- To develop the ability to use the concepts of linear algebra and special functions for solving problems related to networks.
- To formulate and construct a mathematical model for a linear programming problem in real life situation
- Game theory is the study of strategic decision making. Specifically, it is "the study of mathematical models of conflict and cooperation between intelligent rational decision-makers.
- To expose the students to solve ordinary differential equations by various techniques.
- To understand network modeling for planning and scheduling the project activities

UNIT I LINEAR ALGEBRA

15

Vector spaces – norms – Inner Products – Eigen values using QR transformations – QR factorization - generalized eigenvectors – Canonical forms – singular value decomposition and applications - pseudo inverse – least square approximations --Toeplitz matrices and some applications.

UNIT II LINEAR PROGRAMMING

15

Formulation – Graphical solution – Simplex method – Two phase method - Transportation and Assignment Models

UNIT III GAME THEORY

15

Game theory – Two person zero sum games-Saddle point – Dominance rule – Convex linear combination (Averages) – Methods of matrices – Graphical and LP solutions.

UNIT IV ORDINARY DIFFERENTIAL EQUATIONS

15

Runge-Kutta Methods for system of IVPs – Numerical stability, Adam's Bashforth multistep method – Solution of stiff ODEs – Shooting method – BVP: Finite difference method, orthogonal collocation method, orthogonal collocation with finite element method – Galerkin finite element method.

UNIT V SCHEDULING BY PERT AND CPM

15

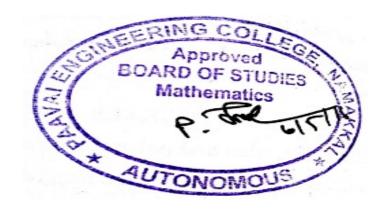
Network construction – Critical path method – Project evaluation and review technique – Resource analysis in network scheduling.

TOTAL: 75 PERIODS

COURSE OUTCOMES

- Achieve an understanding of the basic concepts of algebraic equations and method of solving them.
- Understand and apply linear, integer programming to solve operational problem with constraints.
- Demonstrate their understanding of differential equations and their application to scientific.
- Game theory is the study of strategic decision making. Specifically, it is "the study of mathematical models of conflict and cooperation between intelligent rational decision-makers.

• Prepare project scheduling using PERT and CPM.


REFERENCES

- 1. Richard Bronson, Gabriel B.Costa, "Linear Algebra", Academic Press, Second Edition, 2007.
- 2. Taha H.A., "Operations Research: An introduction", Pearson Education Asia, New Delhi, Ninth Edition, 2012.
- 3. R.K. Jain, S.R.K. Iyengar ., "Advanced Engineering Mathematics", Taylor & Francis, 2002.

WEB LINKS

- $\bullet \quad https://www.youtube.com/watch?v=KvQkRX1nIqQ\\$
- https://www.youtube.com/watch?v=M8POtpPtQZc
- https://www.youtube.com/watch?v=Fb3UakRTBMU

	(_					_	e Outco -Mediu		Veak			
					Prog	ramm	e Outo	omes(POs)						
со															
CO1	COI 3 3 3 3 3 3 3														
CO2	3	3	3	3	-	-	-	-	-	-	-	3	3	3	
CO3	3	3	3	3	-	-	-	-	-	-	-	3	3	3	
CO4	3	3	3	3	-	-	-	-	-	-	1	3	3	3	
CO5	3	3	<u>3</u>	3	-	-	-	-	-	-	-	3	3	3	

- To explore the concepts of discrete random signal processing
- To analyze the adaptive filters and its applications
- To understand the fundamental concepts on linear estimation and prediction
- To learn fundamental concepts of signal processing in power spectrum estimation.
- To explore the concepts of multi rate signal processing and multi rate filters

UNIT I DISCRETE RANDOM SIGNAL PROCESSING

15

Discrete Random Processes- Ensemble Averages, Stationary processes, Bias and Estimation, Auto covariance, Autocorrelation, Parseval's theorem, Wiener Khintchine relation, White noise, Power Spectral Density, Spectral factorization Filtering Random Processes, Special types of Random Processes – ARMA, AR, MA – Yule-Walker equations.

UNIT II SPECTRAL ESTIMATION

15

Estimation of spectra from finite duration signals, Nonparametric methods – Periodogram, Modified periodogram, Bartlett, Welch and Blackman-Tukey methods, Parametric methods – ARMA, AR and MA model based spectral estimation, Solution using Levinson-Durbin algorithm.

UNIT III LINEAR ESTIMATION AND PREDICTION

15

Linear prediction – Forward and Backward prediction, Solution of Prony's normal equations, least mean-squared error criterion, Wiener filter for filtering and prediction, FIR and IIR Wiener filters, Discrete Kalman filter.

UNIT IV ADAPTIVE FILTERS

15

FIR adaptive filters – adaptive filter based on steepest descent method- Widrow-Hopf LMS algorithm, Normalized LMS algorithm, Adaptive channel equalization, Adaptive echo cancellation, Adaptive noise cancellation, RLS adaptive algorithm.

UNIT V MULTIRATE DIGITAL SIGNAL PROCESSING

15

Mathematical description of change of sampling rate – Interpolation and Decimation, Decimation by an integer factor, Interpolation by an integer factor, Sampling rate conversion by a rational factor, Poly phase filter structures, Multistage implementation of multirate system, Application to sub-band coding – Wavelet transform

TOTAL: 75 PERIODS

COURSE OUTCOMES

- Acquire knowledge of how a multi rate system works
- Design and implement the decimator, the interpolator and to design multi rate filter bank
- Understand different spectral estimation techniques and linear prediction
- Design lms and RLS adaptive filters for signal enhancement and channel equalization.

- 1. Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley and Sons, Inc, Singapore, 2002.
- 2. John J. Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson Education, 2002.
- 3. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education Inc., Second Edition, 2004 (For Wavelet Transform Topic)
- 4. G.Dimitris and G.Manolakis., "Statistical and Adaptive Signal Processing", McGraw Hill, 2002.
- 5. Sophoncles J. Orfanidis, "Optimum Signal Processing", McGraw Hill, 2007.

WEB LINKS

- 1. www.ee.stanford.edu/~gray/sp.html
- 2. www.shahidshah.weebly.com/statistical-signal-processing.html
- 3. T-eBooks. website/book-0521897726.html

	(_					_	e Outco - Mediu		/eak			
	Programme Outcomes(POs)														
со	CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2														
CO1															
CO2	3	-	-	-	-	-	-	-	3	3	3	-	3	3	
CO3	3	-	-	-	-	-	-	-	3	3	3	-	3	3	
CO4	3	-	-	-	-	-	-	-	3	3	3	-	3	3	

- To understand the relation between the fields and be familiar with antenna arrays.
- To understand signal propagation at radio frequencies and study aperture and reflector antennas.
- To introduce the basics of microstrip patch antennas and its analysis
- To know about antenna arrays and its parameter measurement
- To learn the special antenna arrays and their applications

UNIT I ANTENNA FUNDAMENTALS

15

Antenna fundamental parameters, Radiation integrals ,Radiation from surface and line current distributions – dipole, monopole, loop antenna; Mobile phone antenna-base station, hand set antenna; Image; Induction ,reciprocity theorem, Broadband antennas and matching techniques, Balance to unbalance transformer, Introduction to numerical techniques.

UNIT II RADIATION FROM APERTURES

15

Field equivalence principle, Radiation from Rectangular and Circular apertures, Uniform aperture distribution on an infinite ground plane; Slot antenna; Horn antenna; Reflector antenna, aperture blockage, and design consideration.

UNIT III ARRAY ANTENNA

15

Linear array –uniform array, end fire and broad side array, gain, beam width, side lobe level; Two dimensional uniform array; Phased array, beam scanning, grating lobe, feed network,; Linear array synthesis techniques – Binomial and Chebyshev distributions.

UNIT IV HORN, MICROSTRIP, REFLECTOR ANTENNAS

15

E and H plane sectoral Horns- Pyramidal horns- Conical and corrugated Horns- Microstrip antennas – feeding methods. Rectangular patch- Transmission line model-Parabolic Reflector antennas – Prime focus and Cassegrain reflectors- Equivalent focal Length of Cassgrain antennas- Spillover and taper efficiencies- Optimum illumination

UNIT V EMC ANTENNA AND ANTENNA MEASUREMENTS

15

Concept of EMC measuring antenna; Tx and Rx antenna factors; Log periodic dipole, Bi-conical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance and antenna factor measurement; Antenna test range Design.

TOTAL: 75 PERIODS

COURSE OUTCOMES

- Understand various antenna parameters
- Get knowledge of aperture antennas and the field associated with it
- Design microstrip patch antennas and its simulation using software

- Apply the applications of array antennas
- Perform measurement of antenna parameters and design special array antennas

- 1. Balanis.A, "Antenna Theory Analysis and Design", John Wiley and Sons, New York, 1982.
- 2. Krauss.J.D, "Antennas", II edition, John Wiley and sons, New York, 1997.
- 3. I.J. Bahl and P. Bhartia," Microstrip Antennas", Artech House, Inc., 1980.
- 4. W.L.Stutzman and G.A.Thiele, "Antenna Theory and Design", 2ndedition, John Wiley& Sons Inc., 1998.
- 5. Jordan, E.C., "Electromagnetic waves and Radiating systems". PHI 2003

WEB LINKS

- 1. https://books.google.co.in/books?isbn=1402034504
- 2. www.slogix.in/cu7101-advanced-radiation-systems-reference.../index.html
- 3. www.ncbi.nlm.nih.gov/pubmed/8685406

	(_	ength o		elation	1) 3-St	rong, 2	e Outco -Mediu		Veak			
СО															
CO1															
CO2	3	3	3	3	3	-	-	-	-	-	-	3	3	3	
CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3	
CO4	3	3	3	3	3	-	-	-	-	-	-	3	3	3	
CO5	3	3	3	3	3	-	-	-	-	-	-	3	3	3	

- To understand the envelope modulation techniques
- To acquire knowledge about filtering coding and scrambling
- To know the various algorithms
- To gain knowledge in gain modulation
- To design space time coding

UNIT I DIGITAL MODULATION SCHEMES

15

Representation of Digitally Modulated signals, Memory less Modulation Methods, Signaling Schemes with Memory –CPFSK, CPM, Power Spectrum of Digitally Modulated Signals-PSD of a digitally modulated signal with memory, PSD of a linear modulated signal, PSD of a digitally modulated signal with Finite memory, PSD of a digitally modulation scheme with a Markov Structure

UNIT II OFDM 15

Generation of sub-carriers using the IFFT; Guard Time and Cyclic Extension Windowing; OFDM signal processing; Peak Power Problem: PAP reduction schemes-Clipping, Filtering, Coding and Scrambling

UNIT III TRELLIS CODED MODULATION

15

Coded modulation for bandwidth-constrained channels-Trellis coded modulation; Set Partitioning, Four –state Trellis-coded modulation with 8-PSK signal constellation, Eight-state Trellis code for coded 8-PSK modulation, Eight-state Trellis for rectangular QAM signal constellations

UNIT IV TURBO CODING

15

Introduction-Turbo Encoder, Turbo Decoder, Iterative Turbo Decoding Principles; Modifications of the MAP Algorithm- The Soft-Output Viterbi Algorithm(SOVA); Turbo Coded BPSK Performance over Gaussian channels, Turbo Coding Performance over Rayleigh Channels

UNIT V SPACE-TIME CODING

15

Maximum Ratio combining; Space-time Block codes; Space-time Trellis codes- The 4-state, 4-PSK Space-time Trellis Encoder, The 4-state, 4-PSK Space-time Trellis Decoder, MIMO-OFDM Systems

TOTAL: 75 PERIODS

COURSE OUTCOMES

- Understand the envelope modulation techniques
- Gain knowledge about filtering coding and scrambling
- Apply various algorithms
- Design gain modulation and space time coding

- 1. Bernard Sklar., "Digital Communications", second edition, Pearson Education, 2001.
- 2. Theodore S.Rappaport., "Wireless Communications", 2nd edition, Pearson Education, 2002.
- 3. Stephen G. Wilson., "Digital Modulation and Coding", First Indian Reprint, Pearson Education, 2003.
- 4. Richard Van Nee &Ramjee Prasad., "OFDM for Multimedia Communications" Artech House Publication, 2001.
- 5. Simon Haykins, "Communication System", John Wiley and Sons, 2008.

WEB LINKS

- 1. www.sciencedirect.com/science/book/9780340731253
- 2. www.radio-electronics.com/.../courses_item.php?...digital-communication
- 3. www.researchgate.net/.../245489205_Book_review_Advanced_Digital_Communication

	(_					_	e Outco - Mediu	mes: m , 1-V	Veak			
					Prog	ramm	e Outo	omes(POs)						
со															
CO1															
CO2	3	3	3	3	3	-	-	-	-	-	3	3	3	3	
CO3	3	3	3	3	3	-	-	-	-	-	3	3	3	3	
CO4	3	3	3	3	3	-	-	-	-	-	3	3	3	3	

- To learn the concepts of basic optical system components
- To understand the concepts of optical networks and its architecture
- To know the fundamental concepts on wavelength routing networks
- To introduce the concepts on packet switching and access networks
- To understand the concepts of network management and survivability

UNIT I OPTICAL SYSTEM COMPONENTS

15

Light propagation in optical fibers – Loss & bandwidth, System limitations, Non-Linear effects; Solitons; Optical Network Components – Couplers, Connectors, Splicing, Isolators & Circulators, Multiplexers & Filters, Optical Amplifiers, Switches, Wavelength Converters.

UNIT II OPTICAL NETWORK ARCHITECTURE

15

Introduction to Optical Networks; SONET / SDH, Metropolitan-Area Networks, Layered Architecture; Broadcast and Select Networks – Topologies, Media-Access Control Protocols and Test beds; Wavelength Routing Architecture, Performance of WDM + EDFA System, Solitons.

UNIT III WAVELENGTH ROUTING NETWORKS

15

WDM Network Elements; WDM Network Design - Cost tradeoffs - Virtual Topology Design-Routing and wavelength assignment, Statistical Dimensioning Models

UNIT IV PACKET SWITCHING AND ACCESS NETWORKS

15

Photonic Packet Switching – OTDM, Multiplexing and Demultiplexing, Synchronization, Header Processing, Buffering, Burst Switching, Test beds; Access Networks.

UNIT V NETWORK MANAGEMENT AND SURVIVABILITY

15

Control and Management – Network management functions, Configuration management, Performance management, Fault management, Optical safety, Service interface; network Survivability- Protection in SONET / SDH and IP Networks, Optical layer Protection, Interworking between layers.

TOTAL: 75 PERIODS

COURSE OUTCOMES

- Understand the concepts of basic optical system components
- Identify the various modules for design of optical communication systems
- Determine the performance of a given optical fiber communication link
- Understand the concepts of packet switching and access networks
- Learn the concepts of network management and survivability

- 1. Rajiv Ramaswami and Kumar N. Sivarajan, "Optical Networks: A Practical Perspective", Harcourt Asia Pte Ltd., Second Edition 2006.
- 2. C. Siva Ram Moorthy and Mohan Gurusamy, "WDM Optical Networks: Concept, Design and Algorithms", Prentice Hall of India, 1st Edition, 2002.
- 3. Gerd Keiser, "Optical Fiber Communication" McGraw –Hill International, Singapore, 4th edition. 2011.
- 4. John M. Senior, "Introduction to Optical Fiber Communications", Pearson / Prentice Hall.
- 5. Harry J.R Dutton, "Understanding Optical Communications", IBM Corporation, International Technical Support Organization.

WEB LINKS

- 1. www.muninetworks.org/content/fiber-optic-network
- 2. www.lanshack.com/fiber-optic-tutorial-network.aspx
- 3. www.lightwaveonline.com/network-design.html

	(_	ngth o	f corr	elation		rong, 2	e Outco -Mediu		Veak			
СО	CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2														
CO1	3 3 3 3 3 3 3														
CO2															
CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3	
CO4	3	3	3	3	3	-	-	-	-	-	-	3	3	3	
CO5	3	3	3	3	3	-	-	-	-	-	-	3	3	3	

ELECTIVE I

PCS16151 ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY IN SYSTEM DESIGN 3 0 0 3

COURSE OBJECTIVES

- To learn the basics of EMI and EMC Environment, EMI specification standards and limits
- To understand the EMI and EMC coupling principles
- To study the control techniques involved in electromagnetic interference
- To know about EMI measurements

UNIT I EMI PRINCIPLES AND STANDARDS

9

EMI-EMC definitions and Units of parameters; Sources and victim of EMI; Conducted and Radiated EMI Emission and Susceptibility; Transient EMI, Time domain Vs Frequency domain EMI ESD; Radiation Hazards, Units of specifications, Civilian standards - FCC, CISPR, IEC, EN, Military standards - MIL STD 461D/462

UNIT II EMI COUPLING PRINCIPLES

10

Conducted, radiated and transient coupling; Common ground impedance coupling; Common mode and ground loop coupling; Differential mode coupling; Near field cable to cable coupling, cross talk; Field to cable coupling; Power mains and Power supply coupling.

UNIT III EMI CONTROL TECHNIQUES

9

Shielding, Filtering, Grounding, Bonding, Isolation transformer, Transient suppressors, Cable routing, Signal control - Test beds for ESD and EFT

UNIT IV EMC DESIGN OF PCBS

8

PCB Traces Cross Talk, Impedance Control, Power Distribution Decoupling, Zoning, Motherboard Designs and Propagation Delay Performance Models.

UNIT V EMI MEASUREMENTS

9

EMI Test Instruments/ Systems, EMI Shielded Chamber, Open Area Test Site, TEM Cell, Sensors/ Injectors/ Couplers.

TOTAL: 45 PERIODS

COURSE OUTCOMES

- Understand the analytical concepts of EMI and EMC
- Find solution to EMI sources
- Find solution to EMI problems in PCB level
- Measure emission immunity level from different systems to couple with different standards
- Design and implement EMI system

- 1. V.P.Kodali, "Engineering EMC Principles, Measurements and Technologies", IEEE Press, New York, 1996.
- 2. Henry W.Ott., "Noise Reduction Techniques in Electronic Systems", A Wiley Inter Science Publications, John Wiley and Sons, New York, 1988.
- 3. Bemhard Keiser, "Principles of Electromagnetic Compatibility", 3rd Ed, Artechhourse, Norwood, 1986.
- 4. C.R.Paul, "Introduction to Electromagnetic Compatibility", John Wiley and Sons, Inc, 1992.
- 5. Don R.J.White Consultant Incorporate, "Handbook of EMI/EMC", Vol I-V, 1988.

WEB LINKS

- 1. www.radio-electronics.com/info/.../emc-emi/tutorial-basics-summary.php
- 2. https://www.cst.com/Applications/EMC_EMI
- 3. https://books.google.co.in/books?isbn=1420073591

	(_	ength o		elation	1) 3-St	rong, 2	e Outco -Mediu		Veak			
СО															
CO1															
CO2	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO3	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO4	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO5	3	3	3	3	3	3	-	-	-	-	-	-	3	3	

- To understand the concept of various switching
- To analyze the blocking networks
- To learn about the queuing networks
- To understand the architecture of internet switches
- To analyze the IP

UNIT I NETWORKING

9

Introduction- LAN, WAN, Network evolution through ISDN to B-ISDN, Transfer mode and control of B- ISDN, SDH multiplexing structure, ATM standard, ATM adaptation layers.

UNIT II ATM SWITCHING ARCHITECTURE

9

Blocking networks - basic - and- enhanced banyan networks, sorting networks - merge sorting, re-arrangable networks - full-and- partial connection networks, non blocking networks - Recursive network construction, comparison of non-blocking network, Switching with deflection routing - shuffle switch, tandem banyan switch.

UNIT III QUEUES IN ATM SWITCHES

q

Internal Queuing -Input, output and shared queuing, multiple queuing networks – combined Input, output and shared queuing - performance analysis of Queued switches.

UNIT IV PACKET SWITCHING ARCHITECTURES

9

Architecture of internet switches and routers-Buffer less and buffered crossbar switches, Multi-stage switching, Optical Packet switching; switching fabric on a chip; internally buffered Crossbars.

UNIT V IP SWITCHING & LAN SWITCHING TECHNOLOGY

9

Addressing model, IP Switching types - flow driven and topology driven solutions, IP over ATM address and next hop resolution, multicasting, Ipv6 over ATM. Switching Concepts, switch forwarding techniques, switch path control, LAN Switching, cut through forwarding, store and forward, virtual LANs.

TOTAL: 45 PERIODS

COURSE OUTCOMES

- Know the concepts of networking
- Gain knowledge about blocking and non-blocking networks based on the switches
- Understand about atm switches and various switching types
- Obtain knowledge about LAN switching concepts

- 1. Achille Pattavina, "Switching Theory: Architectures and performance in Broadband ATM networks", John Wiley & Sons Ltd, New York. 1998.
- 2. Elhanany M. Hamdi, "High Performance Packet Switching architectures", Springer Publications, 2007.
- 3. Christopher Y Metz, "Switching protocols & Architectures", McGraw Hill Professional Publishing, NewYork.1998.
- 4. Rainer Handel, Manfred N Huber, Stefan Schroder, "ATM Networks Concepts Protocols, Applications", 3rd Edition, Addison Wesley, New York. 1999.
- 5. IrvanPepelnjk, Jim Guichard and Jeff Apcar, "MPLS and VPN Architecture", Cisco Press, Volume 1 and 2, 2003.

WEB LINKS

- 1. www.springer.com/us/book/9781846282737
- 2. https://data.epo.org/.../EP0593609A1-HIGH-SPEED-SWITCHING-ARC...
- 3. www.prnewswire.co.uk/.../kabira-supports-high-speed-volume-switching.

	(_					_	e Outco: - Mediu		Veak			
					Prog	ramm	e Outo	omes(POs)						
СО															
CO1															
CO2	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO3	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO4	3	3	3	3	3	3	-	-	-	-	-	-	3	3	

MICROWAVE INTEGRATED CIRCUITS

COURSE OBJECTIVES

- To introduce the basics of microwave integrated circuits
- To study about the microwave passive components
- To understand the working principle of microwave amplifiers and its types
- To introduce the concept of microwave oscillators in various fields
- To study about the technology of IC's and propagation of signals through Microstrip Transmission lines

UNIT I FUNDAMENTAL OF MICROWAVE INTEGRATED CIRCUITS

9

MMIC- technology, advantages and applications, Active device technologies, design approaches, multichip module technology, substrates.

UNIT II PASSIVE COMPONENTS

9

Inductors, capacitors, resistors, microstrip components, coplanar circuits, multilayer techniques - micromachined passive components, switches & attenuators, filter design.

UNIT III AMPLIFIERS

9

Stability & gain analysis, matching techniques, reactively matched amplifier design, LNA.

UNIT IV OSCILLATORS

9

Design principles, active device CAD techniques for large signal oscillators design, phase noise, MMIC_VCO, mixers.

UNIT V INTEGRATED ANTENNAS AND MEASUREMENT TECHNIQUES

9

Integrates antenna selection, photonic band gap antennas, micro machined antenna, micro electro mechanical system antennas, test fixture measurements, probe station measurements, thermal and cryogenic measurements, experimental field probing techniques.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- Know the basics of microwave integrated circuits
- Understand the concept of microwave passive components
- Get an idea on microwave amplifiers and oscillators
- Acquire knowledge about integrated antennas and measurement techniques

REFERENCES

- 1. Ravender Goyal, "Monolithic MIC; Technology & Design", Artech House, 1989.
- 2. Gupta K.C. and Amarjit Singh, "Microwave Integrated Circuits", John Wiley, New York, 1975.
- 3. Ulrich L. Rohde and David P.N., "RF / Microwave Circuit Design for Wireless Applications", John Wiley, 2000.

- 4. Annapurna Das and Sisir K Das, "Microwave Engineering", Tata McGraw-Hill Pub. Co. Ltd., 2004.
- 5. Mathew N.O. Sadiku, "Numerical techniques in Electromagnetic", CRC Press, 2001.

WEB LINKS

- 1. www.macom.com/technologies/HMIC
- 2. <u>www.meslmicrowave.com/microwave-integrated-circuits/overview</u>
- 3. https://www.tno.nl/.../mmic-s-monolithic-microwave-integrated-circuits

	(_					_	e Outco -Mediu		Veak			
					Prog	ramm	e Outo	comes(POs)						
со															
CO1															
CO2	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO3	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO4	3	3	3	<u>3</u>	3	3	-	-	-	-	-	-	3	3	

- To understand the various types of simulation methodology and the concept of random signal generation and processor
- To introduce the concepts on monte carlo simulation
- To learn the various advanced models and simulation techniques
- To study the different efficient simulation techniques

UNIT I SIMULATION METHODOLOGY

8

Introduction, Aspects of methodology, Performance Estimation, Simulation sampling frequency, Low pass equivalent simulation models for band pass signals, Multicarrier signals, Non-linear and time-varying systems, Post processing – Basic graphical techniques and estimations.

UNIT II RANDOM SIGNAL GENERATION & PROCESSING

8

Uniform random number generation, mapping uniform random variables to an arbitrary pdf, Correlated and Uncorrelated Gaussian random number generation, PN sequence generation, Random signal processing, testing of random number generators

UNIT III MONTE CARLO SIMULATION

9

Fundamental concepts, Application to communication systems, Monte Carlo integration, Semi analytic techniques, Case study: Performance estimation of a wireless system.

UNIT IV ADVANCED MODELS & SIMULATION TECHNIQUES

10

Modeling and simulation of non-linearities: Types, Memory less non-linearities, Non-linearities with memory, Modeling and simulation of Time varying systems: Random process models, Tapped delay line model, Modeling and simulation of waveform channels, Discrete memory less channel models, Markov model for discrete channels with memory.

UNIT V EFFICIENT SIMULATION TECHNIQUES

10

Tail extrapolation, PDF estimators, Importance Sampling methods, Case study: Simulation of a Cellular Radio System.

TOTAL: 45 PERIODS

COURSE OUTCOMES

- Know about the various types of simulation technologies
- Acquire knowledge on various methods of random signal generation processing
- Realize the methods of monte carlo simulation
- Analyze various advanced models and simulation techniques

- 1. William.H.Tranter, K. Sam Shanmugam, Theodore. S. Rappaport, Kurt L. Kosbar, "Principles of Communication Systems Simulation", Pearson Education (Singapore) Pvt. Ltd, 2004.
- 2. M.C. Jeruchim, P.Balaban and K. Sam Shanmugam, "Simulation of Communication Systems: Modeling, Methodology and Techniques", Plenum Press, New York, 2001.
- 3. Averill.M.Law and W. David Kelton, "Simulation Modeling and Analysis", McGraw Hill Inc., 2000.
- 4. Geoffrey Gorden, "System Simulation", Prentice Hall of India, 2nd Edition, 1992.
- 5. Jerry Banks and John S. Carson, "Discrete Event System Simulation", Prentice Hall of India, 1984.

WEB LINKS

- 1. www.ftn.uns.ac.rs/.../modelling-and-simulation-of-communication-system
- 2. https://books.google.co.in/books?isbn=1118423143
- 3. www.informatics.indiana.edu/rocha/complex/csm.html

	(_	ngth o		elation	1) 3-St	rong, 2	e Outco - Mediu		Veak			
со															
CO1															
CO2	3	3	3	<u>3</u>	3	3	-	-	-	-	-	-	3	3	
CO3	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO4	3	3	3	3	3	3	-	-	-	-	-	-	3	3	

COMMUNICATION SYSTEM DESIGN LABORATORY

COURSE OBJECTIVES

- To learn about signal transmission and reception
- To perform simulation and analysis of various systems
- To study the digital communication techniques
- To know basics of error control
- To get experience and knowledge about various communication systems.

LIST OF EXPERIMENTS

- 1. Design and performance analysis of error control encoder and decoder (CRC, Convolutional Codes)
- 2. Determination of Maximum bit rate of a digital fiber optic link.
- 3. Signal transmission and reception using WDM and spectral characterization.
- 4. Wireless Channel emulation and characterization.
- 5. Design and analysis of digital communication techniques on an SDR platform.
- 6. OFDM transceiver design using MATLAB.
- 7. Channel equalizer design using MATLAB (LMS, RLS)
- 8. Design and Analysis of Spectrum Estimators (Bartlett, Welch)
- 9. Simulation of MIMO systems.
- 10. Simulation of Turbo coding and SOVA.

COURSE OUTCOMES

TOTAL: 60 PERIODS

At the end of this course, the students will be able to

- Analyze characteristics of wireless channel
- Understand the design and analysis of spectrum estimators.
- Understand the determination of fiber optic link.
- Comprehend the generation of OFDM signals and the processing of the signals
- Simulate various communication systems.

			Mappi	ng of (Course	Outco	mes w	ith Pro	gramm	e Outco	mes:				
	(1/2/3 i	ndicat	es stre	ength o	of corr	elation	1) 3-St	rong, 2	-Mediu	m , 1-V	Veak			
					Prog	ramm	e Outo	comes(POs)						
СО															
CO1	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO2															
CO3	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO4	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO5	3	3	3	3	3	3	-	-	-	-	-	-	3	3	

PCS16201 WIRELESS NETWORKS 3 2 0 4

COURSE OBJECTIVES

- To understand the various concepts on wireless local area network, architectures and applications
- To study the overview of 3G architectures
- To familiarize the various aspects of ADHOC networks
- To introduce the concept of WLANS and WWANS
- To study the concept of 4G networks

UNIT I WLAN AND WIRELESS GEOLOCATION

15

Introduction to wireless LANs - IEEE 802.11 WLANs - Physical Layer- MAC sub layer-MAC Management Sub layer- Wireless ATM - HIPERLAN- HIPERLAN-2, WIMAX, WPAN, Home RF, Bluetooth, interface between Bluetooth and 802.11, wireless Geolocation technologies for wireless Geolocation, Geolocation standards for E.911 service.

UNIT II 3G OVERVIEW AND 2.5G EVOLUTION

15

Migration path to UMTS, UMTS Basics, Air Interface, 3GPP Network Architecture, CDMA2000 overview-Radio and Network components, Network structure, Radio network, TD-CDMA, TD-SCDMA.

UNIT III ADHOC AND SENSOR NETWORKS

15

Characteristics of MANETs, Table-driven and Source-initiated On Demand routing protocols, Hybrid protocols, Wireless Sensor networks- Classification, MAC and Routing protocols.

UNIT IV INTERWORKING BETWEEN WLANS AND 3G WWANS

15

Interworking objectives and requirements, Schemes to connect WLANs and 3G Networks, Session Mobility, Interworking Architectures for WLAN and GPRS, System Description, Local Multipoint Distribution Service, Multichannel Multipoint Distribution system.

UNIT V 4G AND BEYOND

15

4G features and challenges, Technology path, IMS Architecture, Convergent Devices, 4G technologies, Advanced Broadband Wireless Access and Services, Multimedia, MVNO.

TOTAL: 75 PERIODS

COURSE OUTCOMES

- Understand the basics of wireless networks and its applications in enabling technologies.
- Identify the technical issues related to Ad-hoc sensor networks
- Understand the architecture and elements of WLANS
- Get an idea on 3G and 4G protocols for wireless networks.

- 1. Clint Smith. P.E., and Daniel Collins, "3G Wireless Networks", 2nd Edition, Tata McGraw Hill, 2007.
- 2. Vijay. K. Garg, "Wireless Communication and Networking", Morgan Kaufmann Publishers, http://books.elsevier.com/9780123735805, 2007.
- 3. William Stallings, "Wireless Communications and networks", Pearson / Prentice Hall of India, 2nd Ed., 2007.
- 4. Gary. S. Rogers & John Edwards, "An Introduction to Wireless Technology", Pearson Education, 2007
- 5. Sumit Kasera and Nishit Narang, "3G Networks Architecture, Protocols and Procedures", Tata McGraw Hill, 2007.

WEB LINKS

- 1. www.vicomsoft.com/learning-center/wireless-networking
- 2. https://www.freebsd.org/doc/handbook/network-wireless.html
- 3. www.computer.howstuffworks.com/wireless-network.html

	(_					_	e Outco: - Mediu :		Veak			
	Programme Outcomes(POs)														
СО															
CO1															
CO2	3	3	<mark>3</mark>)	3	-	-	-	-	-	-	-	-	3	3	
CO3	3	3	3	3	-	-	-	-	-	-	-	-	3	3	
CO4	3	3	3	3	-	-	-	-	-	-	-	-	3	3	

- To learn RF design and circuit board components
- To understand various impedance transformers and biasing networks
- To study the basic RF components and the basic RF mixers and oscillators
- To acquire knowledge of RF filters and RF synthesizer

UNIT I CMOSPHYSICS TRANSCEIVER SPECIFICATIONS AND ARCHITECTURES 15

CMOS: Introduction to MOSFET Physics – Noise: Thermal, shot, flicker, popcorn noise Transceiver Specifications: Two port Noise theory, Noise Figure, THD, IP2, IP3, Sensitivity, SFDR, Phase noise - Specification distribution over a communication link Transceiver Architectures: Receiver: Homodyne, Heterodyne, Image reject, Low IF Architectures – Transmitter: Direct up conversion, Two step up conversion.

UNIT II MPEDANCE MATCHING AND AMPLIFIERS

15

S-parameters with Smith chart – Passive IC components - Impedance matching networks Amplifiers: Common Gate, Common Source Amplifiers – OC Time constants in bandwidth estimation and enhancement – High frequency amplifier design Low Noise Amplifiers: Power match and Noise match – Single ended and Differential LNAs – Terminated with Resistors and Source Degeneration LNAs.

UNIT III FEEDBACK SYSTEMS AND POWER AMPLIFIERS

15

Feedback Systems: Stability of feedback systems: Gain and phase margin, Root-locus techniques – Time and Frequency domain considerations – Compensation Power Amplifiers: General model – Class A, AB, B, C, D, E and F amplifiers – Linearization Techniques – Efficiency boosting techniques – ACPR metric – Design considerations.

UNIT IV PLL AND FREQUENCY SYNTHESIZERS

15

PLL: Linearised Model – Noise properties – Phase detectors – Loop filters and Charge pumps Frequency Synthesizers: Integer-N frequency synthesizers – Direct Digital Frequency synthesizers.

UNIT V MIXERS AND OSCILLATORS

15

Mixer: characteristics – Non-linear based mixers: Quadratic mixers – Multiplier based mixers: Single balanced and double balanced mixers – sub sampling mixers Oscillators: Describing Functions, Colpitt's oscillators – Resonators – Tuned Oscillators – Negative resistance oscillators – Phase noise.

TOTAL: 75 PERIODS

COURSE OUTCOMES

- Understand of various RF issues.
- Know the analysis of the impedance transformation
- Know about active RF component, matching and biasing networks
- Design the concepts of RF filter design and their implementation using software
- Gain knowledge in operation of RF oscillators and mixers and their design

- 1. T.Lee, "Design of CMOS RF Integrated Circuits", Cambridge, 2004.
- 2. Reinhold Ludwig and Powel Bretchko, "RF Circuit Design Theory and Applications", Pearson Education Asia, 2006.
- 3. Kai Chang, Inder Bahl and Vijay Nair, "RF and Microwave Circuit and Component Design for Wireless Systems", John Wiley and Sons, 2002.
- 4. Jan Crols, Michiel Steyaert, "CMOS Wireless Transceiver Design", Kluwer Academic Publishers, 1997
- 5. B.Razavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2001.

WEB LINKS

- 1. www.springer.com/us/book/9780387275840
- 2. https://books.google.co.in/books?isbn=0387241612
- 3. www.awrcorp.com/solutions/technology-overview/rf-systems

	(_	ngth o	of corr	elation	1) 3-St	rong, 2	e Outco -Mediu		Veak			
CO	Programme Outcomes(POs) CO													DSO2	
CO	CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 3 3 3 3 - - - - - - 3 3 3														
CO1	CO1 3 3 3 3 3 3 3 3														
CO2	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO3	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO4	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO5	3	3	3	3	3	3	-	-	-	-	-	-	3	3	

- To introduces technologies for multimedia communications.
- To address how to efficiently represent multimedia data, including video, image, and audio, and how
 to deliver them over a variety of networks.
- To know about lossless compression and VOIP technology
- To learn about multimedia networking

UNIT I MULTIMEDIA COMPONENTS

15

Introduction - Multimedia skills - Multimedia components and their characteristics Text - sound, images, graphics, animation, video, hardware

UNIT II AUDIO AND VIDEO COMPRESSION

15

Audio compression—DPCM-Adaptive PCM –adaptive predictive coding-linear Predictive coding-code excited LPC-perpetual coding, MP3; Video compression – principles-H.261-H.263-MPEG 1, 2, 4.

UNIT III LOSSLESS COMPRESSION

15

Compression principles-source encoders and destination encoders--entropy encoding –source encoding -text compression –static Huffman coding dynamic coding –arithmetic coding –Lempel Ziv-Welch Compression

UNIT IV VOIP TECHNOLOGY

15

Basics of IP transport, VoIP challenges, H.323/ SIP –Network Architecture, Protocols, Call establishment and release, VoIP and SS7, Quality of Service - CODEC Methods-VOIP applicability.

UNIT V MULTIMEDIA NETWORKING

15

Multimedia networking -Applications-streamed stored and audio-making the best Effort service-protocols for real time interactive Applications-distributing multimedia-beyond best effort service-secluding and policing Mechanisms-integrated services-differentiated Services-RSVP.

TOTAL: 75 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- Acquire knowledge multimedia components and their characteristics
- Do projects using audio, image and video coding
- Analyze the lossless compression coding techniques
- Gain knowledge in multimedia networking

REFERENCES

- KR. Rao,Z S Bojkovic, D A Milovanovic, "Multimedia Communication Systems: Techniques, Standards, and Networks", Pearson Education 2007.
- 2. Ranjan Parekh, "Principles of Multimedia", TMH, 2006.

- 3. Fred Halshall, "Multimedia communication applications, networks, protocols and standards", Pearson education, 2007.
- 4. Tay Vaughan, "Multimedia: Making it work", 7/e, TMH, 2007.
- 5. Marcus Gonzalves, "Voice over IP Networks", McGraw Hill,

WEB LINKS

- 1. https://books.google.co.in/books?isbn=8131709949
- 2. www.eurecom.fr > Home > Research
- 3. www.sciencedirect.com/science/book/9780122821608

	Mapping of Course Outcomes with Programme Outcomes: (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak Programme Outcomes(POs)													
СО														PSO2
CO1	3	3	3	3	3	3	-	-	-	-	-	-	3	3
CO2	3	3	3	3	3	3	-	-	-	-	-	-	3	3
CO3	3	3	3	3	3	3	-	-	-	-	-	-	3	3
CO4	3	3	3	3	3	3	-	-	-	-	-	-	3	3

ELECTIVE II

PCS16251 SATELLITE COMMUNICATION 3 0 0 3

COURSE OBJECTIVES

- To introduce the elements of satellite
- To introduce the concepts of various modulation schemes
- To educate about link design of satellite
- To learn about navigation of satellite
- To know about applications of satellite

UNIT I ELEMENTS OF SATELLITE COMMUNICATION

8

Satellite Systems, Orbital description and Orbital mechanics of LEO, MEO and GSO, Placement of a Satellite in a GSO, Satellite – description of different Communication subsystems, Bandwidth allocation.

UNIT II TRANSMISSION, MULTIPLEXING, MODULATION, MULTIPLE ACCESS AND CODING

Different modulation and Multiplexing Schemes - Multiple Access Techniques - FDMA, TDMA, CDMA, and DAMA - Coding Schemes

UNIT III SATELLITE LINK DESIGN

9

Basic link analysis, Interference analysis, Rain induced attenuation and interference, Ionospheric characteristics, Link Design with and without frequency reuse.

UNIT IV SPACE LINKS

8

The Space Link, Satellite Link Design - Satellite uplink -down link power Budget, Basic Transmission Theory, System Noise Temp, G/T Ratio, Noise Figure, Downlink Design, Design of Satellite Links for Specified C/N - Microwave Propagation on Satellite-Earth Paths. Interference between satellite circuits, Energy Dispersal, propagation characteristics of fixed and mobile satellite links.

UNIT V SERVICES AND APPLICATIONS

8

Mixed and mobile services - Multimedia satellite services - Advanced applications based on satellite platforms - INTELSAT series - INSAT, VSAT, Remote Sensing - Mobile satellite service: GSM. GPS, INMARSAT, Navigation System, Direct to Home service (DTH), Special services, E-mail, Video conferencing and Internet connectivity

TOTAL: 45 PERIODS

COURSE OUTCOMES

- Understand the basic satellite concepts and elements
- Understand the working principle of satellite
- Know about link design of satellite and satellite applications
- Gain knowledge about navigation and global positioning

- 1. D.Roddy, "Satellite Communication", McGraw Hill, 2006.
- 2. Tri T Ha, "Digital Satellite Communication", McGraw Hill, 1990.
- 3. B.N.Agarwal, "Design of Geosynchronous Spacecraft", Prentice Hall, 1993.
- 4. Wilbur L. Pritchard, H.G. Suyderhoud, Robert A. Nelson, "Satellite Communication Systems Engineering", Prentice Hall, New Jersey, 2006.
- 5. Timothy Pratt and Charles W.Bostain, "Satellite Communications", John Wiley and Sons, 2003.

WEB LINKS

- 1. www.radio-electronics.com/satellite/communications satellite/satellite
- 2. www.fao.org/docrep/003/w9633e/w9633e09.html
- 3. www.williamcraigcook.com/satellite/work.html

	(_					_	e Outco -Mediu		Veak		
Programme Outcomes(POs)														
СО	CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													
CO1	3	3	3	3	3	3	-	-	-	-	-	-	3	3
CO2	3	3	3	3	3	3	-	-	-	-	-	-	3	3
CO3	3	3	3	3	3	3	-	-	-	-	-	-	3	3
CO4	3	3	3	3	3	3	-	-	-	-	-	-	3	3

DIGITAL COMMUNICATION RECEIVERS

COURSE OBJECTIVES

- To understand the basic concepts of digital communication, modulation techniques and spectral characteristics
- To analyze the optimum characteristics of receivers used in digital communication
- To understand the characteristics of fading channel
- To learn various synchronization techniques
- To study about the various equalization algorithms

UNIT I REVIEW OF DIGITAL COMMUNICATION TECHNIQUES

9

Base band and band pass communication; signal space representation, linear and nonlinear modulation techniques, and Spectral characteristics of digital modulation

UNIT II OPTIMUM RECEIVERS FOR AWGN CHANNEL

9

Correlation demodulator, matched filter, maximum likelihood sequence detector, optimum receiver for CPM signals, M-ary orthogonal signals, envelope detectors for M-ary and correlated binary signals

UNIT III RECEIVERS FOR FADING CHANNELS

9

Characterization of fading multiple channels, statistical models, slow fading, frequency selective fading,, diversity technique, RAKE demodulator, coded waveform for fading channel

UNIT IV SYNCHRONIZATION TECHNIQUES

9

Carrier and signal synchronization, carrier phase estimation-PLL, Decision directed loops, symbol timing estimation, maximum likelihood and non-decision directed timing estimation, joint estimation.

UNIT V ADAPTIVE EQUALIZATION

9

Zero forcing algorithm, LMS algorithm, adaptive decision-feedback equalizer and Equalization of Trelliscoded signals. Kalman algorithm, blind equalizers and stochastic gradient algorithm

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- Know the digital communication and spectral characteristics of digital communication
- Design the basic requirements of receiver
- Understand the various techniques to overcome the effect of fading channel
- Synchronize various synchronization techniques in digital communication
- Analyze the equalization algorithms to overcome the interference

REFERENCES

 Heinrich Meyer, Mare Moeneclacy, Stefan. A. Fechtel, "Digital communication receivers", Vol I &Vol II, John Wiley, New York, 1997.

- 2. John.G.Proakis, "Digital communication", 4th Edition, McGraw-Hill, New York, 2001.
- 3. E.A.Lee and D.G. Messerschmitt, "Digital communication", 2nd Edition, Allied Publishers, New Delhi, 1994.
- 4. Simon Marvin, "Digital communication over fading channel; An unified approach to performance Analysis", John Wiley, New York, 2000.

WEB LINKS

- 1. https://class.coursera.org/eefun-001/lecture/35
- 2. www.researchgate.net/.../3450771_Noise_figure_of_digital_communication
- 3. www.scannermaster.com/Communication_Receivers_s/508.html

	Mapping of Course Outcomes with Programme Outcomes: (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak Programme Outcomes(POs)														
СО															
CO1	3	3	3	3	<u>3</u>	(3)	-	-	-	-	-	-	3	3	
CO2	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO3	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO4	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO5	3	3	3	3	3	3	-	-	-	-	-	-	3	3	

- To understand the state-of-the-art in network protocols, routing algorithms and its applications
- To introduce the various internet routing algorithms
- To familiarize the various aspects of routing algorithm
- To gain in-depth knowledge about the routing protocol and congestion controls
- To study the concept of mobile ADHOC networks

UNIT I LAYER ARCHITECTURE AND ROUTING

7

ISO OSI Layer Architecture, TCP/IP Layer Architecture, Functions of Network layer, General Classification of routing, Routing in telephone networks, Dynamic Non hierarchical Routing (DNHR), Trunk status map routing (TSMR), real-time network routing (RTNR), Distance vector routing, Link state routing, Hierarchical routing.

UNIT II INTERNET ROUTING

10

Interior protocol: Routing Information Protocol (RIP), Open Shortest Path First (OSPF), Bellman Ford Distance Vector Routing. Exterior Routing Protocols: Exterior Gateway Protocol (EGP) and Border Gateway Protocol (BGP). Multicast Routing: Pros and cons of Multicast and Multiple Unicast Routing, Distance VectorMulticast Routing Protocol (DVMRP), Multicast Open Shortest Path First (MOSPF), MBONE, Core Based Tree Routing.

UNIT III ROUTING IN OPTICAL WDM NETWORKS

10

Classification of RWA algorithms, RWA algorithms, Fairness and Admission Control, Distributed Control Protocols, Permanent Routing and Wavelength Requirements, Wavelength Rerouting-Benefits and Issues, Light path Migration, Rerouting Schemes, Algorithms- AG, MWPG.

UNIT IV MOBILE - IP NETWORKS

9

Macro-mobility Protocols, Micro-mobility protocol: Tunnel based: Hierarchical Mobile IP, Intra domain Mobility Management, Routing based: Cellular IP, Handoff Wireless Access Internet Infrastructure (HAWAII).

UNIT V MOBILE AD-HOC NETWORKS

9

Internet-based mobile ad-hoc networking communication strategies, Routing algorithms – Proactive routing: destination sequenced Distance Vector Routing (DSDV), Reactive routing: Dynamic Source Routing (DSR), Ad hoc On-Demand Distance Vector Routing (AODV), Hybrid Routing: Zone Based Routing (ZRP). Study of Network Simulator NS - 2

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

• Know the routing algorithm and its applications in enabling technologies.

- Understand the architecture and elements of WLANS
- Get an idea in routing protocols on networking field.
- Identify the technical issues related to ADHOC sensor networks

- 1. William Stallings, "High speed networks and Internets Performance and Quality of Service", IInd Edition, Pearson Education Asia. Reprint India 2002.
- 2. M. Steen Strub, "Routing in Communication network", Prentice Hall International, Newyork,
- 3. S. Keshav, "An engineering approach to computer networking", Addison Wesley 1999.
- 4. C.E Perkins, "Ad Hoc Networking", Addison Wesley, 2001
- 5. A.T Campbell et al., "Comparison of IP Micromobility Protocols," IEEE Wireless Communications Feb.2002, pp 72-82.

WEB LINKS

- 1. https://en.wikibooks.org/wiki/Communication_Networks/Routing
- 2. www.computer.howstuffworks.com/routing-algorithm.html
- 3. www.sciencedirect.com/science/article/pii/S138912861100377X

	Mapping of Course Outcomes with Programme Outcomes: (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak Programme Outcomes(POs)														
Programme Outcomes(POs)															
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3	3	3	-	-	3	-	-	-	3	3	
CO2	3	3	3	<u>3</u>	3	3	-	-	3	-	-	-	3	3	
CO3	3	3	<u>3</u>	(<mark>3</mark>)	3	3	-	-	3	-	-	-	3	3	
CO4	3	3	3	3	3	3	-	-	3	-	-	-	3	3	

- To introduce the concept of wireless system, digital modulation and detection techniques
- To educate about MIMO antenna systems
- To learn about equalization and multicarrier modulation
- To study the concepts on spread spectrum techniques

UNIT I WIRELESS SYSTEMS

8

Overview of wireless systems – path loss model for wireless channels – Time and Frequency coherence – Statistical multipath channel models – Capacity of wireless Channel -Capacity of Flat Fading Channel - Channel Distribution Information known – Channel Side Information at Receiver – Channel Side Information at Transmitter and Receiver – Capacity with Receiver diversity – Capacity comparisons – Capacity of Frequency Selective Fading channels

UNIT II MULTIPLE ACCESS TECHNIQUES FOR WIRLESS COMMUNICATION 9

Spread-Spectrum Principles, Direct-Sequence Spread Spectrum (DSSS) – DSSS System Model – Spreading Codes for ISI Rejection: Random, Pseudorandom, and m-Sequence – Synchronization – RAKE Receivers, Frequency-Hopping Spread Spectrum, Multiuser DSSS Systems, Multiuser FHSS Systems.

UNIT III MULTIPLE ANTENNA SYSTEMS

10

Narrow band MIMO model, MIMO channel capacity, MIMO Diversity and beam forming – diversity, multiplexing tradeoff, space time modulation and coding, frequency selective fading MIMO channels, smart antennas.

UNIT IV EQUALIZATION AND MULTICARRIER MODULATION

10

Equalizer noise enhancement and types, folded spectrum and ISI free transmission, linear equalization and MLSE, DFE and adaptive equalizers, data transmission using multiple carriers and mitigation of subcarrier fading, discrete implementation of multicarrier systems, matrix representation of OFDM, PAPR and frequency and timing offset.

UNIT V SPREAD SPECTRUM AND MULTI USER DETECTION

8

DSSS, FHSS and multiuser versions of above, random access, power control, downlink channel capacity, uplink channel capacity, multiuser diversity, MIMO diversity.

TOTAL: 45 PERIODS

COURSE OUTCOMES

- Know the concept of wireless system
- Analyze various digital modulation techniques
- Know about MIMO antenna systems
- Compare the various multicarrier modulation schemes
- Discriminate the performance of the multiple access techniques

- 1. Andrea Goldsmith, "Wireless Communication", Cambridge Univ. Press, 2006.
- 2. Rappaport.T.S, "Wireless Communications: Principles and Practice", Second Edition, Pearson Education / Prentice Hall of India, Third Indian Reprint, 2003.
- 3. Vijay K Garg, "Wireless Network Evolution 2G to 3G", Pearson Education New Delhi, 2003.
- 4. David Tse and Pramod Viswanath, "Fundamentals of Wireless Communication", Cambridge University Press, 2005.
- 5. A.Paulraj, R.Nabar, D.Gore, "Introduction to Space-Time Wireless Communication", Cambridge University Press, 2003.

WEB LINKS

- 1. www.signal.uu.se/Research/rdiversity.html
- 2. https://books.google.co.in/books?isbn=1420005928
- 3. www.cwcspr.njit.edu/research/mimo.php

	Mapping of Course Outcomes with Programme Outcomes: (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak Programme Outcomes(POs)														
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO2	3	3	3	<u>3</u>	3	3	-	-	-	-	-	-	3	3	
CO3	3	3	3	3	3	3	-	-	-	-	-	-	3	3	
CO4	3	3	3	<u>3</u>	3	3	-	-	-	-	-	-	3	3	
CO5	3	3	3	3	3	3	-	-	-	-	-	-	3	3	

ELECTIVE III

PCS16351

COMMUNICATION NETWORK SECURITY

3003

COURSE OBJECTIVES

- To gain knowledge about securing the data plane
- To acquire knowledge in securing the control plane
- To understand establishing of identity and access control
- To learn about the network and firewall security
- To gain knowledge about the recent trends in wireless security

UNIT I INTRODUCTION ON SECURITY

9

Security Goals, Types of Attacks: Passive attack, active attack, attacks on confidentiality, attacks on Integrity and availability. Security services and mechanisms, Techniques: Cryptography, Steganography, Revision on Mathematics for Cryptography.

UNIT II SYMMETRIC & ASYMMETRIC KEY ALGORITHMS

9

Substitutional Ciphers, Transposition Ciphers, Stream and Block Ciphers, Data Encryption Standards (DES), Advanced Encryption Standard (AES), RC4, principle of asymmetric key algorithms, RSA Cryptosystem

UNIT III INTEGRITY, AUTHENTICATION AND KEY MANAGEMENT

9

Message Integrity, Hash functions: SHA, Digital signatures: Digital signature standards, Authentication: Entity Authentication: Biometrics, Key management Techniques.

UNIT IV NETWORKSECURITY, FIREWALL SAND WEB SECURITY

9

Introduction on Firewalls, Types of Firewalls, Firewall Configuration and Limitation of Firewall. IP Security Overview, IP security Architecture, authentication Header, Security payload, security associations, Key Management, Web security requirement, secure sockets layer, transport layer security, secure electronic transaction, dual signature

UNIT V WIRELESS NETWORK SECURITY

9

Security Attack issues specific to Wireless systems: Worm hole, Tunneling, DoS. WEP for Wi-Fi network, Security for 4G networks: Secure Ad hoc Network, Secure Sensor Network.

TOTAL: 45 PERIODS

COURSE OUTCOMES

- Gain knowledge about securing the data plane
- Know about securing the control plane
- Understand establishing of identity and access control
- Understand the network and firewall security
- Gain knowledge about the recent trends in wireless security

- 1. Behrouz A. Fourcuzan, "Cryptography and Network security", Tata McGraw-Hill, 2008
- 2. WilliamStallings, "Cryptography and Network security: principles and practice", 2nd Edition, Prentice Hall of India, New Delhi,2002
- 3. AtulKahate, "Cryptography and Network security", 2nd Edition, Tata McGraw-Hill, 2008
- 4. R.K.Nichols and P.C. Lekkas, "Wireless Security"
- 5. H. Yang et al., "Security in Mobile Ad Hoc Networks: Challenges and Solution", IEEE Wireless Communications, Feb. 2004.

WEB LINKS

- 1. www.springer.com/us/book/9781402072512
- 2. https://books.google.co.in/books?isbn=144716654X
- 3. www.williamstallings.com/

	Mapping of Course Outcomes with Programme Outcomes: (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak Programme Outcomes(POs)														
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	-	<u>3</u>	-	<mark>3</mark>)	-	-	-	-	-	3	-	3	3	
CO2	3	-	<u>3</u>	-	<u>3</u>)	-	-	-	-	-	3	-	3	3	
CO3	3	-	3	-	3	-	-	-	-	-	3	-	3	3	
CO4	3	-	3	-	3	-	-	-	-	-	3	-	3	3	
CO5	3	-	3	-	3	-	-	-	-	-	3	-	3	3	

- To understand the various concepts on AD HOC network, architectures and applications
- To study the overview of MAC Protocols and the concepts of cross layer design
- To familiarize the various aspects of Ad-hoc networks protocols
- To introduce the concept of Transport layer in AD HOC networks

UNIT I FUNDAMENTAL OF MOBILE AD HOC NETWORK

9

Introduction to AD HOC networks – definition, characteristics features, applications. Characteristics of Wireless channel, AD HOC Mobility Models: - entity and group models.

UNIT II MEDIUM ACCESS PROTOCOLS

9

MAC Protocols: design issues, goals and classification. Contention based protocols, reservation based protocols, scheduling algorithms, protocols using directional antennas. IEEE standards: 802.11a, 802.11b, 802.11g, 802.15. HIPERLAN.

UNIT III NETWORK PROTOCOLS

9

Addressing issues in ADHOC network, Routing Protocols: Design issues, goals and classification - Proactive vs. reactive routing, Unicast routing algorithms, Multicast routing algorithms, hybrid routing algorithm, Power/ Energy aware routing algorithm, Hierarchical Routing, QOS aware routing.

UNIT IV END -TO - END DELIVERY AND SECURITY

9

Transport layer: Issues in designing-Transport layer classification, AD HOC transport protocols. Security issues in AD HOC networks: issues and challenges, network security attacks, secure routing protocols.

UNIT V CROSS LAYER DESIGN AND INTEGRATION OF ADHOC FOR 4G 9

Cross layer Design: Need for cross layer design, cross layer optimization, parameter optimization techniques, Cross layer cautionary perspective, Co-operative networks:-Architecture, methods of co-operation, co-operative antennas, Integration of ad hoc network with other wired and wireless networks.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- Identify the various challenges and vulnerabilities in MANET identify the technical issues related to AD-HOC sensor networks
- Obtain an awareness on cyber-attacks and threads in mobile networks.
- Understand and recognize the architectures, designing MAC,TCP,IP and security protocols
- Analyze and design security systems for wireless networks

REFERENCES

1. C.Siva Ram Murthy and B.S.Manoj, "Ad hoc Wireless Networks Architectures and protocols", 2nd edition, Pearson Education. 2007

- 2. Stefano Basagni, Marco Conti, Silvia Giordano and Ivan stojmenovic, "Mobile adhoc networking", Wiley-IEEE press, 2004.
- 3. Mohammad Ilyas, "The handbook of adhoc wireless networks", CRC press, 2002.
- 4. Fekri M. Abduljalil and Shrikant K. Bodhe, "A survey of integrating IP mobility protocols and Mobile Ad hoc networks", IEEE communication Survey and tutorials, v 9.no.1 2007.
- 5. V.T.Raisinhani and S.Iyer "Cross layer design optimization in wireless protocol stacks", Computer communication, vol 27 no. 8, 2004.

WEB LINKS

- 1. www.it.iitb.ac.in/~sri/talks/manet
- $2. \quad \underline{www.techopedia.com/definition/5532/mobile-ad-hoc-network-manet}$
- 3. www.sciencedirect.com/science/article/pii/S157087051200217

	(_					_	e Outco: - Mediu		Veak			
					Prog	ramm	e Outo	omes(POs)						
СО	CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2														
CO1															
CO2	3	-	3	-	3	-	-	-	-	-	3	-	3	3	
CO3	3	-	3	-	3	-	-	-	-	-	3	-	3	3	
CO4	3	-	<u>3</u>	-	<u>3</u>)	-	-	-	-	-	3	-	3	3	

- To introduce the various types of classical sets, fuzzy sets and its properties.
- To understand about the operation of the fuzzy logic control systems.
- To learn the concepts of neuro-fuzzy modeling.
- To introduce the various methods of genetic algorithm and the concepts soft computing.

UNIT I ARTIFICIAL NEURAL NETWORKS

9

Basic-concepts-single layer perception-Multi layer perception-Supervised and unsupervised learning, back propagation networks, Application

UNIT II FUZZY LOGIC

9

Fuzzy sets and Fuzzy reasoning- Fuzzy matrices-Fuzzy functions-decomposition-Fuzzy automata and languages- Fuzzy control methods-Fuzzy decision making, Applications

UNIT III NEURO-FUZZY MODELING

9

Networks based Fuzzy interfaces-Classification and Representation trees Adaptive -Data dustemp algorithm – Rule based structure identification-Neuro-Fuzzy controls

UNIT IV GENETIC ALGORITHM

9

Survival of the fittest-Fitness computations-crossover- mutation-reproduction-rank method-rank space method, Applications

UNIT V SOFT COMPUTING AND CONVENTIONAL AI

9

AI Search algorithm-Predicate calculus - rules of interface - Semantic networks-frames-objects-Hybrid models applications

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- Understand the various types of classical sets, fuzzy sets and its properties
- Design fuzzy logic control systems
- Perform neuro-fuzzy modeling
- Know about genetic algorithm, soft computing and conventional AI

- 1. Jang J.S.R.,Sun C.T and Mizutami E- "Neuro Fuzzy and Soft computing", Prentice hall New Jersey,1998
- 2. Timothy J.Ross "Fuzzy Logic Engineering Applications", McGraw Hill, New York, 1997.
- 3. LaureneFauseett: Fundamentals of Neural Networks", Prentice Hall India, New Delhi, 1994.
- 4. George J.Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic", Prentice Hall Inc., New Jersey, 1995
- 5. Nih.J. Ndssen "Artificial Intelligence", Harcourt Asia Ltd., Singapore, 1998.

WEB LINKS

- $1. \quad \underline{www.journals.elsevier.com/applied\text{-}soft\text{-}computing/}$
- 2. www.soft-computing.de/def.html
- 3. www.scrs.in

	(_					_	e Outco -Mediu		Veak			
					Prog	ramm	e Outo	omes(POs)						
со															
CO1															
CO2	3	-	3	-	3	-	-	-	-	-	3	-	3	3	
CO3	3	-	3	-	3	-	-	-	-	-	3	-	3	3	
CO4	3	-	<u>3</u>)	-	3	-	-	-	-	-	3	-	3	3	

- To understand the state-of-the-art in network protocols, architectures and applications
- To study the functions of different layers
- To familiarize the various aspects of SNMP networks
- To introduce the concepts of ATM networks
- To study the various network management applications

UNIT I FUNDAMENTALS OF COMPUTER NETWORK TECHNOLOGY

9

Network Topology, LAN, Network node components- Hubs, Bridges, Routers, Gateways, Switches, WAN, ISDN Transmission Technology, Communications protocols and standards

UNIT II OSI NETWORK MANAGEMENT

9

OSI Network management model -Organizational model- Information model, communication model, Abstract Syntax Notation - Encoding structure, Macros Functional model CMIP/CMIS

UNIT III INTERNET MANAGEMENT (SNMP)

9

SNMP-Organizational model-System Overview, The information model, communication -Functional model, SNMP proxy server, Management information, protocol remote monitoring Addressing Model, IP switching types, Flow driven and topology driven solutions, IP over ATM, Address and next hop resolution, Multicasting, IP v6 over ATM.

UNIT IV BROADBAND NETWORK MANAGEMENT

9

Broadband network s and services, ATM Technology-VP,VC,ATM Packet, Integrated service, ATM LAN emulation, Virtual LAN, ATM Network Management - ATM Network reference model, integrated local management Interface.ATM Management Information base, Role of SNMD and ILMI in ATM Management, M1, M2, M3, M4 Interface - ATM Digital Exchange Interface Management

UNIT V NETWORK MANAGEMENT APPLICATIONS

9

Configuration management - Fault management - performance management - Event Correlation Techniques security Management - Accounting management - Report Management, Policy Based Management Service Level Management.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- Demonstrate the networking strategies
- Identify the technical issues related to networking technologies
- Design and build a network using routers
- Acquire knowledge about broad band network management
- Understand the different management techniques and its applications

- 1. Mani Subramanian, "Network Management Principles and Practice", Addison Wesley New York, 2000.
- 2. James F.Kurose& Keith W.Ross, "Computer Networking A Top-down Approach Featuring the Internet", PHI, 2007.
- 3. William Stallings, "Data and Computer Communication", PHI 2000.
- 4. Salah Aiidarous, Thomas Plevayk, "Telecommunications Network Management Technologies and Implementations", Eastern Economy Edition IEEE press, New Delhi, 1998.
- 5. Lakshmi G. Raman, "Fundamentals of Telecommunication Network Management", Eastern Economy Edition IEEE Press, New Delhi, 1999.

WEB LINKS

- 1. www.cisco.com/c/en/us/td/docs/internetworking/.../NM-Basics.html
- 2. www.techopedia.com/definition/20974/network-management
- 3. www.networkworld.com/category/network-management

	(_	ngth o	f corr	elation	1) 3-St	rong, 2	e Outco - Mediu		Veak			
СО															
CO1															
CO2	3	-	3	-	3	-	-	-	-	-	3	-	3	3	
CO3	3	-	3	-	3	-	-	-	-	-	3	-	3	3	
CO4	3	-	3	-	3	-	-	-	-	-	3	-	3	3	
CO5	3	-	3	-	3	-	-	-	-	-	3	-	3	3	

ELECTIVE IV

PCS16451 DIGITAL IMAGE PROCESSING 3 0 0 3

COURSE OBJECTIVES

- To be familiar with digital image fundamentals
- To understand the concepts of image enhancement and restoration
- To acquire the knowledge about segmentation restoration
- To impart the concept of various compression techniques

UNIT I DIGITAL IMAGE FUNDAMENTALS

9

Elements of digital image processing systems, Vidicon and Digital Camera working principles, - Elements of visual perception, brightness, contrast, hue, saturation, mach band effect, Color image fundamentals - RGB, HSI models, Image sampling, Quantization, dither, Two-dimensional mathematical preliminaries, 2D transforms - DFT, DCT, KLT, SVD.

UNIT II IMAGE ENHANCEMENT

9

Histogram equalization and specification techniques, Noise distributions, Spatial averaging, Directional Smoothing, Median, Geometric mean, Harmonic mean, Contraharmonic mean filters, Homomorphic filtering, Color image enhancement.

UNIT III IMAGE RESTORATION

9

Image Restoration - degradation model, Unconstrained and Constrained restoration, Inverse filtering-removal of blur caused by uniform linear motion, Wiener filtering, Geometric transformations-spatial transformations.

UNIT IV IMAGE SEGMENTATION

9

Edge detection, Edge linking via Hough transform – Thresholding - Region based segmentation – Region growing – Region splitting and merging – Segmentation by morphological watersheds – basic concepts – Dam construction – Watershed segmentation algorithm.

UNIT V IMAGE COMPRESSION

9

Need for data compression – Huffman, Run Length Encoding - Shift codes - Arithmetic coding - Vector Quantization - Transform coding - JPEG standard - MPEG.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- Understand the basic concepts of digital image fundamentals
- Understand the need of enhancement and restoration
- Know the concept of segmentation in various image problems
- Acquire knowledge about the compression techniques in lossy and lossless coding

- 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson, Education, Inc., Second Edition, 2004.
- 2. Anil K. Jain, "Fundamentals of Digital Image Processing", Pearson Education, Inc., 2002.
- 3. Kenneth R. Castleman, "Digital Image Processing", Pearson, 2006.
- 4. Rafael C. Gonzalez, Richard E. Woods, Steven Eddins, "Digital Image Processing using MATLAB", Pearson Education, Inc., 2004.
- 5. William K. Pratt, "Digital Image Processing", John Wiley, New York, 2002.

WEB LINKS

- 1. www.imageprocessingplace.com
- 2. www.nptel.ac.in/courses/106105032
- 3. www.bookboon.com/en/digital-image-processing-part-one-ebook

	(_	ngth o	f corr	elation	1) 3-St	rong, 2	e Outco -Mediu		Veak			
	Programme Outcomes(POs)														
CO															
CO1															
CO2	3	3	3	3	-	-	-	-	-	-	-	-	3	3	
CO3	3	3	(3)	<u>3</u>	-	-	-	-	-	-	-	-	3	3	
CO4	3	3	3	3	-	-	-	-	-	-	-	-	3	3	

- To understand basic concepts of CDMA
- To learn the IS-95 CDMA Techniques, WCDMA and CDMA 2000
- To understand the multicarrier CDMA Systems
- To study about the Optical CDMA

UNIT I BASIC CONCEPTS OF CDMA

9

Spread spectrum communication techniques (DS-CDMA, FH-CDMA) - Synchronization in CDMA system, Detection and False alarm probabilities, Early-Late gate measurement statistics, Information capacity of Spread Spectrum Systems.

UNIT II IS-95 CDMA TECHNIQUES

9

Spreading Codes, Power control, Handover techniques, Physical and logical channels and processing (Forward and reverse links)

UNIT III WCDMA / CDMA 2000

9

Introduction to IMT 2000 - CDMA 2000 - Physical layer characteristics - modulation & demodulation process - Handoff and power control in 3G systems.

UNIT IV MULTICARRIER CDMA SYSTEMS

9

Multicarrier CDMA, System design - Performance parameters – BER lower bound, Multiuser detection, UTRA, FDD and TDD systems.

UNIT V OPTICAL CDMA

9

Prime Codes and it's properties - Generalized and Extended Prime Codes - Experimental demonstration of Optical CDMA, Synchronization of Optical CDMA networks, Multiwavelength Optical CDMA networks.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- Demonstrate the various concepts of CDMA and IS-95 CDMA techniques.
- Identify the technical issues in WCDMA / CDMA 2000.
- Design and build a wireless sensor network using multicarrier CDMA systems.
- Synchronize the various synchronization concepts of optical CDMA networks.

- 1. John G.Proakis, "Digital Communications", McGraw Hill International Ltd, 4th ed., Singapore, 2000.
- 2. Kaveth Pahlavan, K. Prashanth Krishnamuorthy, "Principles of Wireless Networks", Prentice Hall of India, 2006.
- 3. Andreas F. Molisch, "Wireless Communication", Wiley India, 2006.

- 4. Raymond Steele, Chin-Chun Lee, Peter Gould, "GSM CDMA One and 3GSystems", Wiley India, 2004.
- 5. Guu-Chang Yang, "Prime Codes with Application to Optical and Wireless Networks", Artech House, Inc., 2002.

WEB LINKS

- 1. <u>www.accessengineeringlibrary.com/cdma-capacity-and-quality-optimization</u>
- 2. www.nptel.ac.in/courses/117104115/
- 3. www.dl.acm.org/citation.cfm?id=521939

	(_	ngth o	of corr	elation	1) 3-St	rong, 2	e Outco -Mediu		Veak			
СО	Programme Outcomes(POs) CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02														
CO1															
CO2	3	-	<mark>3</mark>)	-	<u>3</u>	-	-	-	-	-	3	-	3	3	
CO3	3	-	3	-	3	-	-	-	-	-	3	-	3	3	
CO4	3	-	3	-	3	-	-	-	-	-	3	-	3	3	

- To understand the state-of-the-art in wireless sensor network, architectures and applications
- To study the functions of different wireless architectures
- To familiarize the various aspects of MAC protocols
- To introduce the concept of infrastructure establishment
- To study the various sensor network tools

UNIT I OVERVIEW OF WIRELESS SENSOR NETWORKS

8

Challenges for Wireless Sensor Networks-Characteristics requirements-required mechanisms, Difference between mobile ad-hoc and sensor networks, Applications of sensor networks- Enabling Technologies for Wireless Sensor Networks

UNIT II ARCHITECTURES

9

Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture – Sensor Network Scenarios, Optimization Goals and Figures of Merit, Gateway Concepts.

UNIT III NETWORKING OF SENSORS

10

Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols and Wakeup Concepts - S-MAC, The Mediation Device Protocol, Wakeup Radio Concepts, Address and Name Management, Assignment of MAC Addresses, Routing Protocols- Energy-Efficient Routing, Geographic Routing.

UNIT IV INFRASTRUCTURE ESTABLISHMENT

9

Topology Control, Clustering, Time Synchronization, Localization and Positioning, Sensor Tasking and Control.

UNIT V SENSOR NETWORK PLATFORMS AND TOOLS

9

Operating Systems for Wireless Sensor Networks, Sensor Node Hardware – Berkeley Motes, Programming Challenges, Node-level software platforms, Node-level Simulators, State-centric programming.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- Demonstrate the various strategies of wireless sensor networking
- Know the concepts of networks architecture
- Identify the technical issues related to networking of sensors
- Design and build a wireless sensor network using simulators

- 1. Holger Karl & Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks", John Wiley, 2005.
- 2. Bhaskar Krishnamachari, "Networking Wireless Sensors", Cambridge Press, 2005
- 3. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.
- 4. Kazem Sohraby, Daniel Minoli, &Taieb Znati, "Wireless Sensor Networks-Technology, Protocols, and Applications", John Wiley, 2007.
- Mohammad Ilyas and Imad Mahgaob, "Handbook of Sensor Networks: Compact Wireless And Wired Sensing Systems", CRC Press, 2005.

WEB LINKS

- 1. www.sciencedirect.com/science/article/pii/S1389128608001254
- 2. www.ni.com > Products and Services > White Papers
- 3. www.techopedia.com/definition/25651/wireless-sensor-network-wsn

	(_					_	e Outco -Mediu		Veak			
	Programme Outcomes(POs)														
со															
CO1															
CO2	-	-	<u>3</u>	-	<u>3</u>)	-	3	-	-	-	-	<u>3</u>	3	3	
CO3	-	-	3	-	<u>3</u>	-	3	-	-	-	-	3	3	3	
CO4	-	-	3	-	3	-	3	-	-	-	-	3	3	3	

- To learn various microwave devices and the microwave passive components
- To understand the microwave resonators and filters and the characteristics of microwave antennas
- To study about the microwave radio system
- To know the various links in satellite

UNIT I MICROWAVE AMPLIFIERS AND OSCILLATORS

10

Klystron Amplifier – Reflex Klystron Amplifier – Travelling wave tube Amplifier – Magnetron Oscillator and Modulator-Varactor diode – Parametric amplifier and applications – diode detector and mixer – GUNN, Tunnel IMPATT diode oscillators – Masers and lasers

UNIT II MICROWAVE PASSIVE COMPONENTS

6

Scattering parameters - S-Matrix - Attenuator - Phase shifters - T Junctions - Hybrid T Junctions - Directional couplers - Isolator, Properties of ferrite devices - Faraday rotation - Gyrator - Circulator - Scattering parameter measurement

UNIT III MICROWAVE RESONATORS AND FILTERS

7

Review of resonant circuits – principle of Microwave resonators – field analysis of cavity resonators – Characteristics of filters – Narrow and wide band filters – Filter and resonant applications – Frequency multiplier and frequency Discrimination.

UNIT IV MICROWAVE ANTENNAS

6

Characteristics of Microwave Antennas – Half Wave Dipole –Array – Horn –Paraboloidal Reflector – feeds – Lens and slot Antennas – Leaky and surface wave Antennas – Broad band Antennas – Micro strip Antennas – Antenna measurements.

UNIT V MICROWAVE RADIO SYSTEM

9

Types of propagation – Line of sight transmission – Radio horizon – Microwave links-Repeaters – Diversity – frequency and space diversity systems – Fading – System gain and path losses - Noise and Absorption in Microwave links

UNIT VI SATELLITE LINKS

7

TOTAL: 45 PERIODS

Frequency ranges – Orbits – Earth station – Up links – Transponders- Down links – Satellite system parameters – Multiple access

COURSE OUTCOMES

At the end of this course, the students will be able to

- Understand the functions of microwave amplifiers and oscillators
- Understand the functions of microwave passive components, microwave resonators and filters, the various characteristics of microwave antennas

- Analyze the problems in microwave communication
- Acquire knowledge in microwave radio system and satellite links

- 1. Roddy.D., "Microwave Technology", Reston Publications.1986.
- 2. Chatterjee R. "Microwave Engineering", East West Press. 1988.
- 3. Clock.P.N. "Microwave Principles and Systems", Prentice Hall.1986.
- 4. Combes, Graffewil and Sauterean "Microwave Components, Devices and Active Circuits", John wiley, 1987.
- 5. Annapurana Das, Sisir.K.Das, "Microwave Engineering", Tata McGraw Hill, 2000.

WEB LINKS

- 1. <u>www.dpstele.com/network-monitoring/microwave/rf.php</u>
- 2. https://books.google.co.in/books?isbn=0080560504
- 3. www.work-microwave.de/139.html

	(•	ngth o	of corr	elation) 3-St ı	rong, 2	e Outco -Mediu		Veak			
CO	Programme Outcomes(POs) CO P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02														
CO1															
CO2	-	-	3	-	3	-	3	-	-	-	-	3	3	3	
CO3	-	-	<mark>3</mark>)	-	<u>3</u>	-	3	-	-	-	-	<u>3</u>	3	3	
CO4	-	-	3	-	3	-	3	-	-	-	-	3	3	3	

- To provide experience in simulation and implementation of the mobility models and various protocols
- To provide the comprehensive analysis of communication signals
- To learn about the antennas and VCO design and RF link
- To understand the concept of ZIGBEE/BLUETOOTH
- To focus on various systems for performance evaluation using GLOMOSIM/NS2

LIST OF EXPERIMENTS

- 1. Transmission line parameters Measurement using Network Analyzer.
- 2. Design and characterization of Antennas using ADS/IE3D/HFSS.
- 3. Spectral Characterization of communication signals (using Spectrum Analyzer).
- 4. LNA / Mixer / VCO design and characterization using ADS/IE3D/HFSS.
- 5. Design and budget analysis of communication links using ADS/IE3D/HFSS.
- 6. Study of a RF link.
- 7. Simulation and performance evaluation of entity mobility models using GLOMOSIM / NS2 (Random walk, random way point)
- 8. Simulation and performance evaluation of Ad-hoc routing protocols using GLOMOSIM / NS2 (DSR, AODV, ZRP)
- 9. Simulation and performance evaluation of Wireless MAC protocols using NS2.
- 10. Mini Projects using Simulation Tools

TOTAL: 60 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- Understand the basic concepts of communication and RF link
- Analyze the characteristics of communication signals and simulation and performance evaluation of various protocols
- Design a network aimed ZIGBEE/Bluetooth
- Know the performances of various protocols using GLOMOSIM/NS2

	(_					_	e Outco - Mediu		Veak			
								omes(<i></i>						
СО															
CO1															
CO2	3	3	3	3	3	3	-	-	3	-	-	-	3	3	
CO3	3	3	3	3	3	3	-	-	3	-	-	-	3	3	
CO4	3	3	3	3	3	3	-	-	3	-	-	-	3	3	

PCS15301 SMART ANTENNAS 3 2 0 4

COURSE OBJECTIVES

To enable the students to

- gain fundamental knowledge of smart antennas
- learn about narrow and broad band processing
- study about adaptive processing
- provide in-depth knowledge on direction of arrival estimation methods
- understand diversity combining

UNIT I SMART ANTENNAS

15

Historical development of smart antennas- Antenna gain, Antenna Pattern, Antenna bore sight, Phased array antenna, power pattern, beam steered and weighted arrays, beam steered circular arrays, rectangular planar arrays- fixed beam arrays- retro directive arrays, degree of freedom, optimal antenna, adaptive antennas, smart antenna -key benefits of smart antenna technology, wide band smart antennas, Digital radio receiver techniques and software radio for smart antennas.

UNIT II NARROW AND BROAD BAND PROCESSING

15

Signal model conventional beam former- null steering beam former-optimal beam former-Optimization using reference signal, beam space processing - Tapped delay line structure, Partitioned realization, Derivative constrained processor, Digital beam forming, Broad band processing using DFT method.

UNIT III ADAPTIVE PROCESSING

15

Sample matrix inversion algorithm, unconstrained LMS algorithm, normalized LMS algorithm, Constrained LMS algorithm, Perturbation algorithms, neural network approach, Adaptive beam space processing - Implementation issues.

UNIT IV DIRECTION OF ARRIVAL ESTIMATION METHODS

15

Fundamentals of matrix algebra- array correlation matrix- AOA estimation methods- Spectral estimation methods- Bartlett method and Capon method, linear prediction method, Maximum Entropy method, Maximum Likelihood method, PHD method, Min-norm method, Eigen Structure methods, Music Algorithm -root Music and cyclic music algorithm, the ESPRIT algorithm

UNIT V DIVERSITY COMBINING

15

Spatial Diversity selection combiner - Switched diversity combiner - Equal gain combiner - Maximum ratio combiner - Optical combiner.

TOTAL PERIODS

75

COURSE OUTCOMES

At the end of the course, the students will be able to After the completion of the course, the students will be able to

- understand the fundamentals of smart antennas
- gain knowledge on narrow, broad band and adaptive processing
- gain in-depth knowledge on direction of arrival estimation methods
- understand diversity combining

- 1. Lal Chand Godara, "Smart Antennas" CRC press, 2004
- 2. Joseph C Liberti. Jr and Theodore S Rappaport, "Smart Antennas for Wireless Communication: IS-95 and Third Generation CDMA Applications", Prentice Hall 1999.
- 3. Frank B.Gross, "Smart Antennas for Wireless Communications", McGraw Hill, 2005
- 4. Balanis, "Antennas", John Wiley and Sons, 2005
- 5. IEEE Transaction on Antenna and Wave Propagation

	(• • •	Ū		e Outco			C			s: , 1-We	ak		
COs		Programme Outcomes(POs)													
	PO 1	1 2 3 4 5 6 7 8 9 10 11 12 1 2													
CO1	3	1 2 3 4 5 6 7 8 9 10 11 12 1 2													
CO2	3	3	2	2	-	-	-	-	2	-	3	3	3	3	
CO3	3	3	2	2	-	3	-	-	2	-	3	3	3	3	
CO4	3	3	3	1	-	-	-	-	2	-	3	3	3	3	

To enable the students to

- develop a sound knowledge on High Performance Networks.
- inculcate a comprehensive understanding of multimedia networking.
- study the wireless and Mobile networks
- learn about network performance evaluation
- implement various Network security in computer networks

UNIT I HIGH PERFORMANCE NETWORKS

9

History of Communication Networks, Networking Principles, Future Networks, High Performance Networks, The Internet and TCP/IP Networks, Packet Switched Networks, Circuit Switched Networks, Asynchronous Transfer mode.

UNIT II MULTIMEDIA NETWORKING

9

Multimedia Networking Applications, Streaming stored Audio and Video, Best effort service, Protocols for real time interactive applications, Distributing Multimedia: Content Distribution Networks, Beyond Best Effort, Scheduling and policing mechanism, Integrated services and Differentiated Services, RSVP.

UNIT III WIRELESS AND MOBILE NETWORKS

9

Introduction, Wireless links and network characteristics, Wi-Fi:802.11 Wireless LANs, Cellular Internet Access, Mobility management: Principles, Mobile IP, Managing Mobility in cellular Networks, Wireless and Mobility: Impact on Higher-layer protocols

UNIT IV COMPRESSION AND NETWORK PERFORMANCE EVALUATION

9

Foundations of compression, Audio compression, Video Compression, Network performance evaluation-Monitoring, SNMP, CMOT, and RMON, Models and Analysis, Simulation.

UNIT V SECURITY IN COMPUTER NETWORKS

9

Principles of cryptography – Authentication – integrity – key distribution and certification – Access control: fire walls – attacks and counter measures – security in many layers: Case Studies

TOTAL PERIODS 45

COURSE OUTCOMES

After the completion of the course, the students will be able to

- understand the concept of introduction of various network topology
- obtain the knowledge about the use of network in multimedia field
- know about the various advanced techniques used in networking

- realize the various ways of compression and evaluation of networks
- analyse the concept of network security in computer networks.

- 1. Jean Walrand, Pravin Varaiya, "High performance communication network", Morgan Kaufmann Publishers Inc, second edition, 2000.
- 2. James F Kurose & Keith W Ross, "Computer Networking- A top down approach featuring the internet", Pearson, third edition, 2006.
- 3. Jean Walrand, "Communication networks", Mc Graw Hill, second edition 2002.
- 4. LEOM-GarCIA, WIDJAJA, "Communication networks", TMH, seventh reprint 2002.
- 5. HersentGurle& petit, "IP Telephony, Packet Pored Multimedia communication Systems", Pearson education, 2003.
- 6. Nader F.Mir, "Computer and Communication Networks", first edition, 2010.
- 7. Larry 1.Peterson& Bruce S.David, "Computer Networks: A System Approach", 1996.

	((1/2/3	Mapp indica	Ü					Ū		itcome		eak	
COs						Progr	amme	Outco	omes(I	POs)				
	PO 1	O PO PSO PSO												
CO1	3	3 3 2 2 - 3 - 2 - 3 3 3												
CO2	3	3 3 2 2 - 3 2 - 3 3 3												
CO3	3	3	2	2	-	3	-	-	2	-	3	3	3	3
CO4	3	3	3	1	-	-	-	-	2	-	3	3	3	3
CO5	3	3	3	1	-	3	-	-	2	-	3	3	3	3

To enable the students to

- understand the mathematical foundations needed for speech processing
- learn the basic concepts and algorithms of speech processing and synthesis
- familiarize the students with the various speech signal representation, coding and recognition techniques
- appreciate the use of speech processing in current technologies and to expose the students to real—world applications of speech processing

UNITI FUNDAMENTALS OF SPEECH PROCESSING

9

Introduction – Spoken Language Structure – Phonetics and Phonology – Syllables and Words – Syntax and Semantics – Probability, Statistics and Information Theory – Probability Theory – Estimation Theory – Significance Testing – Information Theory.

UNIT II SPEECH SIGNAL REPRESENTATIONS AND CODING

9

Overview of Digital Signal Processing – Speech Signal Representations – Short time Fourier Analysis – Acoustic Model of Speech Production – Linear Predictive Coding – Cepstral Processing – Formant Frequencies – The Role of Pitch – Speech Coding – LPC Coder.

UNIT III SPEECH RECOGNITION

9

Hidden Markov Models – Definition – Continuous and Discontinuous HMMs – Practical Issues – Limitations. Acoustic Modeling – Variability in the Speech Signal – Extracting Features – Phonetic Modeling – Adaptive Techniques – Confidence Measures – Other Techniques.

UNIT IV TEXT ANALYSIS

9

Lexicon – Document Structure Detection – Text Normalization – Linguistic Analysis – Homograph Disambiguation – Morphological Analysis – Letter-to-sound Conversion – Prosody – Generation schematic – Speaking Style – Symbolic Prosody – Duration Assignment – Pitch Generation

UNIT V SPEECH SYNTHESIS

9+6

Attributes – Formant Speech Synthesis – Concatenative Speech Synthesis – Prosodic Modification of Speech – Source-filter Models for Prosody Modification – Evaluation of TTS Systems

TOTAL PERIODS 45

COURSE OUTCOMES

After the completion of the course, the students will be able to

- identify the various temporal, spectral and cepstral features required for identifying speech
- describe units phoneme, syllable and word
- determine and apply mel-frequency cepstral coefficients for processing all types of signals

- justify the use of formant and concatenative approaches to speech synthesis
- identify the apt approach of speech synthesis depending on the language to be processed

- 1. Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, "Spoken Language Processing A guide to Theory, Algorithm and System Development", Prentice Hall PTR, 2001.
- 2. Thomas F.Quatieri, "Discrete-Time Speech Signal Processing", Pearson Education, 2002.
- 3. Lawrence Rabiner and Biing-Hwang Juang, "Fundamentals of Speech Recognition", Prentice Hall Signal Processing Series, 1993.
- 4. Sadaoki Furui, "Digital Speech Processing: Synthesis, and Recognition, Second Edition, (Signal Processing and Communications)", Marcel Dekker, 2000.
- 5. Joseph Mariani, "Language and Speech Processing", Wiley, 2009.

	(C					ogram trong,			s: , 1-We	ak	
COs]	Progra	amme	Outco	mes(P	POs)				
	PO 1	O PO PO </th												
CO1	3	3 3 2 2 - 3 2 - 3 3 3												
CO2	3	3 3 2 2 - 3 - 2 - 3 3 3												
CO3	3	3	2	2	-	3	-	-	2	-	3	3	3	3
CO4	3	3	3	1	-	-	-	-	2	-	3	3	3	3
CO5	3	3	3	1	-	3	-	-	2	-	3	3	3	3

To enable the students to

- provide in-depth knowledge on Digital Signal Processor basics
- understand the Third generation DSP Architecture and programming skills
- get trained on the advanced DSP processors and its applications.

UNIT I PROGRAMMABLE DSPS

9

Multiplier and Multiplier accumulator – Modified Bus Structures and Memory access in PDSPs – Multiple access memory – Multiported Memory – VLIW architecture- Pipelining – Special Addressing modes in P-DSPs – On chip Peripherals.

UNIT II TMS320C5X PROCESSOR

9

Architecture – Assembly language syntax - Addressing modes – Assembly language Instructions - Pipeline structure, Operation – Block Diagram of DSP starter kit – Application Programs for processing real time signals.

UNIT III ARCHITECTURES FOR PROGRAMMABLE DIGITAL SIGNAL PROCESSING DEVICES

9

Introduction – Basic Architectural features – DSP Computational Building blocks – Bus Architecture and Memory – Data Addressing Capabilities – Address Generation Unit – Programmability and Program Execution

UNIT IV ADSP PROCESSORS

9

Architecture of ADSP-21XX and ADSP -210XX series of DSP processors- Addressing modes and assembly language instructions – Application programs –Filter design, FFT calculation.

UNIT V ADVANCED PROCESSORS

9

Architecture of TMS320C54X: Pipe line operation, Code Composer studio – Architecture of TMS320C6X - Architecture of Motorola DSP563XX – Comparison of the features of DSP family processors.

TOTAL PERIODS

45

COURSE OUTCOMES

After the completion of the course, the students will be able to

- gain in-depth knowledge on programmable DSPS
- understand the architecture of programmable DSPS
- Perform measurement of antenna parameters and special array antennas design.

REFERENCES:

 B.Venkataramani and M.Bhaskar, "Digital Signal Processors – Architecture, Programming and Applications", Tata McGraw – Hill Publishing Company Limited. New Delhi, 2003.

- 2. Avtar Singh and S. Srinivasan, "Digital Signal Processing Implementations using DSP Microprocessors with Examples from TMS320C54xx", cengage Learning India Private Limited, Delhi 2012.
- 3. User guides Texas Instrumentation, Analog Devices, Motorola.
- 4. RulphChassaing, "Digital Signal Processing and Applications with the C6713 and C6416 DSK", John Wiley & Sons, Inc., Publication, 2005

	(• • •	ing of tes stre					Ü			s: 1-We	ak	
COs	Programme Outcomes(POs)													
	PO 1	PO PO<												
CO1	3	3	2	2	-	3	-	-	2	-	3	3	3	3
CO2	3	3	2	2	-	-	-	-	2	-	3	3	3	3
CO3	3	3	2	2	-	3	-	-	2	-	3	3	3	3

9

9

9

9

9

COURSE OBJECTIVES

To enable the students to

- study the concepts of biological and artificial neurons
- explore the fundamentals of various algorithms related to supervised neural networks and its applications
- explore the Applications of various algorithms related Genetic algorithms and SVM

UNIT I LEARNING ALGORITHMS

Biological Neuron – Artificial Neural Model - Types of activation functions – Architecture: Feed forward and Feedback – Learning Process: Error Correction Learning – Memory Based Learning – Hebbian Learning – Competitive Learning - Boltzman Learning – Supervised and Unsupervised Learning – Learning Tasks: Pattern Space – Weight Space – Pattern Association – Pattern Recognition – Function Approximation – Control –

UNIT II RADIAL BASIS FUNCTION NETWORKS & SUPPORT VECTOR MACHINES RADIAL BASIS FUNCTION NETWORKS

Filtering – Beam forming – Memory – Adaptation - Statistical Learning Theory

Exact Interpolator – Regularization Theory – Generalized Radial Basis Function Networks - Learning in Radial Basis Function Networks - Applications: XOR Problem – Image Classification Support Vector Machines: Optimal Hyper plane for Linearly Separable Patterns and Non separable Patterns – Support Vector Machine for Pattern Recognition – XOR Problem - -insensitive Loss Function – Support Vector Machines for Nonlinear Regression

UNIT III ATTRACTOR NEURAL NETWORKS

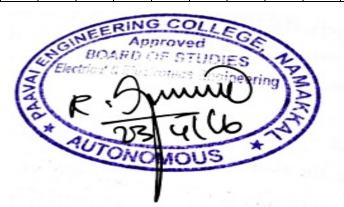
Associative Learning – Attractor Neural Network Associative Memory – Linear Associative Memory – Hopfield Network – Content Addressable Memory – Strange Attractors and Chaos - Error Performance of Hopfield Networks - Applications of Hopfield Networks – Simulated Annealing – Boltzmann Machine – Bidirectional Associative Memory – BAM Stability Analysis – Error Correction in BAMs - Memory Annihilation of Structured Maps in BAMS – Continuous BAMs – Adaptive BAMs – Applications.

UNIT IV ADAPTIVE RESONANCE THEORY

Noise-Saturation Dilemma - Solving Noise-Saturation Dilemma - Recurrent On-center - Off-surround Networks - Building Blocks of Adaptive Resonance - Substrate of Resonance Structural Details of Resonance Model - Adaptive Resonance Theory - Applications.

UNIT V SELF ORGANIZING MAPS AND NEOCOGNITRON

Self-organizing Map – Maximal Eigenvector Filtering – Sanger's Rule – Generalized Learning Law – Competitive Learning - Vector Quantization – Mexican Hat Networks - Self-organizing Feature Maps – Applications. Architecture of Neocognitron – Data processing and performance of Neocognitron - Architecture


COURSE OUTCOMES

After the completion of the course, the students will be able to

- understand the basics of neural networks
- know the concepts of radial basis functions.
- gain knowledge about bidirectional associative memory.
- understand the principles of resonance theory.
- gain in-depth knowledge about self organizing maps

- 1. Satish Kumar, "Neural Networks: A Classroom Approach", Tata McGraw-Hill Publishing Company Limited, New Delhi, 2004.
- 2. Simon Haykin, "Neural Networks: A Comprehensive Foundation", Addison Wesley Longman (Singapore) Private Limited, Delhi, second edition, 2001.
- 3. James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Pearson Education 2003.
- 4. Martin T.Hagan, Howard B. Demuth, and Mark Beale, "Neural Network Design", Thomson Learning, New Delhi, 2003.
- 5. SimonHaykins, "CommunicationSystem", JohnWileyand Sons, 2008.

	(C					ogram trong,			s: , 1-We	ak	
COs	Programme Outcomes(POs)													
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	3	2	2	-	3	-	-	2	-	3	3	3	3
CO2	3	3	2	2	-	-	-	-	2	-	3	3	3	3
CO3	3	3	2	2	-	3	-	-	2	-	3	3	3	3
CO4	3	3	3	1	-	-	-	-	2	-	3	3	3	3
CO5	3	3	3	1	-	3	-	-	2	-	3	3	3	3

To enable the students to

- understand the fundamentals of Vector Analysis.
- learn the concepts of multi resolution analysis.
- understand the properties of continuous wavelet transforms.
- characterize Filter Bank and Sub Band Coding Principles.
- study the various Image Compression Techniques

UNIT I MATHEMATICAL FUNDAMENTALS

9

Linear spaces – Vectors and vector spaces – Basis functions – Dimensions – Orthogonality and biorthogonality – Local basis and Riesz basis – Discrete linear normed space – Approximation by orthogonal projection – Matrix algebra and linear transformation.

UNIT II MULTI RESOLUTION ANALYSIS

9

Definition of Multi Resolution Analysis (MRA) – Haar Basis – Construction of General Orthonormal MRA – Wavelet Basis for MRA – Continuous Time MRA Interpretation for the DTWT – Discrete Time MRA – Basis Functions for the DTWT – PRQMF Filter Banks.

UNIT III CONTINUOUS WAVELET TRANSFORMS

9

Wavelet Transform – Definition and Properties – Concept of Scale and its Relation with Frequency – Continuous Wavelet Transform (CWT) – Scaling Function and Wavelet Functions (Daubechies Coiflet, Mexican Hat, Sinc, Gaussian, Bi Orthogonal) – Tiling of Time – Scale Plane for CWT

UNIT IV DISCRETE WAVELET TRANSFORMS

9

Filter Bank and Sub Band Coding Principles – Wavelet Filters – Inverse DWT Computation by Filter Banks – Basic Properties of Filter Coefficients – Choice of Wavelet Function Coefficients – Derivations of Daubechies Wavelets – Mallat's Algorithm for DWT – Multi Band Wavelet Transforms Lifting Scheme- Wavelet Transform Using Poly phase Matrix Factorization – Geometrical Foundations of Lifting Scheme – Lifting Scheme in Z – Domain.

UNIT V TRANSFORMS AND ITS APPLICATIONS

9

45

Wavelet methods for signal processing- Image Compression Techniques: EZW-SPHIT Coding -Image Denoising Techniques: Noise Estimation - Shrinkage Rules - Shrinkage Functions - Edge Detection and Object Isolation, Image Fusion, and Object Detection.

TOTAL PERIODS

COURSE OUTCOMES

After the completion of the course, the students will be able to

- apply the fundamentals of vector analysis.
- know the concepts of multi resolution analysis.
- understand the properties of continuous wavelet transforms.
- apply the knowledge of filter bank and sub band coding principles.
- analyse the various image compression techniques.

- 1. Rao R.M and A.S.Bopardikar, "Wavelet Transforms Introduction to theory and Applications", Pearson Education, Asia, 2000.
- 2. J.C.Goswami and A. K. Chan, "Fundamentals of wavelets: Theory, Algorithms and Applications", Wiley Inter science Publication, John Wiley & Sons Inc., 1999.
- 3. M. Vetterli, J.Kovacevic, "Wavelets and subband coding", Prentice Hall Inc, 1995.
- 4. Stephen G. Mallat, "A wavelet tour of signal processing", second edition Academic Press, 2000.
- 5. Soman K.P and Ramachandran K.I, "Insight into Wavelets from Theory to practice", Prentice Hall, 2004

	(• •	C					ogram trong,			s: 1-We	ak	
COs	Programme Outcomes(POs)													
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	3	2	2	-	3	-	-	2	-	3	3	3	3
CO2	3	3	2	2	-	-	-	-	2	-	3	3	3	3
CO3	3	3	2	2	-	3	-	-	2	-	3	3	3	3
CO4	3	3	3	1	-	-	-	-	2	-	3	3	3	3
CO5	3	3	3	1	-	3	-	-	2	-	3	3	3	3

9

9

9

9

9

COURSE OBJECTIVES

To enable the students to

- know about the DSP systems, pipelining and parallel processing of FIR filters
- learn about Retiming, algorithmic strength reduction
- gain knowledge about fast convolution, pipelining and parallel processing of IIR filters
- To know about numerical strength reduction, synchronous, wave and asynchronous pipelining
- To provide in-depth knowledge on scaling, round-off noise, bit-level arithmetic architectures

UNIT I DSP SYSTEMS, PIPELINING AND PARALLEL PROCESSING OF FIR FILTERS

DSP systems - Typical DSP algorithms - Data flow and Dependence graphs -critical path -Loop bound - iteration bound - longest path matrix algorithm - Pipelining and Parallel processing of FIR filters - Pipelining and Parallel processing for low power.

UNIT II RETIMING, ALGORITHMIC STRENGTH REDUCTION

Retiming – definitions and properties, Unfolding – an algorithm for unfolding, properties of unfolding, sample period reduction and parallel processing application, Algorithmic strength reduction in filters and transforms, 2-parallel FIR filter, 2-parallel fast FIR filter, DCT architecture, rank-order filters, Odd-Even merge-sort architecture, parallel rank order filters.

UNIT III FAST CONVOLUTION, PIPELINING AND PARALLEL PROCESSING OF IIR FILTERS

Fast convolution - Cook-Toom algorithm - modified Cook-Toom algorithm - Pipelined and parallel recursive filters - Look-Ahead pipelining in first-order IIR filters - Look-Ahead pipelining with power of- two decomposition - Clustered look-ahead pipelining - Parallel processing of IIR filters - combined pipelining and parallel processing of IIR filters.

UNIT IV NUMERICAL STRENGTH REDUCTION, SYNCHRONOUS, WAVE AND ASYNCHRONOUS PIPELINING

Numerical strength reduction - sub expression elimination - multiple constant multiplication -, iterative matching - synchronous pipelining and clocking styles - clock skew in edge-triggered single phase clocking - two-phase clocking, wave pipelining - Asynchronous pipelining bundled data versus dual rail protocol.

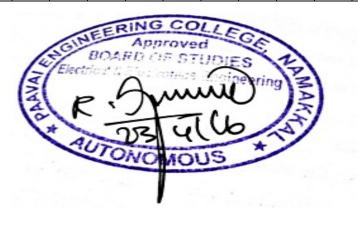
UNIT V SCALING, ROUND-OFF NOISE, BIT LEVEL ARITHMETIC ARCHITECTURES

Scaling and round-off noise - scaling operation, round-off noise - state variable description of digital filters - scaling and round-off noise computation - round-off noise in pipelined IIR filters - Bit-level arithmetic

architectures - parallel multipliers with sign extension - parallel carry-ripple and carry-save multipliers - Design of Lyon's bit-serial multipliers using Horner's rule - bit-serial FIR filter - CS representation - CSD multiplication using Horner's rule for precision improvement - Distributed Arithmetic fundamentals and FIR filters.

TOTAL PERIODS

45


COURSE OUTCOMES

After the completion of the course, the students will be able to

- gain knowledge about the DSP systems, pipelining and parallel processing of fir filters
- remember about retiming, algorithmic strength reduction
- gain knowledge about fast convolution, pipelining and parallel processing of iir filters
- understand about numerical strength reduction, synchronous, wave and asynchronous pipelining
- evaluating the scaling, round-off noise, bit-level arithmetic architectures

- 1. Keshab K. Parhi, "VLSI Digital Signal Processing Systems, Design and implementation", Wiley Interscience, first edition (reprint), 2008.
- U. Meyer Baese, "Digital Signal Processing with Field Programmable Gate Arrays", Springer, third edition, 2007
- 3. Rogger Woods, John MCallister, Richard Turner and Ying Yi, "FPGA based Implementation of Signal Processing Systems", John Wiley & Sons, first edition, 2008.

	(Mapp	Ū					Ü			s: 1-We	ak	
COs	Programme Outcomes(POs)													
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	3	2	2	-	3	-	-	2	-	3	3	3	3
CO2	3	3	2	2	-	-	-	-	2	-	3	3	3	3
CO3	3	3	2	2	-	3	-	-	2	-	3	3	3	3
CO4	3	3	3	1	-	-	-	-	2	-	3	3	3	3
CO5	3	3	3	1	-	3	-	-	2	-	3	3	3	3

To enable the students to

- provide in-depth knowledge about multimedia networking
- gain knowledge about Broadband network technology
- gain in-sight onto reliable transport protocol and applications
- know about multimedia communication standards
- learn about multimedia communication across network

UNIT I MULTIMEDIA NETWORKING

9

Digital Sound, Video and Graphics – Basic Multimedia Networking – Multimedia Characteristics – Evolution of Internet Services Model – Network Requirements for Audio/ Video Transform – Multimedia Coding and Compression for Text, Image Audio And Video.

UNIT II BROADBAND NETWORK TECHNOLOGY

9

Broadband Services – ATM and IP, IPV6, High Speed Switching – Resource Reservation, Buffer Management – Traffic Shaping – Caching – Scheduling and Policing, Throughput, Delay and Jitter Performance – Storage and Media Services – Voice and Video Over IP – MPEG–2 over ATM/IP – Indexing Synchronization of Requests – Recording and Remote Control

UNIT III RELIABLE TRANSPORT PROTOCOL AND APPLICATIONS

9

Multicast over Shared Media Network – Multicast Routing and Addressing – Scaling Multicast and NBMA Networks – Reliable Transport Protocols – TCP Adaptation Algorithm – RTP, RTCP – MIME Peer–to–PeerComputing–Shared Application – Video Conferencing, Centralized and Distributed Conference Control – Distributed Virtual Reality – Light Weight Session Philosophy

UNIT IV MULTIMEDIA COMMUNICATION STANDARDS

9

Objective of MPEG – 7 Standard – Functionalities and Systems of MPEG–7, MPEG–21 Multimedia Framework Architecture – Content Representation – Content Management and usage – Intellectual Property Management – Audio Visual System – H322 : Guaranteed QOS LAN Systems – MPEG-4 Video Transport across Internet.

UNIT V MULTIMEDIA COMMUNICATION ACROSS NETWORKS

9

Packet Audio/Video in The Network Environment –Video Transport across Generic Networks – Layered Video Coding – Error Resilient Video Coding Techniques – Scalable Rate Control – Streaming Video Across Internet – Multimedia Transport Across ATM Networks and IP Network – Multimedia Across Wireless Networks .

TOTAL PERIODS

45

COURSE OUTCOMES

After the completion of the course, the students will be able to

- gain knowledge about multimedia networking
- describe about broadband network technology
- gain in-sight onto reliable transport protocol and applications
- illustrate about multimedia communication standards
- create multimedia communication across networks

- 1. B O Szuprowicz, "Multimedia Networking", McGraw Hill, Newyork, 1995.
- 2. K R Rao, Zoran S, Bojkovic and Dragorad A, Milovanovic, "Multimedia communication systems", PHI, 2003.
- 3. Jon Crowcroft, Mark Handley, Ian Wakeman "Internetworking Multimedia" Harcourt, Singapore, 1998.
- 4. Tay Vaughan, "Multimedia Making it to work", Tata McGraw Hill, New Delhi, fourth edition.

	(• • •	C		e Outco			Ü				ak	
COs	Programme Outcomes(POs)													
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	3	2	2	-	3	-	-	2	-	3	3	3	3
CO2	3	3	2	2	-	-	-	-	2	-	3	3	3	3
CO3	3	3	2	2	-	3	-	-	2	-	3	3	3	3
CO4	3	3	3	1	-	-	-	-	2	-	3	3	3	3
CO5	3	3	3	1	-	3	-	-	2	-	3	3	3	3

To enable the students to

- realize the basics of wireless communication.
- understand the concepts of transceiver architectures.
- introduce to the students the low power design techniques of VLSI circuits.
- learn the design and implementation of various VLSI circuits for wireless communication systems

UNIT I WIRELESS COMMUNICATION

9

Digital communication systems- minimum bandwidth requirement, the Shannon limit- overview of modulation schemes- classical channel- Characteristics of wireless channel – path loss- multipath fading- basics of spread spectrum and spread spectrum techniques.

UNIT II IMPEDANCEMATCHINGANDAMPLIFIERS

9

Transceiver design constraints- baseband subsystem design- RF subsystem design- Super heterodyne receiver and direct conversion receiver- Receiver front-end- filter design- non-idealities and design parameters.

UNIT III LOW POWER DESIGN TECHNIQUES

9

Source of power dissipation- estimation of power dissipation- reducing power dissipation at device and circuit levels- low voltage and low power operation- reducing power dissipation at architecture and algorithm levels.

UNIT IV WIRELESS CIRCUITS

9

VLSI Design of LNA-wideband and narrow band-impedance matching - Automatic Gain Control (AGC) amplifier - Active mixer- analysis, conversion gain, distortion analysis- low frequency and high frequency case, noise - Passive mixer- sampling mixer and switching mixer- analysis of distortion, conversion gain and noise in these mixers.

UNIT V FREQUENCY SYNTHESIZERS

9

45

VLSI design of Frequency Synthesizers (FS) – Parameters of FS - PLL based frequency synthesizer, VCO-Phase Detector – Analog Phase Detectors – Digital Phase Detectors, LC oscillators- ring oscillator- phase noise, design approaches(DECT application)

TOTAL PERIODS

COURSE OUTCOMES

After the completion of the course, the students will be able to

- understand the application of vlsi circuits in wireless communication.
- gain knowledge of various architectures used in implementing wireless system
- simulate low power techniques using software

- establish the VLSI design of wireless circuits.
- Learn the operation of RF oscillators and mixers and their design

- 1. Bosco Leung, "VLSI for Wireless Communication", Springer, 2011.
- 2. Elmad N Farag and Mohamed I Elmasry, "Mixed Signal VLSI Wireless Design-Circuits and Systems", Kluwer Academic Publishers, 2002.
- 3. David Tsee, Pramod Viswanath," Fundamentals of Wireless Communication", Cambridge Univ Press

	(• •	Ü		e Outco			Ü			s: , 1-We	ak			
COs		Programme Outcomes(POs)														
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	3	3	2	2	-	3	-	-	2	-	3	3	3	3		
CO2	3	3	2	2	-	-	-	-	2	-	3	3	3	3		
CO3	3	3	2	2	-	3	-	-	2	-	3	3	3	3		
CO4	3	3	3	1	-	-	-	-	2	-	3	3	3	3		
CO5	3	3	3	1	-	3	-	-	2	-	3	3	3	3		

