letterfollowed by any number of letters or digits.
 - d)Implementation of Calculator using LEX and YACC
- 5. Convert the BNF rules into Yacc form and write code to generate Abstract Syntax Tree.
- 6. Implement type checking
- 7. Implement control flow analysis and Data flow Analysis
- 8. Implement any one storage allocation strategies(Heap, Stack, Static)
- 9. Construction of DAG
- 10. Implement the back end of the compiler which takes the three address code and produces the 8086 assembly language instructions that can be assembled and run using a 8086 assembler. The target assembly instructions can be simple move, add, sub, jump. Also simple addressing modes are used.
- 11. Implementation of Simple Code Optimization Techniques (Constant Folding., etc.)

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to

- Implement the different Phases of compiler using tools
- Analyze the control flow and data flow of a typical program
- Optimize a given program
- Generate an assembly language program equivalent to a source language program

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C / C++ compiler and Compiler writing tools 30 Nos. (or)

Server with C / C++ compiler and Compiler writing tools supporting 30 terminals or more.

LEX and YACC

GE6674 COMMUNICATION AND SOFT SKILLS- LABORATORY COURSE

L T P C 0 0 4 2

OBJECTIVES:

To enable learners to,

- Develop their communicative competence in English with specific reference to speaking and listening
- Enhance their ability to communicate effectively in interviews.
- Strengthen their prospects of success in competitive examinations.

UNIT I LISTENING AND SPEAKING SKILLS

12

Conversational skills (formal and informal)- group discussion- making effective presentations using computers, listening/watching interviews conversations, documentaries. Listening to lectures. discussions from TV/ Radio/ Podcast.

READING AND WRITING SKILLS UNIT II

12

Reading different genres of tests ranging from newspapers to creative writing. Writing job applications- cover letter- resume- emails- letters- memos- reports. Writing abstracts- summariesinterpreting visual texts.

UNIT III ENGLISH FOR NATIONAL AND INTERNATIONAL EXAMINATIONS AND **PLACEMENTS**

12

International English Language Testing System (IELTS) - Test of English as a Foreign Language (TOEFL) - Civil Service(Language related) - Verbal Ability.

UNIT IV INTERVIEW SKILLS

12

Different types of Interview format- answering questions- offering information- mock interviews-body language(paralinguistic features)- articulation of sounds- intonation.

UNIT V SOFT SKILLS

12

Motivation- emotional intelligence-Multiple intelligences- emotional intelligence- managing changes-time management-stress management-leadership straits-team work- career planning intercultural communication- creative and critical thinking

TOTAL: 60 PERIODS

Teaching Methods:

- 1. To be totally learner-centric with minimum teacher intervention as the course revolves around practice.
- 2. Suitable audio/video samples from Podcast/YouTube to be used for illustrative purposes.
- 3. Portfolio approach for writing to be followed. Learners are to be encouraged to blog, tweet, text and email employing appropriate language.
- 4. GD/Interview/Role Play/Debate could be conducted off the laboratory (in a regular classroom) but learners are to be exposed to telephonic interview and video conferencing.
- 5. Learners are to be assigned to read/write/listen/view materials outside the classroom as well for graining proficiency and better participation in the class.

Lab Infrastructure:

S. No.	Description of Equipment (minimum configuration)	Qty Required
1	Server	1 No.
	PIV System	
	• 1 GB RAM / 40 GB HDD	
	OS: Win 2000 server	
	Audio card with headphones	
	• JRE 1.3	

2	Client Systems	60 Nos.
	PIII or above	
	 256 or 512 MB RAM / 40 GB HDD 	
	OS: Win 2000	
	Audio card with headphones	
	• JRE 1.3	
3	Handicam	1 No.
4	Television 46"	1 No.
5	Collar mike	1 No.
6	Cordless mike	1 No.
7	Audio Mixer	1 No.
8	DVD recorder/player	1 No.
9	LCD Projector with MP3/CD/DVD provision for	1 No.
	Audio/video facility	

Evaluation:

Internal: 20 marks

Record maintenance: Students should write a report on a regular basis on the activities conducted, focusing on the details such as the description of the activity, ideas emerged, learning outcomes and so on. At the end of the semester records can be evaluated out of 20 marks.

External: 80 marks

Online Test - 35 marks
Interview - 15 marks
Presentation - 15 marks
Group Discussion - 15 marks

Note on Internal and External Evaluation:

- 1. Interview mock interview can be conducted on one-on-one basis.
- 2. Speaking example for role play:
 - a. Marketing engineer convincing a customer to buy his product.
 - b. Telephonic conversation- fixing an official appointment / placing an order / enquiring and so on.
- 3. Presentation should be extempore on simple topics.
- 4. Discussion topics of different kinds; general topics, and case studies.

OUTCOMES:

At the end of the course, learners should be able to

- Take international examination such as IELTS and TOEFL
- Make presentations and Participate in Group Discussions.
- Successfully answer questions in interviews.

REFERENCES:

- 1. Business English Certificate Materials, Cambridge University Press.
- 2. **Graded Examinations in Spoken English and Spoken English for Work** downloadable materials from Trinity College, London.
- 3. International English Language Testing System Practice Tests, Cambridge University Press.
- 4. Interactive Multimedia Programs on Managing Time and Stress.
- 5. **Personality Development** (CD-ROM), Times Multimedia, Mumbai.
- 6. Robert M Sherfield and et al. "Developing Soft Skills" 4th edition, New Delhi: Pearson Education, 2009.

ANNA UNIVERSITY, CHENNAI AFFILIATED INSTITUTIONS R-2008

B.TECH. INFORMATION TECHNOLOGY II - VIII SEMESTERS CURRICULA AND SYLLABI

SEMESTER II

SL. No.	COURSE CODE	COURSE TITLE	L	Т	Р	С		
THEORY								
1.	HS2161	Technical English – II*	3	1	0	4		
2.	MA2161	Mathematics – II*	3	1	0	4		
3.	PH2161	Engineering Physics – II*	3	0	0	3		
4.	CY2161	Engineering Chemistry – II*	3	0	0	3		
5. a	ME2151	Engineering Mechanics	3	1	0	4		
		(For non-circuit branches)						
5. b	EE2151	Circuit Theory	3	1	0	4		
		(For branches under Electrical Faculty)						
5. c	EC2151	Electric Circuits and Electron Devices	3	1	0	4		
		(For branches under I & C Faculty)						
6. a	GE2151	Basic Electrical & Electronics Engineering	4	0	0	4		
		(For non-circuit branches)						
6. b	GE2152	Basic Civil & Mechanical Engineering	4	0	0	4		
		(For circuit branches)						
PRACT	ICAL							
7.	GE2155	Computer Practice Laboratory-II*	0	1	2	2		
8.	GS2165	Physics & Chemistry Laboratory - II*	0	0	3	2		
9. a	ME2155	Computer Aided Drafting and Modeling Laboratory	0	1	2	2		

SEMESTER VII

(Applicable to the students admitted from the Academic year 2008–2009 onwards)

Code No.	Course Title		L	Т	Р	С
THEORY						
IT2401	Service Oriented Architecture		3	0	0	3
IT2402	Mobile Communication		3	0	0	3
CS2401	Computer Graphics		3	0	0	3
IT2403	Software Project Management		3	0	0	3
	Elective II		3	0	0	3
	Elective III		3	0	0	3
PRACTICAL						
IT2406	Service Oriented Architecture Lab		0	0	3	2
CS2405	Computer Graphics Lab		0	0	3	2
		TOTAL	18	0	6	22

SEMESTER VIII

(Applicable to the students admitted from the Academic year 2008–2009 onwards)

Code No.	Course Title		L	Т	Р	С
THEORY						
	Elective IV		3	0	0	3
	Elective V		3	0	0	3
PRACTICAL			•			
IT2451	Project Work		0	0	12	6
		TOTAL	6	0	12	12

LIST OF ELECTIVES

SEMESTER VI – Elective I

Code No.	Course Title	L	Т	Р	С
MA2264	Numerical Methods	3	1	0	4
MA2265	Discrete Mathematics	3	1	0	4
IT2021	Business Process Model	3	0	0	3
IT2022	Software Requirement Engineering	3	0	0	3
IT2023	Digital Image Processing	3	0	0	3
IT2024	User Interface Design	3	0	0	3
CS2022	Visual Programming	3	0	0	3
CS2032	Data Warehousing and Data Mining	3	0	0	3

SEMESTER VII – Elective II

Code No.	Course Title	L	T	Р	С
CS2303	Theory of Computation	3	1	0	4
CS2029	Advanced Database Technology	3	0	0	3
IT2031	Electronic Commerce	3	0	0	3
IT2032	Software Testing	3	0	0	3
IT2033	<u>Bioinformatics</u>	3	0	0	3
IT2034	Adhoc Sensor Network	3	0	0	3

SEMESTER VII – Elective III

Code No.	Course Title	L	T	Р	С
CS2351	Artificial Intelligence	3	0	0	3
IT2041	Enterprise Resource Planning	3	0	0	3
IT2042	Information Security	3	0	0	3
IT2043	Knowledge Management	3	0	0	3
CS2063	Grid computing	3	0	0	3
CS2041	C# and .NET Framework	3	0	0	3

SEMESTER VIII – Elective IV

Code No.	Course Title	L	T	Р	С
IT2050	Principles of Compiler Design	3	0	0	3
IT2051	Knowledge Engineering	3	0	0	3
GE2025	Professional Ethics in Engineering	3	0	0	3
GE2071	Intellectual Property Rights	3	0	0	3
IT2052	Management Information System	3	0	0	3
IT2053	Software Design	3	0	0	3
CS2053	Soft Computing	3	0	0	3

SEMESTER VIII – Elective V

Code No.	Course Title	L	T	Ρ	C
GE2022	Total Quality Management	3	0	0	3
GE2072	Indian Constitution and Society	3	0	0	3
IT2061	System Modeling and Simulation	3	0	0	3
CS2035	Natural Language Processing	3	0	0	3
CS2056	Distributed Systems	3	0	0	3
GE2023	Fundamental of Nano Science	3	0	0	3
IT2064	Speech Processing	3	0	0	3

IT2401

SERVICE ORIENTED ARCHITECTURE

LTPC 3003

OBJECTIVES:

- To gain understanding of the basic principles of service orientation
- To learn service oriented analysis techniques
- To learn technology underlying the service design
- To learn advanced concepts such as service composition, orchestration and Choreography
- To know about various WS-* specification standards

UNIT I

Roots of SOA – Characteristics of SOA - Comparing SOA to client-server and distributed internet architectures – Anatomy of SOA- How components in an SOA interrelate - Principles of service orientation

UNIT II

Web services – Service descriptions – Messaging with SOAP –Message exchange Patterns – Coordination –Atomic Transactions – Business activities – Orchestration – Choreography - Service layer abstraction – Application Service Layer – Business Service Layer – Orchestration Service Layer

UNIT III 9

Service oriented analysis – Business-centric SOA – Deriving business services- service modeling - Service Oriented Design – WSDL basics – SOAP basics – SOA composition guidelines – Entity-centric business service design – Application service design – Task-centric business service design

UNIT IV 9

SOA platform basics – SOA support in J2EE – Java API for XML-based web services (JAX-WS) - Java architecture for XML binding (JAXB) – Java API for XML Registries (JAXR) - Java API for XML based RPC (JAX-RPC)- Web Services Interoperability Technologies (WSIT) - SOA support in .NET – Common Language Runtime - ASP.NET web forms – ASP.NET web services – Web Services Enhancements (WSE)

UNIT V 9

WS-BPEL basics – WS-Coordination overview - WS-Choreography, WS-Policy, WS-Security

TOTAL: 45 PERIODS

TEXT BOOKS:

1. Thomas Erl, "Service-Oriented Architecture: Concepts, Technology, and Design", Pearson Education, 2005.

REFERENCES:

- 1. Thomas Erl, "SOA Principles of Service Design "(The Prentice Hall Service-Oriented Computing Series from Thomas Erl), 2005.
- 2. Newcomer, Lomow, "Understanding SOA with Web Services", Pearson Education, 2005.
- 3. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services, An Architect's Guide", Pearson Education, 2005.
- 4. Dan Woods and Thomas Mattern, "Enterprise SOA Designing IT for Business Innovation" O'REILLY, First Edition, 2006

MOBILE COMMUNICATION

IT2402 LTPC 3 0 0 3

UNIT I WIRELESS COMMUNICATION

7

Cellular systems- Frequency Management and Channel Assignment- types of handoff and their characteristics, dropped call rates & their evaluation -MAC - SDMA - FDMA - TDMA - CDMA - Cellular Wireless Networks

UNIT II WIRELESS NETWORKS

9

Wireless LAN - IEEE 802.11 Standards - Architecture - Services - Mobile Ad hoc Networks- WiFi and WiMAX - Wireless Local Loop

UNIT III MOBILE COMMUNICATION SYSTEMS

11

GSM-architecture-Location tracking and call setup- Mobility management- Handover-Security-GSM SMS –International roaming for GSM- call recording functions-subscriber and service data mgt –-Mobile Number portability -VoIP service for Mobile Networks – GPRS –Architecture-GPRS procedures-attach and detach procedures-PDP context procedure-combined RA/LA update procedures-Billing

UNIT IV MOBILE NETWORK AND TRANSPORT LAYERS

9

Mobile IP – Dynamic Host Configuration Protocol-Mobile Ad Hoc Routing Protocols–Multicast routing-TCP over Wireless Networks – Indirect TCP – Snooping TCP – Mobile TCP – Fast Retransmit / Fast Recovery – Transmission/Timeout Freezing-Selective Retransmission – Transaction Oriented TCP- TCP over 2.5 / 3G wireless Networks

UNIT V APPLICATION LAYER

9

WAP Model- Mobile Location based services -WAP Gateway -WAP protocols - WAP user agent profile- caching model-wireless bearers for WAP - WML - WMLScripts -WTA - iMode- SyncML

TOTAL:45PERIODS

TEXT BOOKS:

- 1. Jochen Schiller, "Mobile Communications", Second Edition, Pearson Education, 200UNIT III
- 2. William Stallings, "Wireless Communications and Networks", Pearson Education, 2002.

REFERENCES:

- 1. Kaveh Pahlavan, Prasanth Krishnamoorthy, "Principles of Wireless Networks", First Edition, Pearson Education, 200UNIT III
- 2. Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, "Principles of Mobile Computing", Springer, 200UNIT III
- 3. C.K.Toh, "AdHoc Mobile Wireless Networks", First Edition, Pearson Education, 2002.

CS2401

COMPUTER GRAPHICS

TPC3 003

UNIT I 2D PRIMITIVES

9

Output primitives – Line, Circle and Ellipse drawing algorithms - Attributes of output primitives – Two dimensional Geometric transformation - Two dimensional viewing – Line, Polygon, Curve and Text clipping algorithms

UNIT II 3D CONCEPTS

9

Parallel and Perspective projections - Three dimensional object representation - Polygons, Curved lines, Splines, Quadric Surfaces,- Visualization of data sets - 3D transformations - Viewing -Visible surface identification.

UNIT III GRAPHICS PROGRAMMING

9

Color Models – RGB, YIQ, CMY, HSV – Animations – General Computer Animation, Raster, Keyframe - Graphics programming using OPENGL – Basic graphics primitives – Drawing three dimensional objects - Drawing three dimensional scenes

UNIT IV RENDERING

9

Introduction to Shading models – Flat and Smooth shading – Adding texture to faces – Adding shadows of objects – Building a camera in a program – Creating shaded objects – Rendering texture – Drawing Shadows.

UNIT V FRACTALS

9

Fractals and Self similarity – Peano curves – Creating image by iterated functions – Mandelbrot sets – Julia Sets – Random Fractals – Overview of Ray Tracing – Intersecting rays with other primitives – Adding Surface texture – Reflections and Transparency – Boolean operations on Objects

TOTAL:45PERIODS

TEXT BOOKS:

- 1. Donald Hearn, Pauline Baker, Computer Graphics C Version, second edition, Pearson Education, 2004.
- 2. F.S. Hill, Computer Graphics using OPENGL, Second edition, Pearson Education, 200UNIT III

REFERENCES:

1. James D. Foley, Andries Van Dam, Steven K. Feiner, John F. Hughes, Computer Graphics- Principles and practice, Second Edition in C, Pearson Education, 2007.

IT2403

SOFTWARE PROJECT MANAGEMENT

LTPC 3003

UNIT I INTRODUCTION TO SOFTWARE PROJECT MANAGEMENT 9
Project Definition – Contract Management – Activities Covered By Software Project

Management – Overview Of Project Planning – Stepwise Project Planning.

UNIT II PROJECT EVALUATION

9

Strategic Assessment – Technical Assessment – Cost Benefit Analysis –Cash Flow Forecasting – Cost Benefit Evaluation Techniques – Risk Evaluation.

UNIT III ACTIVITY PLANNING

9

Objectives – Project Schedule – Sequencing and Scheduling Activities –Network Planning Models – Forward Pass – Backward Pass – Activity Float – Shortening Project Duration – Activity on Arrow Networks – Risk Management – Nature Of Risk – Types Of Risk – Managing Risk – Hazard Identification – Hazard Analysis – Risk Planning And Control.

UNIT IV MONITORING AND CONTROL

9

Creating Framework – Collecting The Data – Visualizing Progress – Cost Monitoring – Earned Value – Priortizing Monitoring – Getting Project Back To Target – Change Control – Managing Contracts – Introduction – Types Of Contract – Stages In Contract Placement – Typical Terms Of A Contract – Contract Management – Acceptance.

UNIT V MANAGING PEOPLE AND ORGANIZING TEAMS

9

Introduction – Understanding Behavior – Organizational Behaviour: A Background – Selecting The Right Person For The Job – Instruction In The Best Methods – Motivation – The Oldman – Hackman Job Characteristics Model – Working In Groups – Becoming A Team –Decision Making – Leadership – Organizational Structures – Stress –Health And Safety – Case Studies.

TOTAL: 45PERIODS

TEXT BOOK

1. Bob Hughes, Mikecotterell, "Software Project Management", Third Edition, Tata McGraw Hill, 2004.

REFERENCES

- 1. Ramesh, Gopalaswamy, "Managing Global Projects", Tata McGraw Hill, 2001.
- 2. Royce, "Software Project Management", Pearson Education, 1999.
- 3. Jalote, "Software Project Management in Practice", Pearson Education, 2002.

IT2406 SERVICE ORIENTED ARCHITECTURE LABORATORY

LTPC 003 2

- 1. Develop at least 5 components such as Order Processing, Payment Processing, etc., using .NET component technology.
- 2. Develop at least 5 components such as Order Processing, Payment Processing, etc., using EJB component technology.
- 3. Invoke .NET components as web services.
- 4. Invoke EJB components as web services.
- 5. Develop a Service Orchestration Engine (workflow) using WS-BPEL and implement service composition. For example, a business process for planning business travels will invoke several services. This process will invoke several airline companies (such as American Airlines, Delta Airlines etc.) to check the airfare price and buy at the lowest price.

- 6. Develop a J2EE client to access a .NET web service.
- 7. Develop a .NET client to access a J2EE web service.

TOTAL: 60 PERIODS

CS2405

COMPUTER GRAPHICS LABORATORY

LTPC 0032

Implementation of Bresenhams Algorithm – Line, Circle, Ellipse.

- 1. Implementation of Line, Circle and ellipse Attributes.
- Two Dimensional transformations Translation, Rotation, Scaling, Reflection, Shear.
- 3. Composite 2D Transformations.
- 4. Cohen Sutherland 2D line clipping and Windowing
- 5. Sutherland Hodgeman Polygon clipping Algorithm.
- 6. Three dimensional transformations Translation, Rotation, Scaling.
- 7. Composite 3D transformations.
- 8. Drawing three dimensional objects and Scenes.
- 9. Generating Fractal images.

TOTAL: 60 PERIODS

MA2264

NUMERICAL METHODS

T P C 3 1 0 4

AIM

With the present development of the computer technology, it is necessary to develop efficient algorithms for solving problems in science, engineering and technology. This course gives a complete procedure for solving different kinds of problems occur in engineering numerically.

OBJECTIVES

At the end of the course, the students would be acquainted with the basic concepts in numerical methods and their uses are summarized as follows:

- i. The roots of nonlinear (algebraic or transcendental) equations, solutions of large system of linear equations and eigen value problem of a matrix can be obtained numerically where analytical methods fail to give solution.
- ii. When huge amounts of experimental data are involved, the methods discussed on interpolation will be useful in constructing approximate polynomial to represent the data and to find the intermediate values.
- iii. The numerical differentiation and integration find application when the function in the analytical form is too complicated or the huge amounts of data are given such as series of measurements, observations or some other empirical information.
- iv. Since many physical laws are couched in terms of rate of change of one/two or more independent variables, most of the engineering problems are characterized in the form of either nonlinear ordinary differential equations or partial differential equations. The methods introduced in the solution of ordinary differential equations and partial differential equations will be useful in attempting any engineering problem.

OBJECTIVES:

• To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL: 180 PERIODS

OUTCOMES:

 On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

IT6001

ADVANCED DATABASE TECHNOLOGY

L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Be familiar with a commercial relational database system (Oracle) by writing SQL using the system.
- Be familiar with the relational database theory, and be able to write relational algebra expressions for queries.

UNIT I PARALLEL AND DISTRIBUTED DATABASES

9

Database System Architectures: Centralized and Client-Server Architectures – Server System Architectures – Parallel Systems- Distributed Systems – Parallel Databases: I/O Parallelism – Inter and Intra Query Parallelism – Inter and Intra operation Parallelism – Distributed Database Concepts - Distributed Data Storage – Distributed Transactions – Commit Protocols – Concurrency Control – Distributed Query Processing – Three Tier Client Server Architecture- Case Studies.

UNIT II OBJECT AND OBJECT RELATIONAL DATABASES

9

Concepts for Object Databases: Object Identity – Object structure – Type Constructors – Encapsulation of Operations – Methods – Persistence – Type and Class Hierarchies – Inheritance – Complex Objects – Object Database Standards, Languages and Design: ODMG Model – ODL – OQL – Object Relational and Extended – Relational Systems: Object Relational features in SQL / Oracle – Case Studies.

UNIT III XML DATABASES

9

XML Databases: XML Data Model – DTD - XML Schema - XML Querying – Web Databases – JDBC – Information Retrieval – Data Warehousing – Data Mining.

UNIT IV MOBILE DATABASES

9

Mobile Databases: Location and Handoff Management - Effect of Mobility on Data Management - Location Dependent Data Distribution - Mobile Transaction Models - Concurrency Control - Transaction Commit Protocols- Mobile Database Recovery Schemes.

UNIT V INTELLIGENT DATABASES

9

Active databases – Deductive Databases – Knowledge bases – Multimedia Databases-Multidimensional Data Structures – Image Databases – Text/Document Databases- Video Databases – Audio Databases – Multimedia Database Design.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the student should be able to:

- Apply query evaluation techniques and query optimization techniques.
- Develop transaction processing systems with concurrency control.
- Design and develop a database application system as part of a team.

REFERENCES:

- 1. Henry F Korth, Abraham Silberschatz and S. Sudharshan, "Database System Concepts", Sixth Edition, McGraw Hill, 2011.
- 2. C.J.Date, A.Kannan and S.Swamynathan,"An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.
- 3. R. Elmasri, S.B. Navathe, "Fundamentals of Database Systems", Fifth Edition, Pearson Education/Addison Wesley, 2007.
- 4. Thomas Cannolly and Carolyn Begg, "Database Systems, A Practical Approach to Design, Implementation and Management", Third Edition, Pearson Education, 2007.
- 5. Subramaniam, "Multimedia Databases", Morgan Kauffman Publishers, 2008.

CS6001

C# AND .NET PROGRAMMING

L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Understand the foundations of CLR execution
- Learn the technologies of the .NET framework
- Know the object oriented aspects of C#
- Be aware of application development in .NET
- Learn web based applications on .NET(ASP.NET)

UNIT I INTRODUCTION TO C#

9

Introducing C#, Understanding .NET, overview of C#, Literals, Variables, Data Types, Operators, checked and unchecked operators, Expressions, Branching, Looping, Methods, implicit and explicit casting, Constant, Arrays, Array Class, Array List, String, String Builder, Structure, Enumerations, boxing and unboxing.

UNIT II OBJECT ORIENTED ASPECTS OF C#

9

Class, Objects, Constructors and its types, inheritance, properties, indexers, index overloading, polymorphism, sealed class and methods, interface, abstract class, abstract and interface, operator overloading, delegates, events, errors and exception, Threading.

UNIT III APPLICATION DEVELOPMENT ON .NET

9

Building windows application, Creating our own window forms with events and controls, menu creation, inheriting window forms, SDI and MDI application, Dialog Box(Modal and Modeless), accessing data with ADO.NET, DataSet, typed dataset, Data Adapter, updating database using stored procedures, SQL Server with ADO.NET, handling exceptions, validating controls, windows application configuration.

UNIT IV WEB BASED APPLICATION DEVELOPMENT ON .NET

9

Programming web application with web forms, ASP.NET introduction, working with XML and .NET, Creating Virtual Directory and Web Application, session management techniques, web.config, web services, passing datasets, returning datasets from web services, handling transaction, handling exceptions, returning exceptions from SQL Server.

UNIT V CLR AND .NET FRAMEWORK

9

TOTAL: 45 PERIODS

Assemblies, Versoning, Attributes, reflection, viewing meta data, type discovery, reflection on type, marshalling, remoting, security in .NET

OUTCOMES:

After completing this course, the student will be able to:

- List the major elements of the .NET frame work
- Explain how C# fits into the .NET platform.
- Analyze the basic structure of a C# application
- Debug, compile, and run a simple application.
- Develop programs using C# on .NET
- Design and develop Web based applications on .NET
- Discuss CLR.

TEXT BOOKS:

- 1. Herbert Schildt, "The Complete Reference: C# 4.0", Tata McGraw Hill, 2012.
- Christian Nagel et al. "Professional C# 2012 with .NET 4.5", Wiley India, 2012.

REFERENCES:

- 1. Andrew Troelsen, "Pro C# 2010 and the .NET 4 Platform, Fifth edition, A Press, 2010.
- 2. Ian Griffiths, Matthew Adams, Jesse Liberty, "Programming C# 4.0", Sixth Edition, O'Reilly, 2010.

IT6002

INFORMATION THEORY AND CODING TECHNIQUES

L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Understand error-control coding.
- Understand encoding and decoding of digital data streams.
- Be familiar with the methods for the generation of these codes and their decoding techniques.
- Be aware of compression and decompression techniques.
- Learn the concepts of multimedia communication.

UNIT I INFORMATION ENTROPY FUNDAMENTALS

Uncertainty, Information and Entropy – Source coding Theorem – Huffman coding –Shannon Fano coding - Discrete Memory less channels - channel capacity - channel coding Theorem - Channel capacity Theorem.

UNIT II DATA AND VOICE CODING

Differential Pulse code Modulation - Adaptive Differential Pulse Code Modulation - Adaptive subband coding - Delta Modulation - Adaptive Delta Modulation - Coding of speech signal at low bit rates (Vocoders, LPC).

ERROR CONTROL CODING UNIT III

9

Linear Block codes - Syndrome Decoding - Minimum distance consideration - cyclic codes -Generator Polynomial - Parity check polynomial - Encoder for cyclic codes - calculation of syndrome Convolutional codes.

UNIT IV COMPRESSION TECHNIQUES

9

Principles - Text compression - Static Huffman Coding - Dynamic Huffman coding - Arithmetic coding - Image Compression - Graphics Interchange format - Tagged Image File Format - Digitized documents – Introduction to JPEG standards.

AUDIO AND VIDEO CODING

9

Linear Predictive coding - code excited LPC - Perceptual coding, MPEG audio coders - Dolby audio coders - Video compression - Principles - Introduction to H.261 & MPEG Video standards.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the student should be able to:

- Design an application with error-control.
- Use compression and decompression techniques.
- Apply the concepts of multimedia communication

TEXT BOOKS:

- 1. Simon Haykin, "Communication Systems", 4th Edition, John Wiley and Sons, 2001.
- 2. Fred Halsall, "Multimedia Communications, Applications Networks Protocols and Standards", Pearson Education, Asia 2002; Chapters: 3,4,5.

REFERENCES:

- 1. Mark Nelson, "Data Compression Book", BPB Publication 1992.
- 2. Watkinson J, "Compression in Video and Audio", Focal Press, London, 1995.

GE6757

TOTAL QUALITY MANAGEMENT

LTPC 3 0 0 3

OBJECTIVES:

To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION

9

Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM - Quality statements - Customer focus - Customer orientation, Customer satisfaction, Customer complaints, Customer retention - Costs of quality.

UNIT II TQM PRINCIPLES

9

Leadership - Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Quality circles Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I

9

The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT IV TQM TOOLS AND TECHNIQUES II

9

Control Charts - Process Capability - Concepts of Six Sigma - Quality Function Development (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.

UNIT V QUALITY SYSTEMS

9

Need for ISO 9000 - ISO 9001-2008 Quality System - Elements, Documentation, Quality Auditing - QS 9000 - ISO 14000 - Concepts, Requirements and Benefits - TQM Implementation in manufacturing and service sectors..

TOTAL: 45 PERIODS

OUTCOMES:

• The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

TEXTBOOK:

1. Dale H. Besterfiled, et at., "Total quality Management", Pearson Education Asia, Third Edition, Indian Reprint 2006.

REFERENCES:

- 1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.
- 2. Suganthi.L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.
- 3. Janakiraman. B and Gopal .R.K., "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.

CS6012 SOFT COMPUTING

L T P C 3 0 0 3

OBJECTIVES:

The student should be made to:

- Learn the various soft computing frame works.
- Be familiar with design of various neural networks.
- Be exposed to fuzzy logic.
- Learn genetic programming.
- Be exposed to hybrid systems.

UNIT I INTRODUCTION

9

Artificial neural network: Introduction, characteristics- learning methods – taxonomy – Evolution of neural networks- basic models - important technologies - applications.

Fuzzy logic: Introduction - crisp sets- fuzzy sets - crisp relations and fuzzy relations: cartesian product of relation - classical relation, fuzzy relations, tolerance and equivalence relations, non-iterative fuzzy sets. Genetic algorithm- Introduction - biological background - traditional optimization and search techniques - Genetic basic concepts.

UNIT II NEURAL NETWORKS

9

McCulloch-Pitts neuron - linear separability - hebb network - supervised learning network: perceptron networks - adaptive linear neuron, multiple adaptive linear neuron, BPN, RBF, TDNN- associative memory network: auto-associative memory network, hetero-associative memory network, BAM, hopfield networks, iterative autoassociative memory network & iterative associative memory network - unsupervised learning networks: Kohonen self organizing feature maps, LVQ - CP networks, ART network.

UNIT III FUZZY LOGIC

9

Membership functions: features, fuzzification, methods of membership value assignments-Defuzzification: lambda cuts - methods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - extension principle - fuzzy measures - measures of fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning: truth values and tables, fuzzy propositions, formation of rules-decomposition of rules, aggregation of fuzzy rules, fuzzy reasoning-fuzzy inference systems-overview of fuzzy expert system-fuzzy decision making.

UNIT IV GENETIC ALGORITHM

9

Genetic algorithm and search space - general genetic algorithm - operators - Generational cycle - stopping condition - constraints - classification - genetic programming - multilevel optimization - real life problem- advances in GA.

UNIT V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS

9

Neuro-fuzzy hybrid systems - genetic neuro hybrid systems - genetic fuzzy hybrid and fuzzy genetic hybrid systems - simplified fuzzy ARTMAP - Applications: A fusion approach of multispectral images with SAR, optimization of traveling salesman problem using genetic algorithm approach, soft computing based hybrid fuzzy controllers.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the student should be able to:

- Apply various soft computing frame works.
- Design of various neural networks.
- Use fuzzy logic.
- Apply genetic programming.
- Discuss hybrid soft computing.

TEXT BOOKS:

- 1. J.S.R.Jang, C.T. Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI / Pearson Education 2004.
- 2. S.N.Sivanandam and S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt Ltd, 2011.

REFERENCES:

- 1. S.Rajasekaran and G.A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis & Applications", Prentice-Hall of India Pvt. Ltd., 2006.
- 2. George J. Klir, Ute St. Clair, Bo Yuan, "Fuzzy Set Theory: Foundations and Applications" Prentice Hall, 1997.
- 3. David E. Goldberg, "Genetic Algorithm in Search Optimization and Machine Learning" Pearson Education India, 2013.
- 4. James A. Freeman, David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques, Pearson Education India, 1991.
- 5. Simon Haykin, "Neural Networks Comprehensive Foundation" Second Edition, Pearson Education, 2005.

GE6084 HUMAN RIGHTS L T P C 3 0 0 3

OBJECTIVES:

• To sensitize the Engineering students to various aspects of Human Rights.

UNIT I

Human Dights Magning grigin and Davislanment Nation and elegationation of Dights Natural

Human Rights – Meaning, origin and Development. Notion and classification of Rights – Natural, Moral and Legal Rights. Civil and Political Rights, Economic, Social and Cultural Rights; collective / Solidarity Rights.

UNIT II 9

Evolution of the concept of Human Rights Magana carta – Geneva convention of 1864. Universal Declaration of Human Rights, 1948. Theories of Human Rights.

UNIT III 9

Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

UNIT IV 9

Human Rights in India – Constitutional Provisions / Guarantees.

UNIT V 9

Human Rights of Disadvantaged People – Women, Children, Displaced persons and Disabled persons, including Aged and HIV Infected People. Implementation of Human Rights – National and State Human Rights Commission – Judiciary – Role of NGO's, Media, Educational Institutions, Social Movements.

TOTAL: 45 PERIODS

OUTCOMES:

Engineering students will acquire the basic knowledge of human rights.

REFERENCES:

- 1. Kapoor S.K., "Human Rights under International law and Indian Laws", Central Law Agency, Allahabad, 2014.
- 2. Chandra U., "Human Rights", Allahabad Law Agency, Allahabad, 2014.
- 3. Upendra Baxi, The Future of Human Rights, Oxford University Press, New Delhi.

UNIT III 9

Memory management – SDI – MDI – MFC for Advanced windows user Interface – status bar and Toolbars – Tree view – List view – Threads

UNIT IV 9

ODBC - MFC Database classes - DAO - DLLs - Working with Images

UNIT V 9

COM Fundamentals – ActiveX control – ATL – Internet Programming

TOTAL: 45 PERIODS

TEXT BOOK

1. Richard C.Leinecker and Tom Archer, "Visual C++ 6 Programming Bible", Wiley DreamTech Press, 2006.

REFERENCES

- 1. Lars Klander. "Core Visual C++ 6". Pearson Education. 2000
- 2. Deital, Deital, Liperi and Yaeger "Visual V++ .NET How to Program", Pearson Education, 2004.

CS2303 THEORY OF COMPUTATION L T P C 3 1 0 4

UNIT I AUTOMATA

9

Introduction to formal proof – Additional forms of proof – Inductive proofs –Finite Automata (FA) – Deterministic Finite Automata (DFA) – Non-deterministic Finite Automata (NFA) – Finite Automata with Epsilon transitions.

UNIT II REGULAR EXPRESSIONS AND LANGUAGES

9

Regular Expression – FA and Regular Expressions – Proving languages not to be regular – Closure properties of regular languages – Equivalence and minimization of Automata.

UNIT III CONTEXT-FREE GRAMMARS AND LANGUAGES

9

Context-Free Grammar (CFG) – Parse Trees – Ambiguity in grammars and languages – Definition of the Pushdown automata – Languages of a Pushdown Automata – Equivalence of Pushdown automata and CFG– Deterministic Pushdown Automata.

UNIT IV PROPERTIES OF CONTEXT-FREE LANGUAGES

9

Normal forms for CFG – Pumping Lemma for CFL – Closure Properties of CFL – Turing Machines – Programming Techniques for TM.

UNIT V UNDECIDABALITY

9

A language that is not Recursively Enumerable (RE) – An undecidable problem that is RE – Undecidable problems about Turing Machine – Post's Correspondence Problem – The classes P and NP.

TOTAL: 45 PERIODS

TEXT BOOK:

1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computations", second Edition, Pearson Education, 2007.

REFERENCES:

- 1. H.R. Lewis and C.H. Papadimitriou, "Elements of the theory of Computation", Second Edition, Pearson Education, 200UNIT III
- 2. Thomas A. Sudkamp," An Introduction to the Theory of Computer Science, Languages and Machines", Third Edition, Pearson Education, 2007.
- 3. Raymond Greenlaw an H.James Hoover, "Fundamentals of Theory of Computation, Principles and Practice", Morgan Kaufmann Publishers, 1998.
- 4. Micheal Sipser, "Introduction of the Theory and Computation", Thomson Brokecole, 1997.
- 5. J. Martin, "Introduction to Languages and the Theory of computation", 3rd Edition, Tata Mc Graw Hill, 2007

CS2351

ARTIFICIAL INTELLIGENCE

LTPC 3003

AIM:

To learn the basics of designing intelligent agents that can solve general purpose problems, represent and process knowledge, plan and act, reason under uncertainty and can learn from experiences

UNIT I PROBLEM SOLVING

9

Introduction – Agents – Problem formulation – uninformed search strategies – heuristics – informed search strategies – constraint satisfaction

UNIT II LOGICAL REASONING

9

Logical agents – propositional logic – inferences – first-order logic – inferences in first-order logic – forward chaining – backward chaining – unification – resolution

UNIT III PLANNING

9

Planning with state-space search – partial-order planning – planning graphs – planning and acting in the real world

UNIT IV UNCERTAIN KNOWLEDGE AND REASONING

9

Uncertainty – review of probability - probabilistic Reasoning – Bayesian networks – inferences in Bayesian networks – Temporal models – Hidden Markov models

UNIT V LEARNING

9

Learning from observation - Inductive learning – Decision trees – Explanation based learning – Statistical Learning methods - Reinforcement Learning

TOTAL: 45PERIODS

TEXT BOOK

1. S. Russel and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 200UNIT III

REFERENCES

- 1. David Poole, Alan Mackworth, Randy Goebel, "Computational Intelligence: a logical approach", Oxford University Press, 2004.
- 2. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem solving", Fourth Edition, Pearson Education, 2002.
- 3. J. Nilsson, "Artificial Intelligence: A new Synthesis", Elsevier Publishers, 1998.

CS2029

ADVANCED DATABASE TECHNOLOGY

LTPC 3003

UNIT I RELATIONAL MODEL ISSUES

9

ER Model - Normalization - Query Processing - Query Optimization - Transaction Processing - Concurrency Control - Recovery - Database Tuning.

UNIT II DISTRIBUTED DATABASES

9

Parallel Databases – Inter and Intra Query Parallelism – Distributed Database Features – Distributed Database Architecture – Fragmentation – Distributed Query Processing – Distributed Transactions Processing – Concurrency Control – Recovery – Commit Protocols.

UNIT III OBJECT ORIENTED DATABASES

9

Introduction to Object Oriented Data Bases - Approaches - Modeling and Design - Persistence - Query Languages - Transaction - Concurrency - Multi Version Locks - Recovery - POSTGRES - JASMINE - GEMSTONE - ODMG Model.

UNIT IV EMERGING SYSTEMS

9

Enhanced Data Models - Client/Server Model - Data Warehousing and Data Mining - Web Databases - Mobile Databases - XML and Web Databases.

UNIT V CURRENT ISSUES

9

Rules - Knowledge Bases - Active and Deductive Databases - Multimedia Databases - Multimedia Databases - Multimedia Databases.

TOTAL: 45 PERIODS

TEXT BOOKS

 Thomas Connolly and Carlolyn Begg, "Database Systems, A Practical Approach to Design, Implementation and Management", Third Edition, Pearson Education 200 UNITIII

REFERENCES

- 1. R. Elmasri, S.B. Navathe, "Fundamentals of Database Systems", Fifth Edition, Pearson Education, 2006.
- 2. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Fifth Edition, Tata McGraw Hill, 2006.
- 3. C.J.Date, A.Kannan, S.Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.

IT2031

ELECTRONIC COMMERCE

LTPC 3003

UNIT I INTRODUCTION

9

Traditional commerce and E commerce – Internet and WWW – role of WWW – value chains – strategic business and Industry value chains – role of E commerce.

UNIT II INFRASTRUCTURE FOR E COMMERCE

9

Packet switched networks – TCP/IP protocol script – Internet utility programmes – SGML, HTML and XML – web client and servers – Web client/server architecture – intranet and extranets.

UNIT III WEB BASED TOOLS FOR E COMMERCE

9

Web server – performance evaluation - web server software feature sets – web server software and tools – web protocol – search engines – intelligent agents –EC software – web hosting – cost analysis

UNIT IV SECURITY

9

Computer security classification – copy right and Intellectual property – electronic commerce threats – protecting client computers – electronic payment systems – electronic cash – strategies for marketing – sales and promotion – cryptography – authentication.

UNIT V INTELLIGENT AGENTS

9

Definition and capabilities – limitation of agents – security – web based marketing – search engines and Directory registration – online advertisements – Portables and info mechanics – website design issues.

TOTAL = 45 PERIODS

TEXT BOOKS

- 1. Ravi Kalakota, "Electronic Commerce", Pearson Education,
- 2. Gary P Schneider "Electronic commerce", Thomson learning & James T Peny Cambridge USA. 2001.
- 3. Manlyn Greenstein and Miklos "Electronic commerce" McGraw-Hill, 2002.

REFERENCES

- 1. Efraim Turvan J.Lee, David kug and chung, "Electronic commerce" Pearson Education Asia 2001.
- 2. Brenda Kienew E commerce Business Prentice Hall, 2001.

IT2041 ENTERPRISE RESOURCE PLANNING

LTPC 3003

UNIT I RP AND TECHNOLOGY

10

Introduction – Related Technologies – Business Intelligence – E-Commerce and E-Business – Business Process Reengineering – Data Warehousing – Data Mining – OLAP – Product life Cycle management – SCM – CRM

UNIT II ERP IMPLEMENTATION

10

Implementation Challenges – Strategies – Life Cycle – Pre-implementation Tasks – Requirements Definition – Methodologies – Package selection – Project Teams – Process Definitions – Vendors and Consultants – Data Migration – Project management – Post Implementation Activities.

UNIT III ERP IN ACTION & BUSINESS MODULES

8

Operation and Maintenance – Performance – Maximizing the ERP System – Business Modules – Finance – Manufacturing – Human Resources – Plant maintenance – Materials Management – Quality management – Marketing – Sales, Distribution and service.

UNIT IV ERP MARKET

9

Marketplace - Dynamics - SAP AG - Oracle - PeopleSoft - JD Edwards - QAD Inc - SSA Global - Lawson Software - Epicor - Intutive.

UNIT V 8

Enterprise Application Integration – ERP and E-Business – ERP II – Total quality management – Future Directions – Trends in ERP.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Alexis Leon, "ERP DEMYSTIFIED", Tata McGraw Hill, Second Edition, 2008.
- 2. Mary Sumner, "Enterprise Resource Planning", Pearson Education, 2007.

REFERENCES

- 1. Jim Mazzullo, "SAP R/3 for Everyone", Pearson, 2007.
- 2. Jose Antonio Fernandz, "The SAP R /3 Handbook", Tata McGraw Hill, 1998.
- 3. Biao Fu, "SAP BW: A Step-by-Step Guide", First Edition, Pearson Education, 200UNIT III

IT2042

INFORMATION SECURITY

LTPC 3003

AIM

To study the critical need for ensuring Information Security in Organizations

OBJECTIVES

- To understand the basics of Information Security
- To know the legal, ethical and professional issues in Information Security
- To know the aspects of risk management
- To become aware of various standards in this area
- To know the technological aspects of Information Security

UNIT I INTRODUCTION

9

History, what is Information Security, Critical Characteristics of Information, NSTISSC Security Model, Components of an Information System, Securing the Components, Balancing Security and Access, The SDLC, The Security SDLC

UNIT II SECURITY INVESTIGATION

9

Need for Security, Business Needs, Threats, Attacks, Legal, Ethical and Professional Issues

UNIT III SECURITY ANALYSIS

9

Risk Management: Identifying and Assessing Risk, Assessing and Controlling Risk

UNIT IV LOGICAL DESIGN

9

Blueprint for Security, Information Security Poicy, Standards and Practices, ISO 17799/BS 7799, NIST Models, VISA International Security Model, Design of Security Architecture, Planning for Continuity

UNIT V PHYSICAL DESIGN

9

Security Technology, IDS, Scanning and Analysis Tools, Cryptography, Access Control Devices, Physical Security, Security and Personnel

TOTAL: 45 PERIODS

TEXT BOOK

1. Michael E Whitman and Herbert J Mattord, "Principles of Information Security", Vikas Publishing House, New Delhi, 2003

REFERENCES

- 1. Micki Krause, Harold F. Tipton, "Handbook of Information Security Management", Vol 1-3 CRC Press LLC, 2004.
- Stuart Mc Clure, Joel Scrambray, George Kurtz, "Hacking Exposed", Tata McGraw-Hill, 2003
- 3. Matt Bishop, "Computer Security Art and Science", Pearson/PHI, 2002.

IT2032

SOFTWARE TESTING

LTPC 3003

UNIT I INTRODUCTION

9

Testing as an Engineering Activity – Role of Process in Software Quality – Testing as a Process – Basic Definitions – Software Testing Principles – The Tester's Role in a Software Development Organization – Origins of Defects – Defect Classes – The Defect Repository and Test Design – Defect Examples – Developer/Tester Support for Developing a Defect Repository.

UNIT II TEST CASE DESIGN

9

Introduction to Testing Design Strategies – The Smarter Tester – Test Case Design Strategies – Using Black Box Approach to Test Case Design Random Testing – Requirements based testing – positive and negative testing — Boundary Value Analysis – decision tables - Equivalence Class Partitioning state-based testing— cause-effect graphing – error guessing - compatibility testing – user documentation testing – domain testing Using White—Box Approach to Test design – Test Adequacy Criteria – static testing vs. structural testing – code functional testing - Coverage and Control Flow Graphs – Covering Code Logic – Paths – Their Role in White—box Based Test Design – code complexity testing – Evaluating Test Adequacy Criteria.

UNIT III LEVELS OF TESTING

9

The Need for Levels of Testing – Unit Test – Unit Test Planning –Designing the Unit Tests. The Test Harness – Running the Unit tests and Recording results – Integration tests – Designing Integration Tests – Integration Test Planning – scenario testing – defect bash elimination -System Testing – types of system testing - Acceptance testing – performance testing - Regression Testing – internationalization testing – ad-hoc testing - Alpha – Beta Tests – testing OO systems – usability and accessibility testing

UNIT IV TEST MANAGEMENT

9

People and organizational issues in testing – organization structures for testing teams – testing services - Test Planning – Test Plan Components – Test Plan Attachments – Locating Test Items – test management – test process - Reporting Test Results – The role of three groups in Test Planning and Policy Development – Introducing the test specialist – Skills needed by a test specialist – Building a Testing Group.

UNIT V CONTROLLING AND MONITORING

9

Software test automation – skills needed for automation – scope of automation – design and architecture for automation – requirements for a test tool – challenges in automation - Test metrics and measurements –project, progress and productivity metrics – Status Meetings – Reports and Control Issues – Criteria for Test Completion – SCM – Types of reviews – Developing a review program – Components of Review Plans– Reporting Review Results. – evaluating software quality – defect prevention – testing maturity model

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Srinivasan Desikan and Gopalaswamy Ramesh, "Software Testing Principles and Practices", Pearson education, 2006.
- 2. Aditya P.Mathur, "Foundations of Software Testing", Pearson Education, 2008.

REFERENCES:

- 1. Boris Beizer, "Software Testing Techniques", Second Edition, Dreamtech, 200UNIT III
- 2. Elfriede Dustin, "Effective Software Testing", First Edition, Pearson Education, 200 UNIT III
- 3. Renu Rajani, Pradeep Oak, "Software Testing Effective Methods, Tools and Techniques", Tata McGraw Hill, 2004.

IT2034

ADHOC SENSOR NETWORKS

LTPC 3003

UNIT I ROUTING

9

Cellular and Ad hoc wireless networks – Issues of MAC layer and Routing – Proactive, Reactive and Hybrid Routing protocols – Multicast Routing – Tree based and Mesh based protocols – Multicast with Quality of Service Provision.

UNIT II QUALITY OF SERVICE

9

Real-time traffic support – Issues and challenges in providing QoS – Classification of QoS Solutions – MAC layer classifications – QoS Aware Routing Protocols – Ticket based and Predictive location based Qos Routing Protocols

UNIT III ENERGY MANAGEMENT AD HOC NETWORKS

9

Need for Energy Management – Classification of Energy Management Schemes – Battery Management and Transmission Power Management Schemes – Network Layer and Data Link Layer Solutions – System power Management schemes

UNIT IV MESH NETWORKS

9

Necessity for Mesh Networks – MAC enhancements – IEEE 802.11s Architecture – Opportunistic Routing – Self Configuration and Auto Configuration - Capacity Models – Fairness – Heterogeneous Mesh Networks – Vehicular Mesh Networks

UNIT V SENSOR NETWORKS

9

Introduction – Sensor Network architecture – Data Dissemination – Data Gathering – MAC Protocols for sensor Networks – Location discovery – Quality of Sensor Networks – Evolving Standards – Other Issues – Recent trends in Infrastructure less Networks

TOTAL: 45 PERIODS

TEXT BOOK:

1. C. Siva Ram Murthy and B.S.Manoj, "Ad hoc Wireless Networks – Architectures and Protocols'. Pearson Education. 2004

REFERENCES

- 1. Feng Zhao and Leonidas Guibas, "Wireless Sensor Networks", Morgan Kaufman Publishers, 2004.
- 2. C.K.Toh, "Adhoc Mobile Wireless Networks", Pearson Education, 2002.
- 3. Thomas Krag and Sebastin Buettrich, 'Wireless Mesh Networking', O'Reilly Publishers, 2007.

IT2043

KNOWLEDGE MANAGEMENT

L

TPC3 003

UNIT I KNOWLEDGE MANAGEMENT

9

KM Myths – KM Life Cycle – Understanding Knowledge – Knowledge, intelligence – Experience – Common Sense – Cognition and KM – Types of Knowledge – Expert Knowledge – Human Thinking and Learning.

UNIT II KNOWLEDGE MANAGEMENT SYSTEM LIFE CYCLE

9

Challenges in Building KM Systems – Conventional Vrs KM System Life Cycle (KMSLS) – Knowledge Creation and Knowledge Architecture – Nonaka's Model of Knowledge Creation and Transformation. Knowledge Architecture.

UNIT III CAPTURING KNOWLEDGE

9

Evaluating the Expert – Developing a Relationship with Experts – Fuzzy Reasoning and the Quality of Knowledge – Knowledge Capturing Techniques, Brain Storming – Protocol Analysis – Consensus Decision Making – Repertory Grid- Concept Mapping – Blackboarding.

UNIT IV KNOWLEDGE CODIFICATION

q

Modes of Knowledge Conversion – Codification Tools and Procedures – Knowledge Developer's Skill Sets – System Testing and Deployment – Knowledge Testing – Approaches to Logical Testing, User Acceptance Testing – KM System Deployment Issues – User Training – Post implementation.

UNIT V KNOWLEDGE TRANSFER AND SHARING

9

Transfer Methods – Role of the Internet – Knowledge Transfer in e-world – KM System Tools – Neural Network – Association Rules – Classification Trees – Data Mining and Business Intelligence – Decision Making Architecture – Data Management – Knowledge Management Protocols – Managing Knowledge Workers.

TOTAL: 45 PERIODS

TEXT BOOK

1. Elias.M. Award & Hassan M. Ghaziri – "Knowledge Management" Pearson Education 200UNIT III

REFERENCES

- Guus Schreiber, Hans Akkermans, Anjo Anjewierden, Robert de Hoog, Nigel Shadbolt, Walter Van de Velde and Bob Wielinga, "Knowledge Engineering and Management", Universities Press, 2001.
- 2. C.W. Holsapple, "Handbooks on Knowledge Management", International Handbooks on Information Systems, Vol 1 and 2, 2003

CS2063 GRID COMPUTING

LTPC 3003

UNIT I CONCEPTS AND ARCHITECTURE

9

Introduction-Parallel and Distributed Computing-Cluster Computing-Grid Computing-Anatomy and Physiology of Grid-Review of Web Services-OGSA-WSRF.

UNIT II GRID MONITORING

9

Grid Monitoring Architecture (GMA) - An Overview of Grid Monitoring Systems- GridICE – JAMM -MDS-Network Weather Service-R-GMA-Other Monitoring Systems- Ganglia and GridMon

UNIT III GRID SECURITY AND RESOURCE MANAGEMENT

9

Grid Security-A Brief Security Primer-PKI-X509 Certificates-Grid Security-Grid Scheduling and Resource Management-Scheduling Paradigms- Working principles of Scheduling -A Review of Condor, SGE, PBS and LSF-Grid Scheduling with QoS.

UNIT IV DATA MANAGEMENT AND GRID PORTALS

9

Data Management-Categories and Origins of Structured Data-Data Management Challenges-Architectural Approaches-Collective Data Management Services-Federation Services-Grid Portals-First-Generation Grid Portals-Second-Generation Grid Portals.

UNIT V GRID MIDDLEWARE

a

List of globally available Middlewares - Case Studies-Recent version of Globus Toolkit and gLite - Architecture, Components and Features.

TEXT BOOK

1. Maozhen Li, Mark Baker, The Grid Core Technologies, John Wiley & Sons ,2005.

REFERENCES

- 1. Ian Foster & Carl Kesselman, The Grid 2 Blueprint for a New Computing Infrastructure, Morgan Kaufman 2004.
- 2. Joshy Joseph & Craig Fellenstein, "Grid Computing", Pearson Education 2004.
- 3. Fran Berman, Geoffrey Fox, Anthony J.G. Hey, "Grid Computing: Making the Global Infrastructure a reality", John Wiley and sons, 200UNIT III

CS2041

C# AND .NET FRAMEWORK

LTPC 3003

UNIT I

0

Review of OOP Concepts - Overview of .NET Framework - Basic Elements of C# - Program Structure and simple Input and Output Operations - Operators and Expressions - Statements - Arrays and Structures.

UNIT II 9

Inheritance - Namespace - Polymorphism - Interface and Overloading - Multiple Inheritance - Property - Indexes - Delegates - Publish/Subscribe Design Patterns-Operator Overloading-Method Overloading

UNIT II

C# Concepts for creating Data Structures - File Operation - File Management systems - Stream Oriented Operations- Multitasking - Multithreading - Thread Operation - Synchronization.

UNIT IV

9

Working with XML – Techniques for Reading and Writing XML Data - Using XPath and Search XML - ADO.NET Architecture – ADO.NET Connected and Disconnected Models – XML and ADO.NET – Simple and Complex Data Binding – Data Grid View Class.

UNIT V

Application Domains – Remoting – Leasing and Sponsorship - .NET Coding Design Guidelines –Assemblies – Security – Application Development – Web Services - Building an XML Web Service - Web Service Client – WSDL and SOAP – Web Service with Complex Data Types – Web Service Performance.

TOTAL: 45 PERIODS

TEXT BOOKS

1. S. Thamarai Selvi and R. Murugesan "A Textbook on C# ", Pearson Education,200UNIT III

2. Stephen C. Perry "Core C# and .NET", Pearson Education,2006.

REFERENCES

- 1. Jesse Liberty, "Programming C#", Second Edition, O'Reilly Press, 2002.
- 2. Robinson et al, "Professional C#", Fifth Edition, Wrox Press, 2002.
- 3. Herbert Schildt, "The Complete Reference: C#", Tata McGraw Hill, 2004.
- 4. Andrew Troelsen, "C# and the .NET Platform", A! Press, 200UNIT III
- 5. Thaana Thai and Hoang Q. Lam, ". NET Framework Essentials", Second Edition, O'Reilly, 2002.

IT2050

PRINCIPLES OF COMPILER DESIGN

LTPC 3003

UNIT I BASICS OF COMPILATION

9

Compilers – Analysis of source program – Phases of a compiler – Grouping of phases – Compiler Construction tools – Lexical Analyzer: Token specification -Token Recognition-A language for Specifying lexical analyzer – Top down parser: Table implementation of Predictive Parser - Bottom-up Parser: SLR(1) Parser - Parser generators.

UNIT II TYPE CHECKING AND RUNTIME ENVIRONMENTS

g

Syntax directed definitions – Construction of syntax trees – Type systems – Specification of a simple type checker - Equivalence of type expressions – Type conversions – Attribute grammar for a simple type checking system – Runtime Environments: Source language issues – Storage organization – Storage allocation strategies – Parameter passing.

UNIT III INTERMEDIATE CODE GENERATION

9

Intermediate languages – Declarations – Assignment statements – Boolean expressions – Case statements – Backpatching – Procedure calls.

UNIT IV CODE GENERATION

9

Issues in the design of a code generator – The target machine – Runtime storage management – Basic blocks and flow graphs – Next-use information – A simple code generator – Register allocation and assignment – The DAG representation of basic blocks – Generating code from DAG – Dynamic programming code generation algorithm – Code-generator generators.

UNIT V CODE OPTIMIZATION

9

Principal sources of optimization – Peephole optimization – Optimization of basic blocks – Loops in flow graphs – Introduction to global data flow analysis – Iterative solution of data flow equations – Code improving transformations – Dealing with aliases.

TOTAL: 45 PERIODS

TEXT BOOK

1. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman. "Compilers Principles, Techniques and Tools". Pearson Education, 2008.

REFERENCES

- 1. Steven S. Muchnick, "Advanced Compiler Design Implementation", Morgan Koffman, 1997.
- 2. Charles N. Fischer, Richard J. Leblanc, "Crafting a Compiler with C", Benjamin Cummings, 1991.
- 3. Allen Holub, "Compiler Design in C", Prentice Hall of India, 1990.

IT2051 KNOWLEDGE ENGINEERING

L

TPC3 003

UNIT I INTRODUCTION

9

Key concepts – Why knowledge Representation and Reasoning – Language of first order Logic – Syntax, Semantics Pragmatics – Expressing Knowledge – Levels of Representation – Knowledge Acquisition and Sharing – Sharing Ontologies – Language Ontologies – Language Patterns – Tools for Knowledge Acquisition

UNIT II RESOLUTION AND REASONING

9

Proportional Case – Handling Variables and Qualifies – Dealing with Intractability – Reasoning with Horn Clauses - Procedural Control of Reasoning – Rules in Production – Description Logic - Vivid Knowledge – Beyond Vivid.

UNIT III REPRESENTATION

9

Object Oriented Representations – Frame Formalism – Structured Descriptions – Meaning and Entailment - Taxonomies and Classification – Inheritance – Networks – Strategies for Defeasible Inheritance – Formal Account of Inheritance Networks.

UNIT IV DEFAULTS, UNCERTAINTY AND EXPRESSIVENESS

9

Defaults – Introduction – Closed World Reasoning – Circumscription – Default Logic Limitations of Logic – Fuzzy Logic – Nonmontonic Logic – Theories and World – Semiotics – Auto epistemic Logic - Vagueness – Uncertainty and Degrees of Belief – Noncategorical Reasoning – Objective and Subjective Probability.

UNIT V ACTIONS AND PLANNING

9

Explanation and Diagnosis – Purpose – Syntax, Semantics of Context – First Order Reasoning – Modal Reasoning in Context – Encapsulating Objects in Context – Agents – Actions – Situational Calculus – Frame Problem – Complex Actions – Planning – Strips – Planning as Reasoning – Hierarchical and Conditional Planning.

TOTAL: 45 PERIODS

TEXT BOOK

 Ronald Brachman, Hector Levesque "Knowledge Representation and Reasoning", the Morgan Kaufmann Series in Artificial Intelligence 2004

REFERENCES

- John F. Sowa, "Knowledge Representation: Logical, Philosophical, and Computational Foundations", 2000
- 2. Arthur B. Markman, "Knowledge Representation", Lawrence Erlbaum Associates, 1998

GE2022 TOTAL QUALITY MANAGEMENT

L T P C 3 0 0 3

UNIT I INTRODUCTION

9

Introduction - Need for quality - Evolution of quality - Definition of quality - Dimensions of manufacturing and service quality - Basic concepts of TQM - Definition of TQM - TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM.

UNIT II TQM PRINCIPLES

9

Leadership – Strategic quality planning, Quality statements - Customer focus – Customer orientation, Customer satisfaction, Customer complaints, Customer retention - Employee involvement – Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal - Continuous process improvement – PDSA cycle, 5s, Kaizen - Supplier partnership – Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS & TECHNIQUES I

9

The seven traditional tools of quality – New management tools – Six-sigma: Concepts, methodology, applications to manufacturing, service sector including IT – Bench marking – Reason to bench mark, Bench marking process – FMEA – Stages, Types.

UNIT IV TQM TOOLS & TECHNIQUES II

9

Quality circles – Quality Function Deployment (QFD) – Taguchi quality loss function – TPM – Concepts, improvement needs – Cost of Quality – Performance measures.

UNIT V QUALITY SYSTEMS

9

Need for ISO 9000- ISO 9000-2000 Quality System – Elements, Documentation, Quality auditing- QS 9000 – ISO 14000 – Concepts, Requirements and Benefits – Case studies of TQM implementation in manufacturing and service sectors including IT.

TOTAL: 45 PERIODS

TEXT BOOK:

1. Dale H.Besterfiled, et at., "Total Quality Management", Pearson Education Asia,3rd Edition, Indian Reprint (2006).

REFERENCES:

1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 6th Edition, South-Western (Thomson Learning), 2005.

- 2. Oakland, J.S., "TQM Text with Cases", Butterworth Heinemann Ltd., Oxford, 3rd Edition. 200UNIT III
- 3. Suganthi,L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.
- 4. Janakiraman, B and Gopal, R.K, "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.

GE2072

INDIAN CONSTITUTION AND SOCIETY

LTPC 3 0 0 3

UNIT I 9

Historical Background – Constituent Assembly of India – Philosophical foundations of the Indian Constitution – Preamble – Fundamental Rights – Directive Principles of State Policy – Fundamental Duties – Citizenship – Constitutional Remedies for citizens.

UNIT II

Union Government – Structures of the Union Government and Functions – President – Vice President – Prime Minister – Cabinet – Parliament – Supreme Court of India – Judicial Review.

UNIT III 9

State Government – Structure and Functions – Governor – Chief Minister – Cabinet – State Legislature – Judicial System in States – High Courts and other Subordinate Courts.

UNIT IV

Indian Federal System – Center – State Relations – President's Rule – Constitutional Amendments – Constitutional Functionaries - Assessment of working of the Parliamentary System in India.

UNIT V 9

Society: Nature, Meaning and definition; Indian Social Structure; Caste, Religion, Language in India; Constitutional Remedies for citizens – Political Parties and Pressure Groups; Right of Women, Children and Scheduled Castes and Scheduled Tribes and other Weaker Sections.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Durga Das Basu, "Introduction to the Constitution of India ", Prentice Hall of India, New Delhi.
- 2. R.C.Agarwal, (1997) "Indian Political System", S.Chand and Company, New Delhi.
- 3. Maciver and Page, "Society: An Introduction Analysis", Mac Milan India Ltd., New Delhi.
- 4. K.L.Sharma, (1997) "Social Stratification in India: Issues and Themes", Jawaharlal Nehru University, New Delhi.

REFERENCES

- 1. Sharma, Brij Kishore, "Introduction to the Constitution of India:, Prentice Hall of India, New Delhi.
- 2. U.R.Gahai, "Indian Political System", New Academic Publishing House, Jalaendhar.
- 3. R.N. Sharma, "Indian Social Problems", Media Promoters and Publishers Pvt. Ltd.

GE2025 PROFESSIONAL ETHICS IN ENGINEERING

LTPC 3 0 0 3

UNIT I ENGINEERING ETHICS

9

Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Professions and Professionalism – Professional Ideals and Virtues – Uses of Ethical Theories

UNIT II ENGINEERING AS SOCIAL EXPERIMENTATION

9

Engineering as Experimentation – Engineers as responsible Experimenters – Research Ethics - Codes of Ethics – Industrial Standards - A Balanced Outlook on Law – The Challenger Case Study

UNIT III ENGINEER'S RESPONSIBILITY FOR SAFETY

9

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis – Reducing Risk – The Government Regulator's Approach to Risk - Chernobyl Case Studies and Bhopal

UNIT IV RESPONSIBILITIES AND RIGHTS

9

Collegiality and Loyalty – Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) - Discrimination

UNIT V GLOBAL ISSUES

9

Multinational Corporations – Business Ethics - Environmental Ethics – Computer Ethics - Role in Technological Development – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Honesty – Moral Leadership – Sample Code of Conduct

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York, 2005.
- 2. Charles E Harris, Michael S Pritchard and Michael J Rabins, "Engineering Ethics Concepts and Cases", Thompson Learning, 2000.

MANAGEMENT INFORMATION SYSTEMS

LTPC 3003

IT2052

UNIT I INFORMATION SYSTEM AND ORGANIZATION

9

Matching the Information System Plan to the Organizational Strategic Plan – Identifying Key Organizational Objective and Processes and Developing an Information System Development – User role in Systems Development Process – Maintainability and Recoverability in System Design.

UNIT II REPRESENTATION AND ANALYSIS OF SYSTEM STRUCTURE 9
Models for Representing Systems: Mathematical, Graphical and Hierarchical
(Organization Chart, Tree Diagram) – Information Flow – Process Flow – Methods and
Heuristics – Decomposition and Aggregation – Information Architecture – Application of
System Representation to Case Studies.

UNIT III SYSTEMS, INFORMATION AND DECISION THEORY 9
Information Theory - Information Content and Redundancy - Classification and Compression - Summarizing and Filtering - Inferences and Uncertainty - Identifying Information needed to Support Decision Making - Human Factors - Problem characteristics and Information System Capabilities in Decision Making.

UNIT IV INFORMATION SYSTEM APPLICATION

9

Transaction Processing Applications – Basic Accounting Application – Applications for Budgeting and Planning – Other use of Information Technology: Automation – Word Processing – Electronic Mail – Evaluation Remote Conferencing and Graphics – System and Selection – Cost Benefit – Centralized versus Decentralized Allocation Mechanism.

UNIT V DEVELOPMENT AND MAINTENANCE OF INFORMATION SYSTEMS 9Systems analysis and design – System development life cycle – Limitation – End User Development – Managing End Users – off– the shelf software packages – Outsourcing – Comparison of different methodologies.

TOTAL: 45 PERIODS

TEXT BOOK

 Laudon K.C, Laudon J.P, Brabston M.E, "Management Information Systems -Managing the digital firm", Pearon Education, 2004.

REFERENCES

- **1.** Turban E.F, Potter R.E, "Introduction to Information Technology"; Wiley, 2 004.
- **2.** Jeffrey A.Hoffer, Joey F.George, Joseph S. Valachich, "Modern Systems Analysis and Design", Third Edition, Prentice Hall, 2002.

IT2061 SYSTEM MODELING AND SIMULATION

LTPC 3 0 0 3

UNIT I INTRODUCTION TO SIMULATION

9

Introduction – Simulation Terminologies- Application areas – Model Classification – Types of Simulation- Steps in a Simulation study- Concepts in Discrete Event Simulation - Simulation Examples

UNIT II MATHEMATICAL MODELS

9

Statistical Models - Concepts - Discrete Distribution- Continuous Distribution - Poisson Process- Empirical Distributions- Queueing Models - Characteristics- Notation - Queueing Systems - Markovian Models- Properties of random numbers- Generation of Pseudo Random numbers- Techniques for generating random numbers- Testing random number generators- Generating Random-Variates- Inverse Transform technique - Acceptance- Rejection technique - Composition & Convolution Method.

UNIT III ANALYSIS OF SIMULATION DATA

9

Input Modeling - Data collection - Assessing sample independence - Hypothesizing distribution family with data - Parameter Estimation - Goodness-of-fit tests - Selecting input models in absence of data- Output analysis for a Single system - Terminating Simulations - Steady state simulations.

UNIT IV VERIFICATION AND VALIDATION

9

Model Building – Verification of Simulation Models – Calibration and Validation of Models – Validation of Model Assumptions – Validating Input – Output Transformations.

UNIT V SIMULATION OF COMPUTER SYSTEMS AND CASE STUDIES 9
Simulation Tools - Model Input - High level computer system simulation - CPU Memory Simulation - Comparison of systems via simulation - Simulation Programming techniques - Development of Simulation models.

TEXT BOOKS:

- 1. Jerry Banks and John Carson, "Discrete Event System Simulation", Fourth Edition, PHI, 2005.
- Geoffrey Gordon, "System Simulation", Second Edition, PHI, 2006 (Unit V).

REFERENCES:

Frank L. Severance, "System Modeling and Simulation", Wiley, 2001.

- 1. Averill M. Law and W.David Kelton, "Simulation Modeling and Analysis, Third Edition, McGraw Hill, 2006.
- 2. Jerry Banks, "Handbook of Simulation: Principles, Methodology, Advances, Applications and Practice", Wiley, 1998.

CS2035 NATURAL LANGUAGE PROCESSING

LTPC 3003

UNIT I

Introduction – Models -and Algorithms - The Turing Test -Regular Expressions Basic Regular Expression Patterns -Finite State Automata -Regular Languages and FSAs – Morphology -Inflectional Morphology - Derivational Morphology -Finite-State Morphological Parsing - Combining an FST Lexicon and Rules -Porter Stemmer

UNIT II

N-grams Models of Syntax - Counting Words - Unsmoothed N-grams - Smoothing-Backoff - Deleted Interpolation - Entropy - English Word Classes - Tagsets for English - Part of Speech Tagging - Rule-Based Part of Speech Tagging - Stochastic Part of Speech Tagging - Transformation-Based Tagging -

UNIT III 9

Context Free Grammars for English Syntax- Context-Free Rules and Trees - Sentence-Level Constructions –Agreement – Sub Categorization – Parsing – Top-down – Earley Parsing -Feature Structures - Probabilistic Context-Free Grammars

UNIT IV 9

Representing Meaning - Meaning Structure of Language - First Order Predicate Calculus - Representing Linguistically Relevant Concepts - Syntax-Driven Semantic Analysis - Semantic Attachments - Syntax-Driven Analyzer - Robust Analysis - Lexemes and Their Senses - Internal Structure - Word Sense Disambiguation - Information Retrieval

UNIT V 9

Discourse -Reference Resolution - Text Coherence -Discourse Structure - Dialog and Conversational Agents - Dialog Acts - Interpretation - Coherence -Conversational Agents - Language Generation - Architecture -Surface Realizations - Discourse Planning - Machine Translation -Transfer Metaphor - Interlingua - Statistical Approaches

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. D. Jurafsky and J. Martin "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition",
- 2. C. Manning and H. Schutze, "Foundations of Statistical Natural Language Processing",

REFERENCE

1. James Allen. "Natural Language Understanding", Addison Wesley, 1994.

IT2053 SOFTWARE DESIGN L T P C 3 0 0 3

UNIT I GENERAL DESIGN FUNDAMENTALS

9

The nature of Design process – Objectives – Building Models – Constructs, Design qualities – Assessing the design – Design viewpoints for software – The object Model – Classes and Objects – Complexity – Classification – Notation – Process – Pragmatics.

UNIT II STRUCTURED SYSTEM ANALYSIS AND DESIGN 9 Structured Design - Design Principles - Problem Partitioning and Hierarchy Abstraction, Modularity - Top-down and Bottom-up Strategies - Transformation of a DFD to a Structure Chart - Transform Analysis - Transaction Analysis - Coupling Cohesion - Multiple types of Cohesion in a module - Data Design - Normalization Denormalization - Procedural Design.

UNIT III **OBJECT ORIENTED ANALYSIS AND DESIGN**

Overview of Object Oriented Analysis - Shaler/Mellor - Coad/ Yourdon - Rumbaugh -

Booch - UML - Use case - Conceptual model - Behaviour - Class Analysis Patterns -Overview - Diagrams - Aggregation - UML - Diagrams - Collaboration - Sequence -Class - Design patterns and Frameworks - Comparison with other design methods -Managing analysis and design – Evaluation testing – Coding – Maintenance – Metrics.

SOFTWARE DESIGN

The Architecture Concepts - Design Methods - Design Patterns - Rationale for Methods - Design Processes and Strategies - Design by Template - Designing with Patterns - Stepwise Refinement - Incremental Design - Prototyping - DSDM -Structured Systems Analysis and Structured Design – JSP – JSD.

UNIT V CASE STUDIES

9

Domain Name System - Email - World Wide Web (HTTP) - Simple Network Management Protocol – File Transfer Protocol – Security – Mutimedia applications.

TOTAL: 45 PERIODS

REFERENCES

- 1. David Budgen, "Software Design", Second Edition, Pearson Education, 2004.
- 2. R. S. Pressman, "Software Engineering", Fifth Edition, McGraw Hill Inc., 2001.
- 3. Steve McConnell, "Code Complete", Word Power Publishers, 2001.
- 4. Ed Downs, Peter Clare, Jan Coe, "Structured System Analysis and Design Methods Application and Context ", Prentice Hall, 1998.
- 5. A. G. Suteliffe, "Human Computer Interface Design", Second Edition Macmillan, 1995.

GE2023

FUNDAMENTALS OF NANOSCIENCE

LTPC 3003

UNIT I **INTRODUCTION**

Nanoscale Science and Technology-Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- nano particles- quantum dots, nanowires-ultra-thinfilms-multilayered materials. Length Scales involved and effect onproperties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

UNIT II PREPARATION METHODS

10

Bottom-up Synthesis-Top-down Approach: Precipitation, Mechanical Milling, Colloidal routes. Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.

7 UNIT III PATTERNING AND LITHOGRAPHY FOR NANOSCALE DEVICES Introduction to optical/UV electron beam and X-ray Lithography systems and processes, Wet etching, dry (Plasma /reactive ion) etching, Etch resists-dip pen lithography

UNIT IV PREPARATION ENVIRONMENTS

9

Clean rooms: specifications and design, air and water purity, requirements for particular processes, Vibration free environments: Services and facilities required. Working Chemical purification, sample cleaning, chemical and biological contamination, Safety issues, flammable and toxic hazards, biohazards.

UNIT V APPLICATIONS OF COMPUTATIONAL INTELLIGENCE

8

Printed Character Recognition – Inverse Kinematics Problems – Automobile Fuel Efficiency Prediction – Soft Computing for Color Recipe Prediction.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. J.S.R.Jang, C.T.Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004, Pearson Education 2004.
- 2. N.P.Padhy, "Artificial Intelligence and Intelligent Systems", Oxford University Press, 2006.

REFERENCES:

- 1. Elaine Rich & Kevin Knight, Artificial Intelligence, Second Edition, Tata Mcgraw Hill Publishing Comp., 2006, New Delhi.
- 2. Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.
- 3. Davis E.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.
- 4. S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI, 200UNIT III
- 5. R.Eberhart, P.Simpson and R.Dobbins, "Computational Intelligence PC Tools", AP Professional, Boston, 1996.
- 6. Amit Konar, "Artificial Intelligence and Soft Computing Behaviour and Cognitive model of the human brain", CRC Press, 2008.

IT2064 SPEECH PROCESSING

TPC3 003

UNIT I MECHANICS OF SPEECH

9

L

Speech production: Mechanism of speech production, Acoustic phonetics - Digital models for speech signals - Representations of speech waveform: Sampling speech signals, basics of quantization, delta modulation, and Differential PCM - Auditory perception: psycho acoustics.

UNIT II TIME DOMAIN METHODS FOR SPEECH PROCESSING

q

Time domain parameters of Speech signal – Methods for extracting the parameters Energy, Average Magnitude, Zero crossing Rate – Silence Discrimination using ZCR and energy – Short Time Auto Correlation Function – Pitch period estimation using Auto Correlation Function.

UNIT III FREQUENCY DOMAIN METHOD FOR SPEECH PROCESSING 9
Short Time Fourier analysis: Fourier transform and linear filtering interpretations,
Sampling rates - Spectrographic displays - Pitch and formant extraction - Analysis by
Synthesis - Analysis synthesis systems: Phase vocoder, Channel Vocoder Homomorphic speech analysis: Cepstral analysis of Speech, Formant and Pitch
Estimation, Homomorphic Vocoders.

UNIT IV LINEAR PREDICTIVE ANALYSIS OF SPEECH

9

Basic Principles of linear predictive analysis – Auto correlation method – Covariance method – Solution of LPC equations – Cholesky method – Durbin's Recursive algorithm – Application of LPC parameters – Pitch detection using LPC parameters – Formant analysis – VELP – CELP.

UNIT V APPLICATION OF SPEECH & AUDIO SIGNAL PROCESSING 9

Algorithms: Dynamic time warping, K-means clustering and Vector quantization, Gaussian mixture modeling, hidden Markov modeling - Automatic Speech Recognition: Feature Extraction for ASR, Deterministic sequence recognition, Statistical Sequence recognition, Language models - Speaker identification and verification – Voice response system – Speech synthesis: basics of articulatory, source-filter, and concatenative synthesis – VOIP

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. L. R. Rabiner and R. W. Schaffer, "Digital Processing of Speech signals", Prentice Hall, 1978.
- 2. Ben Gold and Nelson Morgan, "Speech and Audio Signal Processing", John Wiley and Sons Inc., Singapore, 2004.

REFERENCES:

- 1. Quatieri, "Discrete-time Speech Signal Processing", Prentice Hall, 2001.
- 2. L.R. Rabiner and B. H. Juang, "Fundamentals of speech recognition", Prentice Hall, 199UNIT III

CS2056

DISTRIBUTED SYSTEMS

LTPC 3003

UNIT I 9

Characterization of Distributed Systems-Introduction-Examples-Resource Sharing and the Web-Challenges. System Models\-Architectural-Fundamental.

Interprocess Communication-Introduction-API for Internet protocols-External data representation and marshalling--Client-server communication-Group communication-Case study: Interprocess Communication in UNIX.

UNIT II

Distributed Objects and Remote Invocation-Introduction-Communication between distributed objects-Remote procedure calls-Events and notifications-Case study: Java RMI.

Operating System Support-Introduction-OS layer-Protection-Processes and threads-Communication and invocation OS architecture.

UNIT III 9

Distributed File Systems-Introduction-File service architecture-Case Study:Sun Network File System-Enhancements and further developments.

Name Services-Introduction-Name Services and the Domain Name System-Directory Services-Case Study: Global Name Service.

UNIT IV 9

Time and Global States-Introduction-Clocks, events and process states-Synchronizing physical clocks-Logical time and logical clocks-Global states-Distributed debugging. Coordination and Agreement-Introduction-Distributed mutual exclusion-Elections-Multicast communication-Consensus and related problems.

UNIT V 9

Distributed Shared Memory-Introduction-Design and implementation issues-Sequential consistency and Ivy case study Release consistency and Munin case study-Other consistency models.

CORBA Case Study- Introduction-CORBA RMI-CORBA services.

TOTAL: 45 PERIODS

TEXT BOOK:

1. George Coulouris, Jean Dollimore, Tim Kindberg, , "Distributed Systems: Concepts and Design", 4th Edition, Pearson Education, 2005.

REFERENCES:

- 1. A.tS. Tanenbaum and M. V. Steen, "Distributed Systems: Principles and Paradigms", Second Edition, Prentice Hall, 2006.
- 2. M.L.Liu, "Distributed Computing Principles and Applications", Pearson Addison Wesley, 2004.
- 3. Mukesh Singhal, "Advanced Concepts In Operating Systems", McGrawHill Series in Computer Science, 1994.
- 4. Nancy A. Lynch, "Distributed Algorithms", The Morgan Kaufmann Series in Data Management System, Morgan Kaufmann Publishers, 2000.