APPLIED MATHEMATICS FOR ELECTRICAL ENGINEERS

COURSE OBJECTIVES

- To develop the ability to apply the concepts of matrix theory and linear programming in electrical engineering problems.
- To familiarize the students in calculus of variations and solve problems using fourier transforms associated with engineering applications
- To understand the basic concepts of one dimensional random variables and apply in electrical engineering problems
- To formulate and construct a mathematical model for a linear programming problem in real life situation
- To introduce fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems

UNIT I MATRIX THEORY

15

3204

The Cholesky decomposition – Generalized Eigenvectors, Canonical basis – QR factorization – Least square method – Singular value decomposition.

UNIT II CALCULUS OF VARIATIONS

15

Concept of variation and its properties – Euler's equation – Functional dependant on first and higher order derivatives – Functional's dependant on functions of several independent variables – Variational problems with moving boundaries – problems with constraints – Direct methods: Ritz and Kantorovich methods.

UNIT III ONE DIMENSIONAL RANDOM VARIABLES

15

Random variables – Probability function – moments – moment generating functions and their properties – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions – Function of a Random Variable.

UNIT IV LINEAR PROGRAMMING

15

Formulation – Graphical solution – Simplex method – Two phase method – Transportation and Assignment Models.

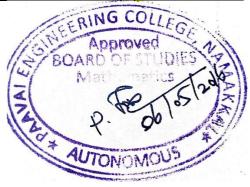
UNIT V FOURIER SERIES

15

Fourier Trigonometric series: Periodic function as power signals – Convergence of series – Even and odd function: cosine and sine series – Non-periodic function: Extension to other intervals – Power signals: Exponential Fourier series – Parseval's theorem and power spectrum – Eigen value problems and orthogonal functions – Regular Sturm-Liouville systems – Generalized Fourier series.

TOTAL: 75 PERIODS

COURSE OUTCOMES


- gain a well found knowledge in matrix to calculate the electrical properties of a circuit, with voltage ,amperage ,resistance, etc.
- solve a variational problem using the Euler equation.

- gain knowledge in standard distributions which can describe the real life phenomena.
- understand and apply linear, integer programming to solve operational problem with constraints.
- apply fourier series, their different possible forms and the frequently needed practical harmonic analysis.

- 1. Richard Bronson, "Matrix Operation", Schaum's outline series, 2nd Edition, McGraw Hill, 2011.
- 2. Gupta, A.S., "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi, 1997.
- 3. Oliver C. Ibe, "Fundamentals of Applied Probability and Random Processes", Academic Press, (An imprint of Elsevier), 2010.
- 4. Taha, H.A., "Operations Research, An introduction", 10th edition, Pearson education, New Delhi, 2010.
- 5. Andrews L.C. and Phillips R.L., "Mathematical Techniques for Engineers and Scientists", Prentice Hall of India Pvt.Ltd., New Delhi, 2005.
- 6. Elsgolts, L., "Differential Equations and the Calculus of Variations", MIR Publishers, Moscow, 1973.
- 7. Johnson R. A. and Gupta C. B., "Miller & Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 7th Edition, 2007.

- 1. https://www.youtube.com/watch?v=8xsi296A9Co
- 2. https://www.youtube.com/watch?v=35UmpC6nrg8
- 3. https://www.youtube.com/watch?v=WWv0RUxDfbs
- 4. https://www.youtube.com/watch?v=8VgmBe3ulb8
- 5. https://www.youtube.com/watch?v=M8POtpPtQZc

CO-PO	O MAP	PING:												
Mappi	ing of C	Course	Outco	me (CO	O's) wi	th Pro	gramn	ie Outo	comes	(PO's)	and P	rogran	ıme Sp	ecific
C	Outcom	es PSO	's (1/2	2/3 ind	icates s	trengt	h of co	rrelati	on) 3-8	Strong	2-Med	lium, 1	-Weak	
	Outcomes PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak Programme Outcomes PO's PSO's													
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	3	-	1	-	-	2	-	-	3	2	1
CO2	3	3	3	3	-	1	-	-	2	-	-	3	2	1
CO3	3	3	3	3	-	1	-	-	2	-	-	3	2	1
CO4	3	3	3	3	-	1	-	-	2	-	-	3	2	1
CO5	3	3	3	3	-	1	-	-	2	-	_	3	2	1

- To model the DC machine and analyse its effect on various circuits.
- To analyze the steady state and dynamic state operation of DC machine through mathematical modeling.
- To model the three-phase induction machines and the operations using transformation theory.
- To impart knowledge on vector controlled induction machines.
- To learn the performance of special electrical machines using mathematical models.

UNIT I **ELECTRICAL MACHINE ANALYSIS**

15

Introduction, magnetically coupled circuits, electromechanical energy conversion, Machine Windings & Airgap MMF, Winding Inductances & Voltage Equations, equations of transformation-change of variables, Stationary circuit variables transformed to the arbitrary reference frame, Commonly used reference frames and transformation between reference frames.

DYNAMIC MODELING OF INDUCTION MACHINES UNIT II

15

Equivalent circuits - steady state performance equations - Dynamic modeling of induction machines: Real time model of a two phase induction machines, three phase to two phase transformation-Electromagnetic torquegeneralized model in arbitrary reference frames-stator reference frames model - rotor reference frames modelsynchronously rotating reference frame model.

UNIT III MODELING OF SYNCHRONOUS MACHINE

15

Synchronous machine inductances -voltage equations in the rotor's dq0 reference frame electromagnetic torque-current in terms of flux linkages-simulation of three phase synchronous machine- modeling of PM Synchronous motor.

UNIT IV PM BL D.C. MACHINE AND LINEARIZED MACHINE

15

Analysis of PM BL D.C. machine: Introduction to PM BL D.C. machine, Voltage and torque equations in machine variables, Analysis of steady state operations. Linearized Machine Equations: Introduction, Linearization of induction & synchronous machine equations.

UNIT V SPECIAL MACHINES

15

Permanent magnet and characteristics-synchronous machines with PMs: Machine configuration-flux density distribution - types of PMSM - Dynamic performance of synchronous machine, comparison of actual and approximate transient torque characteristics, Equal area criteria- simulation of three phase synchronous machine - modeling of PMSM -Variable Reluctance Machines: Basics, analysis-circuit wave forms for torque production - Brushless DC Motor.

TOTAL: 75 PERIODS

COURSE OUTCOMES

- understand the necessity of various electrical parameters for mathematical modeling.
- know the different types of reference frame theories and transformation relationships.
- find the electrical machine equivalent circuit parameters and its modeling.

- analyze the theory of transformation of three phase variables to two phase variables.
- design simple magnetic circuits by calculating energy, force and torque for single and multi-excited systems.

- 1. Charles kingsley, Jr., A.E.Fityzgerald, Stephen D.Umans "Electric Machinery", Tata McGraw Hill, 2010.
- 2. Paul C. Krause, Oleg Wasynczuk and Scott D. Sudhoff, "Analysis of Electric Machinery and Drive Systems", John Wiley & Sons, 2004
- 3. Miller, T.J.E. "Brushless permanent magnet and reluctance motor drives", Oxford, 2014.
- 4. P. S. Bhimbra, "Generalised Theory of Electrical Machines", Khanna Publications, 2013.
- 5. R.Krishnan "Electric Motor Drives, "Modeling, Analysis& control", Pearson Publications, 2003.
- 6. Bimal K Bose, "Power Electronics and Variable Frequency Drives", IEEE Press, New Jersey, 2006.

- 1. http://www.scribd.com/doc/27104147/Electric-Motor-Drives-Modeling-Analysis
- 2. file17.neighbourpdf.org/2c5uq-brushless-permanent-magnet-and-reluctance.
- 3. ledit-lighting.com/download/.../ps-bimbhra-electrical-machinery-solution.

СО-РО	O MAP	PING:												
	ing of (Outcom			•	,		_			` /		_	_	
				P	rograr	nme O	utcom	es PO'	S				PS	O's
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	-	-	1	-	1	-	2	-	2	2	1
CO2	3	3	3	-	-	1	-	1	-	2	-	2	2	1
CO3	3	3	3	-	-	1	-	1	-	2	-	2	2	1
CO4	3	3	3	_	_	1	_	1	-	2	-	2	2	1
CO5	3	3	3	-	-	1	-	1	-	2	-	2	2	1

- To provide the requisite knowledge about the MATLAB and PSPICE models.
- To develop and describe dynamic behavior of basic power electronic circuits using PSPICE.
- To design and analyse the characteristics of power electronic circuits using MATLAB.
- To know the simulate converter circuits using PSPICE and MATLAB software.
- To understand the performance of various motor drives using simulation tools.

UNIT I INTRODUCTION

15

Need for Simulation - Challenges in simulation - Classification of simulation programs - Overview of PSPICE, MATLAB and SIMULINK. Mathematical Modeling of Power Electronic Systems: Static and dynamic models of power electronic switches - Static and dynamic equations and state-space representation of power electronic systems.

UNIT II PSPICE

15

File formats - Description of circuit elements - Circuit description - Output variables - Dot commands - SPICE models of Diode, Thyristor, TRIAC, BJT, Power MOSFET, IGBT and MCT.

UNIT III MATLAB AND SIMULINK

15

Toolboxes of MATLAB - Programming and file processing in MATLAB – Model definition and model analysis using SIMULINK - S-Functions - Converting S-Functions to blocks.

UNIT IV SIMULATION USING PSPICE, MATLAB AND SIMULINK

15

Diode rectifiers - Controlled rectifiers - AC voltage controllers - DC choppers - PWM inverters - Voltage source and current source inverters - Resonant pulse inverters - Zero current switching and zero voltage switching inverters.

UNIT V SIMULATION OF DRIVES

15

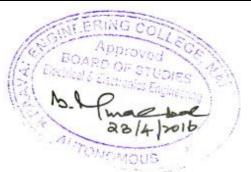
Simulation of speed control schemes for DC motors – Rectifier fed DC motors – Chopper fed DC motors – VSI and CSI fed AC motors – PWM Inverter – DC link inverter.

TOTAL: 75 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- understand the fundamentals of simulation software tools.
- design power electronic circuits using PSPICE and analyse their behaviour.
- model and simulate circuits using MATLAB functional blocks.
- demonstrate circuit simulation and using PSPICE and MATLAB.
- analyse the performance of various motor drive under simulation.


REFERENCES

- 1. Muhammad H .Rashid, "Spice for Power Electronics and Electric Power", CRC Press, Taylor and Francies Group, 2006.
- 2. Ned Mohan, "Power Electronics: Computer Simulation Analysis and Education using PSPICE", Minnesota Power Electronics Research and Education, USA, 2002.

- 3. Bimal K Bose, "Power Electronics and Variable Frequency Drives", IEEE Press, New Jersey, 2006.
- 4. M.B.Patil "Simulation of Power Electronics Circuits" Narosa Publishing house, 2009.
- 5. B. P. Singh and Rekha Singh, "Electronic Devices and Circuit", Pearson Education, 2013.

- 1. www.125books.com/move-other-bk.php?file=125BOOKS.COM...pdf
- 2. exactdownload.com/download.php?...Power%20Electronics%20and%20.
- 3. www.debtbooks.org/d8ij3_ebooks-simulation-of-power-electronic-circuits

СО-РО	Э МАР	PING:												
	ing of C Outcom			•	,		_			` /		_	_	
				P	rograr	nme O	utcom	es PO'	s				PS	O's
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	-	3	2	3	1	-	1	-	2	-	2	2	3
CO2	3	-	3	2	3	1	-	1	-	2	-	2	2	3
CO3	3	-	3	2	3	1	-	1	-	2	-	2	2	3
CO4	3	-	3	2	3	1	_	1	-	2	-	2	2	3
CO5	3	_	3	2	3	1	_	1	_	2	_	2	2	3

- To understand the circuit concepts and operation of single phase converter.
- To gain knowledge on three phase power converters and their performance.
- To derive and design the various operating modes and different configurations of DC-DC power converters.
- To impart knowledge on AC to AC voltage controllers.
- To analyze and comprehend the cyclo-converters and their applications.

UNIT I SINGLE-PHASE CONVERTERS

9

Single phase converters – Half controlled and fully controlled converters – Evaluation of input power factor and harmonic factor – continuous and Discontinuous load current – single phase dual converters – power factor Improvements – Extinction angle control – symmetrical angle control – single phase series converters –effect of source impedance and overlap - reactive power and power balance in converter circuits - Applications – Numerical problems.

UNIT II THREE-PHASE CONVERTERS

9

Three Phase Converters – Half controlled and fully controlled converters – Evaluation of input power factor and harmonic factor – continuous and Discontinuous load current – three phase dual converters — Twelve phase converters – applications – effect of source impedance- Numerical problems.

UNIT III D.C. TO D.C. CONVERTERS

9

Analysis of step – down and step-up dc to dc converters with resistive – inductive loads – Switched mode regulators – Analysis of Buck Regulators – Boost regulators – buck and boost regulators – Cuk regulators – Condition for Continuous inductor current and capacitor voltage – comparison of regulators – Multi-output boost converters – Advantages and Applications – Numerical problems.

UNIT IV AC VOLTAGE CONTROLLERS

9

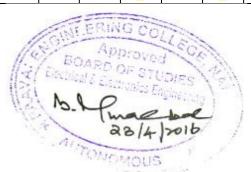
Principle of ON/OFFcontrol and phase control - single phase and three phase controllers – various configurations – analysis with R and R-L loads - Harmonic analysis, Matrix converter - Numerical problems.

UNIT V CYCLO-CONVERTERS

9

Single phase to single phase cyclo-converters – Analysis of midpoint and bridge Configurations – Three phase to three phase cyclo-converters – analysis of Midpoint and bridge configurations – Limitations – Advantages – Applications – Numerical problems.

TOTAL: 45 PERIODS


COURSE OUTCOMES

- analyse the performance parameters of single and three phase AC-DC converters.
- differentiate the operating modes of various configurations of DC-DC power converters.
- design and analyse of AC to AC voltage controllers with load dependent problem.
- analyse and control the operation of cyclo-converters.

- 1. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, New Delhi, 2011.
- 2. BimalK.Bose., "Modern Power Electronics and AC Drives", Pearson Education, 2009.
- 3. Ned Mohan, Undeland and Robbin, "Power Electronics: converters, Application and design" John Wiley and sons. Inc, Newyork, 2009.
- 4. P.C. Sen, "Modern Power Electronics", S. Chand Limited, New Delhi, 2008.
- 5. P.S.Bimbra, "Power Electronics", Khanna Publishers, 2005.
- 6. Dubey. G.K., "Thyristorised power controllers", New age International, New Delhi, 2002.

- 1. https://cld.pt/.../download/.../Power%20Electronics%20Handbook%203r
- 2. https://myarchive4u.wordpress.com/.../power-electronics-circuitsdevices
- 3. 7see.blogspot.com/2015/06/power-electronics-by-ps-bimbra-free.html

СО-РС				(6)		41 B		0.1		(BO1)	1.0		6	• 60
Mappi	ing of C Outcom			•	,		_			` ,		_	_	
	, utcom		. 5 (1/2		rograr					, v. J.i.g.	, = 1,100			O's
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	-	-	1	-	1	-	2	-	2	1	3
CO2	3	3	3	-	-	1	-	1	-	2	-	2	1	3
CO3	3	3	3	-	-	1	-	1	-	2	-	2	1	3
CO4	3	3	3	-	-	1	-	1	-	2	-	2	1	3
CO5	3	3	3	-	-	1	-	1	-	2	-	2	1	3

- To understand the power semiconductor structures and its characteristics.
- To study the basic principle and operation of thyristors.
- To understand the static and dynamic characteristics of current controlled power semiconductor devices.
- To know the basic principle and operation of voltage controlled devices.
- To learn the basic principles and operation of firing and protecting circuits.

UNIT I INTRODUCTION

9

Power switching devices overview – Attributes of an ideal switch, application requirements, circuit symbols; Power handling capability – SOA; Device selection strategy – On-state and switching losses – EMI due to switching - Power diodes - Types, forward and reverse characteristics, switching characteristics – rating.

UNIT II THYRISTORS

9

Thyristors – Physical and electrical principle underlying operating mode, Two transistor analogy – concept of latching- Gate and switching characteristics-di/dt and dv/dt protection - commutation of thyristors - converter grade and inverter grade; series and parallel operation- Models of Thyristors.

UNIT III CURRENT CONTROLLED DEVICES

9

Power BJT's – Construction, static characteristics, switching characteristics; Negative temperature co- efficient and secondary breakdown; Power Darlington - comparison of BJT and Thyristor – steady state and dynamic models of BJT.

UNIT IV VOLTAGE CONTROLLED DEVICES

9

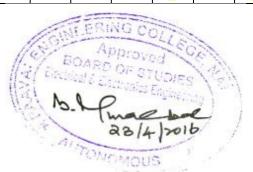
Power MOSFETs and IGBTs – Principle of voltage controlled devices, construction, types, static and switching characteristics, steady state and dynamic models of MOSFET and IGBTs - Basics of GTO, MCT, RCT and IGCT-Intelligent Power Modules-Selection of Power Semiconductor Devices for typical Applications.

UNIT V FIRING AND PROTECTION CIRCUITS

9

Necessity of isolation, pulse transformer, opto-coupler – Gate drives circuit: SCR – R, RC, UJT, MOSFET, IGBTs and base driving for power BJT. - Over voltage, over current and gate protections; Design of snubbers. Heat transfer – conduction, convection and radiation, Electrical analogy of thermal components- Thermal resistance and impedance, Guidance for heat sink selection –Mounting types.

TOTAL: 45 PERIODS


COURSE OUTCOMES

- know the various power semiconductor structures and its characteristics.
- use the thyristor models for industrial applications .
- understand the characteristics of current controlled devices.
- know the basic principle and operations of voltage controlled devices.
- apply the operation of firing and protection circuits.

- 1. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall of India, New Delhi, 2004.
- 2. MD Singh and K.B Khanchandani, "Power Electronics", Tata McGraw Hill, 2001.
- 3. Ned Mohan, Undeland and Riobbins, "Power Electronics Concepts, applications and Design", John Wiley and Sons, Singapore, 2003.
- 4. Vedam Subramaniyam, "Power Electronics Devices, Converters and Applications", New Age International private Ltd., 2006.
- 5. P.C.Sen, Modern Power Electronics, S. Chand Limited, 2005.

- 1. https://cld.pt/.../download/.../Power%20Electronics%20Handbook%203r.
- 2. https://myarchive4u.wordpress.com/.../power-electronics-circuitsdevices-.
- 3. century61clinic.thecoolcatalog.com/.../modern-power-electronics_nilkke.

CO-PO	O MAP	PING:												
	ing of (Outcom			•	_		_			` /		_	_	
				P	rograr	nme O	utcom	es PO'	S				PS	O's
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	-	2	1	-	1	-	1	-	2	-	2	1	2
CO2	3	-	2	1	-	1	-	1	-	2	-	2	1	2
CO3	3	-	2	1	-	1	-	1	-	2	-	2	1	2
CO4	3	-	2	1	-	1	-	1	-	2	-	2	1	2
CO5	3	-	2	1	-	1	-	1	-	2	-	2	1	2

- to know simulation of load converters
- to know the simulation of inverters
- to understand the simulation of motor drives
- To provide hands on experience on various techniques and software packages for the simulation of power electronic components and circuits.

LIST OF EXPERIMENTS

- 1. Simulation of Single phase Semi and fully converter with
 - a) R Load, b) RL load, c) RLE (Motor) Load.
- 2. Simulation of Single phase Dual converter.
- 3. Simulation of Three phase semi converter.
- 4. Simulation of Three phases fully controlled converter.
- 6. Simulation of Single phase full bridge Inverter.
- 7. Simulations of Three phase full bridge inverter.
 - a) 180 degree mode operation, b) 120 degree mode operation
- 8. Simulation of single phase Sinusoidal PWM inverters.
- 9. Simulation of single phase multilevel inverter.
- 10. Simulation of Three phase AC Voltage regulator with induction motor drive.
- 11. Simulation of chopper fed DC motor drive.

COURSE OUTCOMES

At the end of this course, the students will be able to

- simulate and analyze to know simulation of load converters
- simulate and analyze the inverters
- simulate and analyze the motor drives
- simulate and analyze various techniques and software packages for the simulation of power electronic components and circuits.

TOTAL: 60 PERIODS

CO-PO	O MAP	PING:												
Mappi	_			•	_		_			` ,		_	_	
C	Outcomes PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak Programme Outcomes PO's PSO's													
	Programme Outcomes PO's PSO's													
CO's														
CO1	3	-	3	-	3	1	-	-	2	1	-	2	2	2
CO2	3	-	3	-	3	1	-	-	2	1	- 22	2=	2	2
CO3	3	_	3	_	3	1	-	-	2	1	11	2	2	02/
CO4	3	-	3	-	3	1	-	-	2	1	1100	2	A/2	2

- To enhance the communication skills
- To improve presentational skills for betterment of their carrier.
- To enhance leadership quality.
- To Progress Employability.

In this course, every student has to present at least two technical papers on recent advancements in engineering/technology referring journal papers and will be evaluated by the course instructor. During the seminar session, each student is expected to present a topic, for duration of about 15 to 20 minutes which will be followed by a discussion for 5 minutes. Each student is responsible for selecting a suitable topic that has not been presented previously. Every student is expected to participate actively in the ensuing class discussion by asking questions and providing constructive criticism.

COURSE OUTCOMES

At the end of this course, the students will be able to

- acquire knowledge in communication
- technical presentation skills
- expose leadership quality
- success in employment.

TOTAL: 30 PERIODS

СО-Р	O MAP	PING:												
	ing of C Outcom													
				PS	O's									
CO's	1	2	12	1	2									
CO1	3	-	-	-	-	2	1	2	3	3	1	3	1	-
CO2	3	-	-	-	-	2	1	2	3	3	1	3	1	-
CO3	3	-	-	-	-	2	1	2	3	3	1	3	1	-
CO4	3	-	-	-	-	2	1	2	3	3	1	3	1	-

FLEXIBLE AC TRANSMISSION SYSTEMS

3204

COURSE OBJECTIVES

- To understand the concepts of transient stability and voltage stability.
- To infer knowledge on STATCOM and DSTATCOM.
- To explain the modeling and multifunction models of SSSC.
- To discuss various aspects of Unified Power Flow Controller and its characteristics.
- To describe the various thyristor controlled capacitors.

UNIT I INTRODUCTION

15

Concept of reactive power compensation, Review of series and shunt compensation, Concepts of transient stability and voltage stability, Power system oscillations. Basic types of FACTS controllers, benefits from FACTS controllers.

UNIT II SHUNT COMPENSATORS

15

Midpoint voltage regulation, Method of controlled VAR generation, principle of operation, Control and characteristics of SVC and STATCOM, Multi-control functional model of STATCOM for power flow analysis, Implementation of STATCOM models in Newton power flow, STATCOM in optimal power flow (OPF), STATCOM in distribution system (DSTATCOM), DSTATCOM performance in various modes including harmonic mitigation.

UNIT III SERIES COMPENSATORS

15

Series compensation and voltage stability, Variable impedance type series compensators (TCSC) and switching converter type series converter (SSSC), Configurations, Control and characteristics, General applications, Modelling of multicontrol functional model of SSSC in power flow analysis, Implementation of SSC models in Newton power flow, SSSC in OPF, Dynamic Voltage Restorer (DVR) in Distribution System, Subsynchronous Resonance Problem, NGH Scheme.

UNIT IV UNIFIED POWER FLOW CONTROLLERS

15

Objectives and principle of operation of voltage and phase angle regulations, Static phase shifter and its operating characteristics, Unified Power Flow Controller (UPFC) control and characteristics, UPFC as generalised SSSC, Modelling of UPFC for power flow and OPF studies, Implementing UPFC in Newton power flow, Power oscillations control with UPFC.

UNIT V INTERLINE POWER FLOW CONTROLLER AND CO-ORDINATION OF

FACTS CONTROLLERS

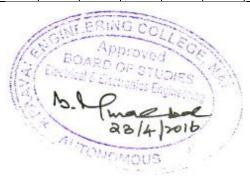
15

TOTAL: 75 PERIODS

Principle of operation, Control and characteristics, Model of IPFC for power flow and optimum power flow studies. FACTS Controller interactions – SVC–SVC interaction, SVC-TCSC interaction, TCSC-TCSC interaction and SSSC – STATCOM interaction.

COURSE OUTCOMES

At the end of this course, the students will be able to


• know the basic concepts of compensation in FACTS controller.

- understand the issues of damping to power system oscillations, real and reactive power control.
- understand the characteristics and configuration series compensators.
- compare UPFC with controlled series compensators and phase shifter.
- demonstrate the concepts of interline power flow controller and co-ordination of FACTS controllers.

- 1. Song, Y.H. and Johns, A.T., Flexible AC Transmission Systems, IEEE Press, 1999.
- 2. Hingorani, N.G. and Gyragyi, L., Understanding FACTS (Concepts and Technology of Flexible AC Transmission System), Standard Publishers & Distributors, 2001.
- 3. Mathur, R.M. and Verma, R.K., Thyristor based FACTS controllers for Electrical Transmission Systems, IEEE Press 2002.
- 4. Zhang, X. P., Rehtanz, C. and Pal, B., Flexible AC Transmission Systems: Modelling and Control, Springer ,2006.

- 1. www.energy.siemens.com/us/en/power.../static-var-compensator-classic/
- 2. https://www.ee.iitb.ac.in/~npsc2008/NPSC_CD/Data/Oral/.../p236.pdf
- 3. new.abb.com > Offerings > FACTS

СО-РО	O MAP	PING:												
	ing of (Outcom													
				P	rograr	nme O	utcom	es PO'	S				PS	O's
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	-	3	-	2	1	-	-	-	-	2	1	1	1
CO2	3	-	3	-	2	1	-	-	-	-	2	1	1	1
CO3	3	-	3	-	2	1	-	-	-	-	2	1	1	1
CO4	3	-	3	-	2	1	-	-	-	-	2	1	1	1
CO5	3	-	3	-	2	1	-	-	-	-	2	1	1	1

- To impart knowledge in operation and analysis of Induction Motors.
- To analyze the operation of VSI and CSI fed induction motor drives.
- To learn the speed control of induction motor drive from the rotor side.
- To study the field oriented control of induction machines.
- To equip the student to learn the controlling methods of synchronous motor drives.

UNIT I INTRODUCTION TO INDUCTION MOTORS

9

Steady state performance equations – Rotating magnetic field – torque production, Equivalent circuit– Variable voltage, constant frequency operation – Variable frequency operation, constant Volt/Hz operation. Drive operating regions, variable stator current operation.

UNIT II VSI AND CSI FED INDUCTION MOTOR CONTROL

9

AC voltage controller circuit – four quadrant control and closed loop operation – loss minimation -six step inverter voltage control - closed loop variable frequency PWM inverter with dynamic braking, regenerative braking, loss minimation - CSI fed IM variable frequency drives comparison.

UNIT III ROTOR CONTROLLED INDUCTION MOTOR DRIVES

9

Static rotor resistance control - injection of voltage in the rotor circuit - conventional rotor resistance control - Double fed Machine Speed control - static scherbius drives; modes of operation, modified scherbius drive for VSCF power generation - power factor considerations - Static Kramer drive; speed control of Kramer drive - modified Kramer drives.

UNIT IV FIELD ORIENTED CONTROL

9

Field oriented control of induction machines – Theory – DC drive analogy – Direct and Indirect methods – Flux vector estimation - Direct torque control of Induction Machines – Torque expression with stator and rotor fluxes, DTC control strategy-Adaptive control- Self Commissioning of Drive.

UNIT V AC VOLTAGE CONTROLLER FED AC DRIVES

9

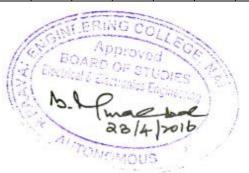
Speed control and braking, Analysis of different AC motor with single and three phase ac voltage controllers. Operation in different modes and configurations. Problems and strategies.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- analyze the concepts of various operating regions of the induction motor drives.
- understand the operation of VSI & CSI fed induction motor control.
- design and analyze the operation of the speed control of induction motor drive from the rotor side.
- obtain the various methods of various field oriented control strategies.
- gain knowledge in the control methods of synchronous machine drives.


REFERENCES

 S.Sivanagaraju, M.Balasubba Reddy and A.MallikariunaPrased "Power Semiconductor Drives", PHI Learning Pvt Ltd, 2009.

- 2. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, Third Edition, New Delhi, 2004.
- 3. R.Krishnan, "Electric Motor Drives Modeling, Analysis and Control", Prentice-Hall of India Pvt. Ltd., New Delhi, 2003.
- 4. Power Converters and AC Electrical Drives with Linear Neural Networks" Narosa Publishing House, 2002.
- 5. Bimal K Bose, "Modern Power Electronics and AC Drives", Pearson Education Asia, 2002.
- 6. Murphy J.M.D, Turnbull, F.G, "Thyristor control of AC motor, Pergamon Press, Oxford, 1988.

- 1. https://www.scribd.com/.../Electric-Motor-Drives-Modeling-Analysis.
- 2. https://myarchive4u.wordpress.com/.../power-electronics-circuitsdevices.
- 3. century61clinic.thecoolcatalog.com/.../modern-power-electronics_nilkke.

CO-PC		Course	Outco	,	,		_			` ,		_	_	
				P	rograi	nme O	utcom	es PO'	S				PS	O's
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	1	-	1	-	1	-	2	-	2	3	2
CO2	3	3	3	1	-	1	-	1	-	2	-	2	3	2
CO3	3	3	3	1	-	1	-	1	-	2	-	2	3	2
CO4	3	3	3	1	-	1	-	1	-	2	-	2	3	2
CO5	3	3	3	1	-	1	-	1	-	2	-	2	3	2

- To understand dc motor system with its requirements.
- To know the speed control of dc motor.
- To study and analyze the converter for dc drives.
- To design the of controllers for dc drives.
- To know the digital control techniques of various D.C Drives.

UNIT I REVIEW OF CONVENTIONAL DC MOTORS

9

Industrial motor drive requirements - typical load torque speed curves - energy savings - variable speed drives - load dynamics and modeling - load type and duty ratio - motor choice - speed control principles - constant torque - constant power and multi quadrant operations.

UNIT II SPEED CONTROL OF DC MOTORS

9

Solid state controlled DC motor - converter fed - chopper fed and operating modes and configurations - speed control and torque control and speed reversal - braking - regeneration - closed loop regulation - Inching and jogging and effect of saturation.

UNIT III CONVERTER FOR DC DRIVES

9

Closed loop operation - speed regulation and speed loop - current loop and tracing of waveforms and speed reversal and torque reversal and with/ without braking and regeneration and design of converters and choppers - firing scheme - simulation.

UNIT IV DESIGN OF CONTROLLERS

9

Modeling of dc motors, converters, choppers - controller design, speed controller, current controller and performance analysis with and without current controller - simulation.

UNIT V DIGITAL CONTROL OF D.C DRIVES

9

Phase Locked Loop and micro-computer control of DC drives – Program flow chart for constant horse power and load disturbed operations; Speed detection, gate firing and Applications.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- know the basic concepts and behavior of dc motor.
- demonstrate the different speed control of dc motor.
- summarize the operation of converter for drives.
- model and analyze the current and speed controllers for closed loop solid state DC motor drives.
- implement the algorithms for digital control of D.C Drives.

REFERENCES

- 1. Gobal K.Dubey, "Fundamentals of Electrical Drives", Narosal Publishing House, New Delhi, 2009.
- 2. R.Krishnan, "Electric Motor Drives–Modeling, Analysis and Control", Prentice-Hall of India Pvt. Ltd., New Delhi, 2007.

- 3. Vedam Subramanyam, "Electric Drives Concepts and Applications", Tata McGraw Hill, Second Edition, 2010.
- 4. Electric Motors and Drives: Fundamentals, Types and Applications, Austin Hughes, Newnes, Jan 2006.
- 5. Control of Electrical Drives, Werner Leonhard, Springer, Sept., 2001.
- 6. Buxbaum, A.Schierau, K.and Staughen, "A Design of control System for d.c Drives ", Springer-Verlag, berlin, 1990.

- 1. https://www.scribd.com/.../Electric-Motor-Drives-Modeling-Analysis.
- 2. http://www.scribd.com/doc/101099222/A-Guide-to-Electric-Drives-and-DC-Motor- Control#scribd.
- 3. www.bowpdf.org/1zu5cu_pdf-book-control-design-techniques-in-power.

СО-РО) MAP	PING:												
Mappi	ing of (Outcom				,		0			` /				
				P	rogran	nme O	utcom	es PO'	S				PS	O's
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	1	-	1	-	1	-	2	-	2	1	2
CO2	3	2	2	1	-	1	-	1	-	2	-	2	1	2
CO3	3	2	2	1	-	1	-	1	-	2	-	2	1	2
CO4	3	2	2	1	-	1	-	1	-	2	-	2	1	2
CO5	3	2	2	1	-	1	-	1	-	2	-	2	1	2

- To make the students to equip the fundamentals of microcontrollers.
- To familiarize about the I/O interfacing techniques of microcontrollers.
- To impart knowledge on the fundamentals of PIC controllers.
- To educate I/O interfacing techniques of PIC controllers.
- To learn about the various application of embedded control drives.

UNIT I MC68HC11 MICROCONTROLLER

9

Architecture memory organization - addressing modes - instruction set - programming techniques - simple programs.

UNIT II PERIPHERALS OF MC68HC11

9

I/O ports - handshaking techniques - reset and interrupts - serial communication interface - serial peripheral interface - programmable timer - analog / digital interfacing - cache memory.

UNIT III PIC 16C7X MICROCONTROLLER

9

Architecture - memory organization - addressing modes - instruction set - programming techniques - simple operation.

UNIT IV PERIPHERAL OF PIC 16C7X MICROCONTROLLER

9

Architecture, memory organization - addressing modes. Instruction set programming in Assembly & C- I/O port, Data Conversion Timers - interrupts - I/O ports - I2C bus for peripheral chip access - A/D converter - VART.

UNIT V EMBEDDED CONTROL OF DRIVES

9

Generation of PWM pulses using embedded processors IC - control of DC drives - V/F control using PIC microcontroller - Vector control using embedded processors - Stepper motor control using PIC microcontroller - Brush less D.C. motor control using embedded processors.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- understand the basics of MC68HC11 controller.
- use MC68HC11 processors to interface different I/O units.
- use the basic knowledge of PIC controllers for drive applications.
- demonstrate the PIC controllers to interface different I/O units.
- implement the controllers for various electrical drive applications.


REFERENCES

- 1. John B. Peatman, "Design with PIC Microcontrollers", Pearson Education, 2004.
- 2. Michael Khevi, "The M68HC11 Microcontroller Applications in Control, Instrumentation and Communication", Prentice Hall, 1997.

- 3. John B. Peatman, "Design with Microcontrollers", McGraw-Hill, 1988.
- 4. John Iovine, "PIC Microcontroller Project Book", McGraw Hill 2000.
- 5. R.Krishnan, "Electric Motor Drives, Modeling, Analysis and Control" Prentice Hall of India, 2002.

- 1. https://www.scribd.com/.../Electric-Motor-Drives-Modeling-Analysis.
- 2. http://www.microdesignsinc.com/picbook/bookinfo/Cover.pdf.
- $3. \quad https://www.goodreads.com/author/show/281932.John_B_Peatman.$

СО-РС) MAP	PING:												
Mappi C	ing of (Outcom						_					_	_	
				P	rograr	nme O	utcom	es PO'	S				PS	O's
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3	-	2	1	-	-	-	-	2	1	2	1
CO2	3	2	3	-	2	1	-	-	-	-	2	1	2	1
CO3	3	2	3	-	2	1	-	-	-	-	2	1	2	1
CO4	3	2	3	-	2	1	-	-	-	-	2	1	2	1
CO5	3	2	3	_	2	1	-	_	-	-	2	1	2	1

- To understand microcontroller based drives
- To know DSP based drives
- To understand chopper fed drives
- To understand induction motor drives

LIST OF EXPERIEMENTS

- 1. Micro controller based speed control of Stepper motor.
- 2. DSP based speed control of BLDC motor.
- 3. DSP based speed control of SRM motor.
- 4. Condition monitoring of three-phase induction motor under fault conditions.
- 5. Chopper Fed DC Drive.
- 6. DSP controlled AC drive.
- 7. FPGA controlled AC drive
- 8. Analysis of Dual Converter Fed DC Motor Drive.
- 9. Analysis of Vector Controlled Induction Motor Drive.
- 10. V/f control of three-phase induction motor.

COURSE OUTCOMES

At the end of this course, the students will be able to

- implement microcontroller based drives
- use DSP based drives
- analyse chopper fed drives
- use induction motor drives

TOTAL: 60 PERIODS

CO-PO				me (C(D's) wi	th Pro	gramn	ne Outo	comes	(PO's)	and P	rogran	ıme Sp	ecific
Č	Mapping of Course Outcome (CO's) with Programme Outcomes (PO's) and Programme Specific Outcomes PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak													
	Programme Outcomes PO's PSO's													
CO's														
CO1	3	-	3	-	3	1	-	-	2	1	-	1	2	3
CO2	3	-	3	-	3	1	-	-	2	1	-	1	2	3
CO3	3	-	3	-	3	1	-	-	2	1	-	1	2	3
CO4	3	-	3	-	3	1	-	-	2	1	-	1	2	3

- To enhance the communication skills
- To improve presentational skills for betterment of their carrier.
- To enhance leadership quality.
- To Progress Employability.

In this course, every student has to present at least two technical papers on recent advancements in engineering/technology referring journal papers and will be evaluated by the course instructor. During the seminar session, each student is expected to present a topic, for duration of about 15 to 20 minutes which will be followed by a discussion for 5 minutes. Each student is responsible for selecting a suitable topic that has not been presented previously. Every student is expected to participate actively in the ensuing class discussion by asking questions and providing constructive criticism.

COURSE OUTCOMES

At the end of this course, the students will be able to

- acquire knowledge in communication
- technical presentation skills
- expose leadership quality
- success in employment.

TOTAL: 30 PERIODS

Mappi C		Course es PSC														
	Programme Outcomes PO's													PSO's		
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	3	-	-	-	-	2	1	2	3	3	1	3	1	-		
CO2	3	-	-	-	-	2	1	2	3	3	1	3	1	-		
CO3	3	-	-	-	-	2	1	2	3	3	1	3	1	-		
CO4	3	-	-	-	-	2	1	2	3	3	1	3	1	-		

PPE16151 ANALYSIS OF INVERTERS 3 0 0 3

COURSE OBJECTIVES

- To provide the electrical circuit concepts behind the different working modes of single phase inverters.
- To brief the different working modes of three-phase inverters and various switching techniques.
- To gain knowledge in design and the development of current source inverters.
- To analyze and comprehend the various operating modes of different configurations of power converters.
- To familiarize the concepts of various resonant inverter techniques and its application.

UNIT I SINGLE PHASE INVERTERS

12

Introduction to self commutated switches: MOSFET and IGBT - Principle of operation of half and full bridge inverters – Performance parameters – Voltage control of single phase inverters using various PWM techniques – various harmonic elimination techniques – forced commutated Thyristor inverters.

UNIT II THREE PHASE VOLTAGE SOURCE INVERTERS

9

180 degree and 120 degree conduction mode inverters with star and delta connected loads – voltage control of three phase inverters: single, multi pulse, sinusoidal, space vector modulation techniques.

UNIT III CURRENT SOURCE INVERTERS

9

Operation of six-step thyristor inverter – inverter operation modes – load – commutated inverters – Autosequential current source inverter (ASCI) – current pulsations – comparison of current source inverter and voltage source inverters.

UNIT IV MULTILEVEL INVERTERS

9

Multilevel concept – diode clamped – flying capacitor – cascade type multilevel inverters - Comparison of multilevel inverters - application of multilevel inverters.

UNIT V RESONANT INVERTERS

6

Series and parallel resonant inverters - voltage control of resonant inverters - Class E resonant inverter - resonant DC - link inverters- advancements in inverter technology for industrial applications.

TOTAL: 45 PERIODS

COURSE OUTCOMES

- understand the various circuit concepts of single phase inverters.
- analyse the working of three phase inverters with modulation techniques.
- design and develop current source inverters.
- derive the design criteria and analyse the various operating modes of different configurations of power converters.
- design inverters for various power applications.

- 1. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, New Delhi, 2011.
- 2. Bimal K.Bose., "Modern Power Electronics and AC Drives", Pearson Education, 2009.
- 3. Ned Mohan, Undeland and Robbin, "Power Electronics: converters, Application and design" John Wiley and sons. Inc, Newyork, 2009.
- 4. P.C. Sen, "Modern Power Electronics", S. Chand Limited, New Delhi, 2008.
- 5. P.S.Bimbra, "Power Electronics", Khanna Publishers, 2005.
- 6. Dubey. G.K., "Thyristorised power controllers", New age International, New Delhi, 2002.

- 1. https://cld.pt/.../download/.../Power%20Electronics%20Handbook%203r.
- 2. https://myarchive4u.wordpress.com/.../power-electronics-circuitsdevices-.
- 3. 7see.blogspot.com/2015/06/power-electronics-by-ps-bimbra-free.html

СО-РС														
	Mapping of Course Outcome (CO's) with Programme Outcomes (PO's) and Programme Specific Outcomes PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak													
	Programme Outcomes PO's PSO's													
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	-	-	1	-	1	-	2	-	2	1	3
CO2	3	3	3	-	-	1	-	1	-	2	-	2	1	3
CO3	3	3	3	-	-	1	-	1	-	2	-	2	1	3
CO4	3	3	3	-	-	1	-	1	-	2	-	2	1	3
CO5	3	3	3	-	-	1	-	1	-	2	-	2	1	3

PPE16152 ELECTROMAGNETIC INTERFERENCE ISSUES IN POWER ELECTONICS AND POWER SYSTEMS 3 0 0 3

COURSE OBJECTIVES

- To know the basics of electromagnetic interferences and their sources.
- To measure the noise source impedance in SMPS.
- To know the heat-sink effects in power electronic systems.
- To understand the knowledge about EMI emission of the converter.
- To know the functions of lightening surges on wind power systems.

UNIT I INTRODUCTION

9

Definitions of EMI/EMC -Sources of EMI- Intersystems and Intrasystem- Conducted and radiated interference-Characteristics - Designing for electromagnetic compatibility (EMC)- EMC regulation typical noise path- EMI predictions and modeling, Cross talk - Methods of eliminating interferences.

UNIT II NOISE SOURCE IMPEDANCE MEASUREMENTS IN SMPS 9

Topology of the model—Modifications factors calculations: differential mode current, common mode current—measurements: Impedances measurements, designable parameters: Effect of the material, Effect of the size of the choke- State of the art of noise impedance measurements in SMPS—Theory of the direct clamping two-probe measurement.

UNIT III HEATSINK EMI EFFECTS IN POWER ELECTRONIC SYSTEMS 9

Analytical function of a complex variable, Antenna—Common mode coupling- Direct FET package—Finite Difference Time Domain (FDTD) — Heatsink—Laplace's equation—Radiation pattern—Rectangular cavity—Switching transients.

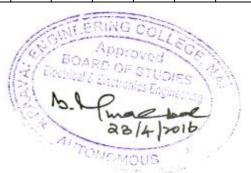
UNIT IV EMI EMISSION OF THE CONVERTER FED AC MOTOR DRIVES 9

Introduction—Generation of Common Mode Currents in ASD—Broadband Modeling of AC Motor Windings—Modeling of an AC Motor Feeding Cable—Feeding Cable Impact on the Motor CM Currents.

UNIT V LIGHTENING SURGES ON WIND POWER SYSTEMS 9

Introduction—Frequency control- Wind farm protection and fault ride through—communication requirements—supervisory control and data acquisition— Other requirements: metering, start and stop, modeling and validation—grid connectivity and evacuation arrangements—complementary commercial mechanisms—special dispensation for scheduling of wind and solar generation.

TOTAL: 45 PERIODS


COURSE OUTCOMES

- know electromagnetic interferences and their sources.
- be familiar with the noise source impedance in SMPS.
- summarize the effects of heat sink in power electronic systems.
- gain the knowledge about EMI Emission on the converter.
- define the lightening effects on wind power systems.

- 1. S.M. Muyeen, Wind Energy Conversion Systems: Technology and Trends, Springer Publications, 2011.
- 2. Firuz Zare, Electromagnetic Interference Issues in Power Electronics and Power Systems, Bentham Science Publishers, 2010.
- 3. Weston David A., "Electromagnetic Compatibility", Principles and Application, 1991.

- 1. http://www.adv-radio-sci.net/9/317/2011/ars-9-317-2011.pdf
- 2. http://ebooks.benthamscience.com/book/9781608052400/

Mapp	O MAP ing of (Outcom	Course	Outco	2/3 ind	icates s		h of co	rrelati	on) 3-S	` ,		_	-Weak	
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3	-	3	-	-	1	-	2	-	2	3	3
CO2	3	_	3	2	3	-	-	1	-	2	2	2	3	3
CO3	3	2	3	2	3	-	2	1	-	2	-	2	3	3
CO4	3	-	3	2	3	-	-	1	-	2	-	2	3	3
CO5	3	-	3	-	3	-	-	1	-	2	-	2	3	3

MODELLING OF ELECTRIC VEHICLES

COURSE OBJECTIVES

- To provide the basic concepts of the electric vehicle and different kinds of operating modes.
- To brief the EV configuration with motor drive techniques and analysis the system parameters.
- To make the students to gain knowledge on modeling of HEV system.
- To familiarize the concepts of various motor drives and storage devices for EV application.
- To understand the design and power management of PHEVs

UNIT I INTRODUCTION

9

Electric vehicle and the Environment - Usage patterns for electric road vehicles - Types of electric vehicle-EV Architecture: Battery Electric Vehicles - the IC engine / Electric hybrid vehicle - Fuelled EVs - EVs using Supply lines - EVs which use Flywheels or super capacitors - solar powered vehicles - vehicles using linear motors.

UNIT II EV SYSTEM

9

EV configurations: Fixed and variable gearing - single and multiple motor drives - In wheel drives. EV parameters: weight and size parameters - force parameters - energy parameters - performance parameters.

UNIT III HEV MODELING

9

Modeling for energy Analysis - vehicle level energy analysis: equation of motion - forward and backward modeling approaches - vehicle energy balance, power train components: internal combustion engine-torqueconverter - Gear ratios and mechanical gearbox - Electric machines-batteries.

UNIT IV ELECTRONIC PROPULSION AND ENERGY SOURCES

9

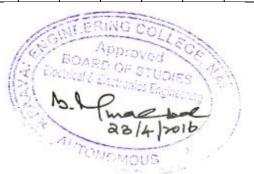
EV considerations - DC motor drives - Induction motor Drives - permanent magnet motor drives -switched reluctance motor drives. Battery - Fuel cells - Ultra capacitors.

UNIT V PLUG - IN HYBRID ELECTRIC VEHICLES

9

PHEV Architectures - Equivalent electric range of blended PHEVs - Power management of PHEVs - PHEV design and component sizing - component sizing of blended PHEV - HEV to PHEV conversions -vehicle to grid technology.

TOTAL: 45 PERIODS


COURSE OUTCOMES

- understand the concept of various electric vehicle.
- analyze the working of electric vehicle system.
- analyze the HEV system.
- know the operation and its characteristic of various types of motor and storage devices .
- design the conversion of plug-in HEV.

- 1. James Larminie, John Lowry, "Electric Vehicle Technology", John Wiley & Sons, 2012.
- 2. C. C. Chan, K. T. Chau, "Modern Electric Vehicle Technology", Oxford University Press, 2001.
- 3. Simona Onori, Lorenzo Serrao, Giorgio Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.
- 4. Chris Mi, M. Abul Masrur, David Wenzhong Gao, "Hybrid Electric Vehicles: Principles and Applications with with Practical Perspectives", John Wiley & Sons, 2011.

- 1. https://books.google.co.in/books?id=IdPZ3NYhF68C&dq=Electric+Vehicles&source=gbs_navlinks_s
- 2. https://www.youtube.com/watch?v=BMrA-5EDakg
- 3. http://nptel.ac.in/courses/108103009/

СО-РО) MAP	PING:												
	Mapping of Course Outcome (CO's) with Programme Outcomes (PO's) and Programme Specific Outcomes PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak													
				P	rograr	nme O	utcom	es PO'	S				PS	O's
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	-	3	2	3	1	-	1	-	2	-	2	2	3
CO2	3	-	3	2	3	1	-	1	-	2	-	2	2	3
CO3	3	-	3	2	3	1	-	1	-	2	-	2	2	3
CO4	3	-	3	2	3	1	-	1	-	2	-	2	2	3
CO5	3	-	3	2	3	1	-	1	-	2	-	2	2	3

ELECTIVE II

PPS16251 HIGH VOLTAGE DIRECT CURRENT TRANSMISSION

3204

COURSE OBJECTIVES

- To discuss the basic concepts of HVDC with existing HVDC projects.
- To analyze the HVDC Converters and HVDC System Control and harmonics and filtering.
- To gain knowledge about the types of Multi terminal DC Systems.
- To understand the concepts of power flow analysis in AC/DC systems.
- To explain the basic concepts of simulation of HVDC systems.

UNIT I DC POWER TRANSMISSION TECHNOLOGY

15

Introduction - Comparison of AC and DC transmission - Application of DC transmission - Description of DC transmission system - Planning for HVDC transmission - Modern trends in DC transmission - DC breakers - Cables, VSC based HVDC.

UNIT II ANALYSIS OF HVDC CONVERTERS AND HVDC SYSTEM CONTROL 15

Pulse number, choice of converter configuration – Simplified analysis of Graetz circuit - Converter bridge characteristics – characteristics of a twelve pulse converter- detailed analysis of converters. General principles of DC link control – Converter control characteristics – System Control hierarchy - Firing angle control – Current and extinction angle control – Generation of harmonics and filtering - power control – Higher level controllers.

UNIT III MULTITERMINAL DC SYSTEMS

15

Introduction – Potential applications of MTDC systems - Types of MTDC systems - Control and protection of MTDC systems - Study of MTDC systems.

UNIT IV POWER FLOW ANALYSIS IN AC/DC SYSTEMS

15

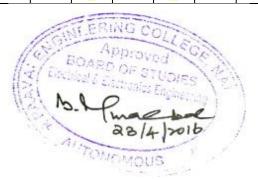
Per unit system for DC Quantities - Modeling of DC links - Solution of DC load flow - Solution of AC-DC power flow - Case studies.

UNIT V SIMULATION OF HVDC SYSTEMS

15

Introduction – System simulation: Philosophy and tools – HVDC system simulation – Modeling of HVDC systems for digital dynamic simulation – Dynamic in traction between DC and AC systems.

TOTAL: 75 PERIODS


COURSE OUTCOMES

- understand the basic concept of DC power transmission technology.
- analyze HVDC converters and HVDC system control with converter.
- know the concepts of multi terminal DC systems with control and protection of MTDC system.
- analyze the solution of AC/DC power flow analysis.
- design the simulation of HVDC systems with Philosophy and tools.

- 1. K.R.Padiyar, , "HVDC Power Transmission Systems", New Age International (P) Ltd., New Delhi, 2010.
- 2. J.Arrillaga, , "High Voltage Direct Current Transmission", Peter Pregrinus, London, 1983.
- 3. P. Kundur, "Power System Stability and Control", McGraw-Hill, 2000.
- 4. ErichUhlmann, "Power Transmission by Direct Current", BS Publications, 2004.
- 5. V.K.Sood,HVDC and FACTS controllers Applications of Static Converters in Power System,April 2004, Kluwer Academic Publishers.
- 6. S.Kakshaish, V.Kamaraju, "HVDC Transmission", TMH Publishers, 2012.

- 1. www.newagepublishers.com/samplechapter/000356.pdf
- 2. https://library.e.abb.com/public/.../cepex99.pdf
- 3. www.sari-energy.org/...We...Power_Systems.../lecture_11.pdf

Mappi O	ing of C Outcom			2/3 indi	icates s	trengt	h of co	rrelati	on) 3-S				-Weak	
	Programme Outcomes PO's													
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	-	3	-	-	1	-	1	-	2	-	2	1	3
CO2	3	-	3	-	-	1	-	1	1	2	-	2	1	3
CO3	3	-	3	-	-	1	-	1	-	2	-	2	1	3
CO4	3	-	3	-	-	1	-	1	-	2	-	2	1	3
CO5	3	-	3	-	-	1	-	1	-	2	-	2	1	3

- To understand the concepts of the power quality Issues.
- To explain the power and energy measurements, power factor measurements.
- To infer knowledge on single phase voltage sag.
- To describe the power quality considerations in industries.
- To discuss the mitigation of interruptions and voltage sags

UNIT I INTRODUCTION

15

Introduction of the Power Quality (PQ) problem, Terms used in PQ: Voltage, Sag, Swell, Surges, Harmonics, over voltages, spikes, Voltage fluctuations, Transients, Interruption, overview of power quality phenomenon, Remedies to improve power quality, power quality monitoring.

UNIT II LONG & SHORT INTERRUPTIONS

15

Interruptions – Definition – Difference between failures, outage, Interruptions – causes of Long Interruptions – Origin of Interruptions – Limits for the Interruption frequency – Limits for the interruption duration – costs of Interruption – Overview of Reliability evaluation to power quality, comparison of observations and reliability evaluation.

Short Interruptions: definition, origin of short interruptions, basic principle, fuse saving, voltage magnitude events due to re-closing, voltage during the interruption, monitoring of short interruptions, difference between medium and low voltage systems. Multiple events, single phase tripping – voltage and current during fault period, voltage and current at post fault period, stochastic prediction of short interruptions.

UNIT III 1 & 3-PHASE VOLTAGE SAG CHARACTERIZATION

15

Voltage sag – definition, causes of voltage sag, voltage sag magnitude, and monitoring, theoretical calculation of voltage sag magnitude, voltage sag calculation in non-radial systems, meshed systems, and voltage sag duration. Three phase faults, phase angle jumps, magnitude and phase angle jumps for three phase unbalanced sags, load influence on voltage sags.

UNIT IV POWER OUALITY CONSIDERATIONS IN INDUSTRIAL POWER SYSTEMS 15

Voltage sag – equipment behavior of Power electronic loads, induction motors, synchronous motors, computers, consumer electronics, adjustable speed AC drives and its operation. Mitigation of AC Drives, adjustable speed DC drives and its operation, mitigation methods of DC drives.

UNIT V MITIGATION OF INTERRUPTIONS & VOLTAGE SAGS

15

Overview of mitigation methods – from fault to trip, reducing the number of faults, reducing the fault clearing time changing the power system, installing mitigation equipment, improving equipment immunity, different events and mitigation methods. System equipment interface – voltage source converter, series voltage controller, shunt controller, combined shunt and series controller.

TOTAL: 75 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- discuss the various power quality issues.
- understand the concept of power and energy measurements, power factor measurements.
- know the concept of single and three phase voltage sag.
- gain knowledge in the power quality considerations in industrial power.
- use the concept of mitigation of interruptions & voltage sags.

REFERENCES

- 1. Math H J Bollen, "Understanding Power Quality Problems", IEEE Press, 2000.
- 2. R. SastryVedam Mulukutla S. Sarma, "Power Quality VAR Compensation in Power Systems", CRC Press, 2008.
- 3. C. Sankaran, "Power Quality", CRC Press, 2001.
- 4. Roger C. Dugan, Mark F. Mc Granaghan, H. Wayne Beaty, "Electrical Power Systems Quality", Tata McGraw Hill, 2012

- 1. www.materialdownload.in/article/Power-Quality-Enhancement-Using-Custom-Power-Devices
- 2. read.pudn.com/downloads156/.../Power%20System%20Harmonics.pdf
- 3. accessengineeringlibrary.com/.../electrical-power-systems-quality-third-edition.

	CO-PO MAPPING: Manning of Course Outcome (CO's) with Programme Outcomes (BO's) and Programme Specific													agifia	
	opping of Course Outcome (CO's) with Programme Outcomes (PO's) and Programme Specific Outcomes PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak														
	Programme Outcomes PO's PSO's														
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	-	3	-	2	2	-	-	-	-	2	1	2	1	
CO2	3	-	3	-	2	2	-	-	-	-	2	1	2	1	
CO3	3	-	3	-	2	2	-	-	-	-	2	1	2	1	
CO4	3	_	3	_	2	2	-	-	1	_	2	1	2	1	
CO5	3	-	3	-	2	2	-	-	-	-	2	1	2	1	

- To understand the concept of grounding of power supply system.
- To infer knowledge on the equipment grounding.
- To elucidate the ground electrode system & soil resistance.
- To describe the electrical noise and mitigation. .
- To discuss the grounding practices on UPS systems.

UNIT I INTRODUCTION

15

Bonding - Lightning and its effect on electrical systems - Static charges and the need for bonding-Ground electrodes and factors affecting their efficacy - Noise in signaling circuits and protective measures: shielding- Surge protection of electronic equipment - UPS systems and their role in power quality improvement - ungrounded systems - Solidly grounded systems - Impedance grounding using neutral reactor - Resonant grounding using neutral reactor - Impedance grounding through neutral resistance Point of grounding.

UNIT II EQUIPMENT GROUNDING

15

Shock hazard Grounding of equipment-Operation of protective devices -Thermal capability -Touch Potential during ground faults- Induced voltage problem -Mitigation by multiple ground connection- Mitigation by reduction of conductor spacing-EMI suppression- Metal enclosures for grounding conductors- Grounding connections for surge protection equipment -Sensing of ground faults- Equipotential bond.

UNIT III GROUND ELECTRODE SYSTEM

15

Grounding electrodes-Soil resistance -Measurement of soil resistivity -Resistance of a single rod electrode - Current-carrying capacity of an electrode -Use of multiple ground rods in parallel -Measurement of ground resistance of an electrode-Concrete-encased electrode -Corrosion problems in electrical grounding systems - Maintenance of grounding system -Chemical electrodes.

UNIT IV ELECTRICAL NOISE AND MITIGATION

15

Definition of electrical noise and measures for noise reduction -Frequency analysis of noise-Categories of noise-Disturbances from other equipment in the same distribution system -Earth loop as a cause of noise-The ways in which noise can enter a signal cable and its control -More about shielding -Shielded isolation transformer-Avoidance of earth loop-Use of insulated ground (IG) receptacle -Zero signal reference grid and signal-transport ground plane Harmonics in electrical systems.

UNIT V UPS SYSTEMS AND THEIR GROUNDING PRACTICES

15

Power quality issues-Definitions of abnormal voltage conditions-Susceptibility and measures to handle voltage abnormalities Regulating transformer-Standby sources-Electromechanical UPS systems-Solid-state UPS systems - Multiple units for redundancy Considerations in selection of UPS systems for ADP facilities-Grounding issues in static UPS -configurations UPS configurations and recommended grounding practices.

TOTAL: 75 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- understand the concept of grounding of power supply system.
- gain knowledge in the equipment grounding.
- explain the ground electrode system and soil resistance.
- analyse the electrical noise and mitigation.
- enumerate the grounding practices on UPS systems.

REFERENCES

- 1. G Vijayaraghavan, Mark Brown, Malcolm Barnes Butterworth-Heinemann, "Practical Grounding, Bonding, Shielding and Surge Protection" Newnes is an imprint of Elsevier 2004.
- 2. Phil Simmons, "Electrical Grounding and Bonding" Based on the 2011 NEC Codes 2014.
- 3. James G. Stallcup, James W. Stallcup," Electrical Grounding and Bonding Simplified" Based on the NEC Codes and Standards 2002.

- 1. https://www.engineereducators.com/docs/groundingandbonding2-2.pdf
- 2. https://www.progress-energy.com/assets/www/docs/business/Grounding.pdf
- 3. https://www.mikeholt.com/instructor2/img/product/pdf/1292432628sample.pdf

СО-РС	O MAP	PING:													
	ing of C Outcom														
	Outcomes PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1 Programme Outcomes PO's													PSO's	
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2	3	-	2	1	-	-	-	-	2	1	2	1	
CO2	3	2	3	-	2	1	-	-	-	-	2	1	2	1	
CO3	3	2	3	-	2	1	-	-	-	-	2	1	2	1	
CO4	3	2	3	-	2	1	-	-	-	-	2	1	2	1	
CO5	3	2	3	-	2	1	-	-	-	-	2	1	2	1	

ELECTIVE III

PPS16351 ENERGY AUDITING AND MANAGEMENT

3003

COURSE OBJECTIVES

- To discuss and analyse the various energy security energy auditing
- To analyze the various method in energy auditing and economics
- To impact knowledge of the energy efficient in motors and transformers
- To explain the various method of reactive power management and lighting
- To describe the auditing of cogeneration and conservation in industries

UNIT I INTRODUCTION

9

Power system security, factors affecting power system security, contingency analysis, linear sensitivity factors, contingency selection, concentric relaxation, calculation of network sensitivity factors. Transmission planning criteria.

UNIT II ENERGY AUDITING AND ECONOMICS

9

System approach and End use approach to efficient use of Electricity; Electricity tariff types; Energy auditing-Types and objectives-audit instruments – ECO assessment and Economic methods-cash flow model, time value of money, evaluation of proposals, pay-back method, average rate of return method, internal rate of return method, present value method, profitability index, life cycle costing approach, investment decision and uncertainty, consideration of income taxes, depreciation and inflation in investment analysis- specific energy analysis- Minimum energy pathsconsumption models.

UNIT III ENERGY EFFICIENT MOTORS AND TRANSFORMERS

9

Electric motors-Energy efficient controls- Motor Efficiency and Load Analysis-Energy efficient/high efficient Motors Load Matching and selection of motors. Variable speed drives -Pumps and Fans- Efficient Control strategies- Optimal selection and sizing – Optimal operation and Storage. Transformer Loading /Efficiency analysis, Feeder /cable Loss evaluation.

UNIT IV REACTIVE POWER MANAGEMENT AND LIGHTING

9

Reactive Power management –Capacitor Sizing-Degree of Compensation-Capacitor losses-Location-Placement-Maintenance-Case study. Economics of power factor improvement. Peak Demand controls- Methodologies – Types of Industrial Loads-Optimal Load scheduling-Case study. Lightning-Energy efficient light sources-Energy Conservation in lighting schemes. Electronic Ballast-Power quality issues-Luminaries.

UNIT V COGENERATION AND CONSERVATION IN INDUSTRIES

9

Cogeneration-Types and Schemes-Optimal operation of cogeneration plants- Case study. Electric loads of Air conditioning and Refrigeration –Energy conservation measures-Cool storage- Types- Optimal operation-Case study .Electric water heating-Geysers-Solar Water Heaters-Power Consumption in Compressors, Energy conservation measures-Electrolytic Process-Computer Control-Software –EMS.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- understand various factor affecting power system security
- classify the various methods involved in energy auditing and economics
- obtain the knowledge in the energy efficient motors and transformers
- know the various technologies for reactive power management and lighting.
- understand the various technologies to conserve energy in electrical systems.

REFERENCES

- 1. Giovanni Petrecca, Industrial Energy Management: Principles and Application, The Kluwer international series-207, (1999)
- 2. Anthony J.Pansini, Kenneth .D. Smalling ,Guide to Electric Load Management , Pennwell Pub;(1998)
- 3. Howard .E.Jordan.Energy Efficient Electric Motors and Their Applications ,Pleneum Pub Corp.2ndedition(1994)
- 4. Turner , Wayne C , Energy Management / Handbook, Lilburn, The Fairmont Press, 2001.
- 5. Albert Thumann ,Handbook of Energy Audits,Fairmont Press 5thEdition (1998)

- 1. nptel.ac.in/courses/120108004/module5/lecture5.pdf
- 2. www.nptel.ac.in/syllabus/108106022/
- 3. www.em-ea.org

CO-PO	CO-PO MAPPING:													
	Mapping of Course Outcome (CO's) with Programme Outcomes (PO's) and Programme Specific													
C	Outcomes PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak													
				P	rogran	nme O	utcom	es PO'	S				PS	O's
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	-	2	3	2	2	3	-	2	1	1	1
CO2	3	2	2	-	2	3	2	2	3	-	2	1	1	1
CO3	3	2	2	-	2	3	2	2	3	-	2	1	1	1
CO4	3	2	2	-	2	3	2	2	3	-	2	1	1	1
CO5	3	2	2	-	2	3	2	2	3	_	2	1	1	1

- To describe the artificial intelligence networks.
- To discuss the fuzzy logic operations.
- To analyze the application of genetic algorithm.
- To knowledge on neural networks and its real-time performance.
- To understand the PSO and DE techniques

UNIT I INTRODUCTION TO NEURAL NETWORKS

9

Basics of ANN – Perceptron -Delta learning rule –Back Propagation Algorithm- Multilayer Feed forward network-Memory models-Bi-directional associative memory-Hopfield network. Application of Neural Networksto load forecasting, Contingency Analysis-VAR control, Economic Load Dispatch.

UNIT II INTRODUCTION TO FUZZY LOGIC

9

Crispness-Vagueness-Fuzziness-Uncertainty-Fuzzy set theory Fuzzy sets-Fuzzy set operations-fuzzy measures-fuzzy relations-fuzzy function. Structure of fuzzy logic controller-fuzzification models-data base-rule base-inference engine defuzzification module. Control Schemes.

UNIT III APPLICATIONS TO AI TECHNIQUES

9

Decision making Control through fuzzy set theory-Use of fuzzy set models of LP and its scheduling problems-Fuzzy logic based power stabilizer.

UNIT IV GENETIC ALGORITHM AND ITS APPLICATIONS

9

Introduction – Simple Genetic Algorithm – Reproduction, Crossover, Mutation, Advanced Operators in Genetic Search – Applications to voltage Control and Stability Studies.

UNIT V PSO AND DE TECHNIQUES

9

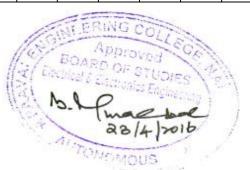
Introduction – Review on PSO and DE –Restoration using ParticleSwarm Optimization and Differential Evolution techniques - Formulation, applications.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- understand the basics of design aspects of neural networks.
- know the fundamentals of fuzzy logic.
- use the fundamentals of genetic algorithm and application
- differentiate the fuzzy logic, genetic algorithm and neural networks in power systems.
- understand the basics of PSO and DE.


REFERENCES

1. James.A.Freeman and B.M.Skapura "Neural Networks, Algorithms Applications and Programming techniques"- Addison Wesley, 2000.

- 2. GeorgeKlir and Tina Folger,.A., "Fuzzy sets, Uncertainty and Information", Prentice Hall of India Pvt.Ltd., 2002.
- 3. Zimmerman, H.J. "Fuzzy Set Theory and its Applications", Kluwer Academic Publishers, 2004.
- 4. IEEE tutorial on "Application of Neural Network to Power Systems", 2010
- 5. Loi Lei Lai, "Intelligent System Applications in Power Engineering", John Wiley and Sons Ltd., 1998.

- 1. www.seattlerobotics.org/encoder/mar98/fuz/flindex.html
- 2. www.journals.elsevier.com/engineering-applications-of-artificial-intellige.
- 3. www.softcomputing.net/aciis.pdf

Mappi	CO-PO MAPPING: Mapping of Course Outcome (CO's) with Programme Outcomes (PO's) and Programme Specific Outcomes PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak Programme Outcomes PO's PSO's														
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2	2	-	2	3	2	2	3	-	2	1	3	3	
CO2	3	2	2	-	2	3	2	2	3	-	2	1	3	3	
CO3	3	2	2	-	2	3	2	2	3	-	2	1	3	3	
CO4	3	2	2	-	2	3	2	2	3	-	2	1	3	3	
CO5	3	2	2	-	2	3	2	2	3	-	2	1	3	3	

- To infer knowledge on battery technology.
- To understand battery management system.
- To know various types of batteries and their reactions.
- To acquire the knowledge on energy storage and generation system.
- To overview the applications of batteries.

UNIT I BATTERY TECHNOLOGY OVERVIEW

9

Principle of Operation—Technologies—Review of Rechargeable Batteries—Common Rechargeable Batteries, Comparison and Applications—Charge Algorithms.

UNIT II BATTERY MANAGEMENT SYSTEM

9

Building Units of a Battery Management System: Sensors, Monitoring Unit, Diagnostics Unit, Protection Unit, Control Unit, Communications – Battery Charger Framework: Fundamentals and Description of Building Components–Required Protections.

UNIT III BATTERIES AND REACTIONS

9

Introduction—Voltaic Cells—Battery Cell Types—Battery Performance—Current, Voltage, and standard Reduction Potential—Different Types of Batteries and Some Additional Facts—Hazards—Electron Activity in chemical reactions—Battery Construction—Battery Ratings—Special Purpose Batteries—Practical Considerations—Batteries.

UNIT IV ENERGY STORAGE AND GENERATION

9

Electrochemical Batteries—Types of Batteries, Lead-Acid Batteries, Nickel Based Batteries, Lithium Based Batteries—Electro Chemical Reactions—thermodynamic Voltage, Specific Energy, Specific Power, Energy Efficiency—Ultra Capacitors—DC generator—AC Generator—Voltage and Frequency Regulations.

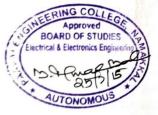
UNIT V APPLICATIONS OF BATTERIES

9

Stationary applications- Load Leveling, lead-acid batteries for telecommunications and UPS, Lead-acid batteries for solar and wind energy storage- Miscellaneous applications- Tracking Systems, Toll Collection, Oil Drilling, Car Accessories, Oceanography- Battery management and life prediction-Battery collection and recycling- World market for industrial batteries.

TOTAL: 45 PERIODS

COURSE OUTCOMES


Upon completion of the course, the student will be able to

- discuss the overall view on battery management system.
- understand the knowledge on battery management system.
- summarize batteries and their reactions.
- define the energy storage and generation.
- familiarize different kinds of applications by using of batteries.

- 1. D. Andrea, Battery Management Systems for Large Lithium Battery Pack, Artech House Publishers, 2010.
- 2. R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd Edition, Kluwer Academic Publishers, 2001.
- 3. Bergveld, H.J., Kruijt, W.S., Notten, P.H.L "Battery Management Systems -Design by Modelling" Philips Research Book Series 2002.
- 4. Davide Andrea," Battery Management Systems for Large Lithium-ion Battery Packs" Artech House, 2010.
- Harwood, William, Herring, Geoffrey, Madura, Jeffry, and Petrucci, Ralph. General Chemistry: Principles and Modern Applications. Ninth Edition. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2007.
- 6. Kiehne, H.A. Battery Technology Handbook. Second Edition. Renningen-Malsheim, Germany: Expert Verlag, 2003.

- 1. http://ethesis.nitrkl.ac.in/2976/1/Thesis.pdf
- 2. http://mocha-java.uccs.edu/ECE5720/ECE5720-Notes01.pdf
- 3. http://www.sciencedirect.com/science/article/pii/B9780444521606500036
- 4. http://en.wikipedia.org/wiki/Battery_(electricity)
- 5. http://www.youtube.com/watch?v=Pd-RhoTogHA

	MAPP													
M	Mapping of Course Outcome (CO's) with Programme Outcomes (PO's) and Programme Specific													
	Outcomes PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak Programme Outcomes PO's PSO's													
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	-	2	3	2	2	3	-	2	1	1	1
CO2	3	2	2	-	2	3	2	2	3	-	2	1	1	1
CO3	3	2	2	-	2	3	2	2	3	-	2	1	1	1
CO4	3	2	2	-	2	3	2	2	3	-	2	1	1	1
CO5	3	2	2	-	2	3	2	2	3	-	2	1	1	1

- To provide knowledge about the features and principles of several of special machines.
- To know the construction and control scheme of the machines.
- To compare and analyze the static and dynamic characteristics of SRM.
- To provide knowledge about the features, characteristic of PMDC motors and its controllers.
- To walk with the various applications on special electrical machines.

UNIT I STEPPING MOTORS

Q

Stepping Motors – Types – Constructional features – principle of operation – modes of excitation, torque production – Characteristics – Linear and Non Linear Analysis - Drive systems, Controllers for stepping motor.

UNIT II SYNCHRONOUS RELUCTANCE MOTORS

9

Constructional features of axial and radial air gap Motors – operating principle – reluctance torque – phasor diagram – motor characteristics permanent magnet synchronous motors – Principle of operation – EMF and Torque equations –Phasor diagram – Power controllers – Torque speed characteristics – Self-control, Vector control, Microprocessor based control schemes.

UNIT III SWITCHED RELUCTANCE MOTORS

9

Constructional features-principle of operation-Inductance profile-Torque equation- Types of Power controllers and converter topologies used – Current control schemes – Torque Speed Characteristics – Hysteresis and PWM -Microprocessor based controller and Sensor less Controller.

UNIT IV PERMANENT MAGNET BRUSHLESS DC MOTORS

9

Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and Emf equation, Torque-Speed characteristics, Controllers-Magnetic Circuit Analysis-microprocessor based controller.

UNIT V LINEAR MOTORS

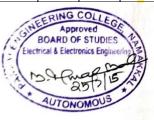
9

Linear Induction Motor (LIM) classification – construction – Principle of operation – Concept of current sheet – goodness factor – DC Linear Motor (DCLM) types – circuit equation - DCLM control applications – Linear Synchronous Motor(LSM) – Types - Performance equations – Applications.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon completion of the course, students will be able to


- know the construction and operating principles of special electrical machines.
- analyze the performance of special electrical machines.

- analyze the different types of controllers and control techniques.
- familiarize with various applications on special electrical machines.
- demonstrate control strategies for applications using special machines.

- 1. B.K. Bose, "Modern Power Electronics & AC drives", Prentice-Hall of India Pvt. Ltd., New Delhi, 2001.
- 2. R.Krishnan, "Electric Motor Drives Modeling, Analysis and Control", Prentice-Hall of India Pvt. Ltd., New Delhi, 2003.
- 3. Miller, T.J.E. "Brushless permanent magnet and reluctance motor drives", Clarendon Press, Oxford,1993.
- 4. Kenjo, T, "Stepping motors and their microprocessor control", Clarendon Press, Oxford.1997.
- 5. Naser A and BoldeaL,"Linear Electric Motors: Theory Design and Practical Applications", Prentice Hall Inc., New Jersey,2013.

- 1. http://www.avlib.in/ebook/title/Special-Electrical-Machines.html
- 2. http://www.scribd.com/doc/101099222/A-Guide-to-Electric-Drives-and-DC-Motor-Control#scribd.

со-ро	MAPP	ING:												
M	Mapping of Course Outcome (CO's) with Programme Outcomes (PO's) and Programme Specific Outcomes PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak													
		Programme Outcomes PO's												O's
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3	-	2	1	-	-	-	-	2	1	2	1
CO2	3	2	3	-	2	1	-	-	-	-	2	1	2	1
CO3	3	2	3	-	2	1	-	-	-	-	2	1	2	1
CO4	3	2	3	-	2	1	-	-	-	-	2	1	2	1
CO5	3	2	3	-	2	1	-	-	-	-	2	1	2	1

- To acquire knowledge of power system harmonics.
- To understand fundamentals of PWM methods for Voltage Source Converters.
- To learn various switching operation in resonant converters.
- To analyze state space model to various converters.
- To walk around the various scheme to control the converter.

UNIT I POWER SYSTEM HARMONICS & LINE COMMUTATED RECTIFIERS 9

Average power-RMS value of a waveform-Power factor-AC line current harmonic standards IEC 1000-IEEE 519- The Single phase full wave rectifier-Continuous Conduction Mode-Discontinuous Conduction Mode-Behavior when C is large- Minimizing THD when C is small-Three phase rectifiers-Continuous Conduction Mode-Discontinuous Conduction Mode-Harmonic trap filters.

UNIT II PULSE WIDTH MODULATED RECTIFIERS

Properties of Ideal rectifiers-Realization of non ideal rectifier-Control of current waveform-Average current control-Current programmed Control- Hysteresis control- Nonlinear carrier control-Single phase converter system incorporating ideal rectifiers- Modeling losses and efficiency in CCM high quality rectifiers-Boost rectifier Example - expression for controller duty cycle-expression for DC load current-solution for converter Efficiency η .

UNIT III RESONANT CONVERTERS

9

9

Review on Parallel and Series Resonant Switches-Soft Switching- Zero Current Switching - Zero Voltage Switching - Classification of Quasi resonant switches-Zero Current Switching of Quasi Resonant Buck converter, Zero Current Switching of Quasi Resonant Boost converter, Zero Voltage Switching of Quasi Resonant Buck converter, Zero Voltage Switching of Quasi Resonant Boost converter: Steady State analysis.

UNIT IV DYNAMIC ANALYSIS OF SWITCHING CONVERTERS

Review of linear system analysis-State Space Averaging-Basic State Space Average Model-State Space Averaged model for an ideal Buck Converter, ideal Boost Converter, ideal Buck Boost Converter, for an ideal Cuk Converter.

UNIT V CONTROL OF RESONANT CONVERTERS

9

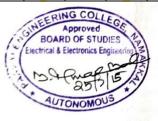
9

Pulse Width Modulation-Voltage Mode PWM Scheme-Current Mode PWM Scheme-Design of Controllers: PI Controller, Variable Structure Controller, Optimal Controller for the source current shaping of PWM rectifiers.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon completion of the course, the students will be able to


- know about the harmonics and line commutated rectifiers.
- understand the concepts and operations of pulse width modulated rectifier.
- identify the different types of resonant converters.
- understand the analysis of switching converters.
- discriminate the concepts of control methods in resonant converter.

REFERENCES

- 1. Robert W. Erickson & Dragon Maksimovic" Fundamentals of Power Electronics", Springer science and Business media, 2001.
- 2. Ned Mohan, Undeland and Robbins, "Power Electronics: Converters, Applications and Design", John Wiley and Sons (Asia) Pte Ltd, Singapore, 2003.
- 3. Rashid, M.H., "Power Electronics Circuits, Devices and Applications", Pearson Education Pte. Ltd, New Delhi, 2004.
- 4. B.K. Bose, "Modern Power Electronics & AC drives", Prentice-Hall of India Pvt. Ltd., New Delhi, 2001.

- 1. http://altor1.narod.ru/Books_Docs/Fundamentals_of_Power_Electronics.pdf
- 2. http://ecee.colorado.edu/copec/book/slides/Ch19slide.pdf
- 3. http://www.ti.com/lit/ml/slup085/slup085.pdf

CO-PO	MAPP	ING:												
M	apping Outo	of Cour comes P												c
					Progra	mme O	utcome	s PO's					PS	O's
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	-	-	1	-	1	-	2	-	2	1	3
CO2	3	3	3	-	-	1	-	1	-	2	-	2	1	3
CO3	3	3	3	-	-	1	-	1	-	2	-	2	1	3
CO4	3	3	3	-	-	1	-	1	-	2	-	2	1	3
CO5	3	3	3	-	-	1	-	1	-	2	-	2	1	3

- To acquire knowledge on the basic industrial control.
- To study the elements in industrial control systems.
- To impart knowledge on the instrumentation devices.
- To understand the concept of intelligent controllers.
- To analyze the application of servo motor control.

UNIT I INTRODUCTION

9

Review of switching regulators and switched mode power supplies, uninterrupted power supplies – online and off-line topologies. Embedded control systems - Industrial motion control-motion control systems and technologies-Industrial production automation: Systems and components-Robotics and automation.

UNIT II SENSORS AND ACTUATORS

9

Sensors and actuators-Industrial optical sensors-Industrial physical sensors-Industrial measurement sensors-Industrial actuators. Transducers and valves-Industrial switches- Industrial transducers-Industrial valves.

UNIT III INSTRUMENTATION DEVICES

9

Signal conditioners – Instrumentation amplifiers – Isolation circuits – opto-electronic devices and control, electronic circuits for photo-electric switches - output signals for photo electric controls; Application of opto-isolation, interrupter modules and photo sensor; Fibre optics; Bar code equipment.

UNIT IV INDUSTRIAL INTELLIGENT CONTROLLERS

9

PLC controllers –Components and Architecture –PLC control mechanisms - PLC programming – CNC controllers – CNC control mechanism and its programming -FLC controllers – FLC control modeling and industrial controllers.

UNIT V SERVO AND STEPPER MOTOR

9

Stepper motors- types- operation, control and applications; servo motors – types, operation, control and applications – servo motor controllers – servo amplifiers – linear motor applications – selection of servo motor.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon the completion of this course the student will be able to:

- describe the basic industrial control.
- categorize the elements in industrial control systems.

- realize the knowledge of various devices.
- describe the concept of intelligent controllers.
- understand the application of servo motor control.

- M. H. Rashid, "Power Electronics Circuits, Devices and Application", PHI, 3rd edition, 2004.
 G. M. Chute and R. D. Chute, "Electronics in Industry", McGraw Hill Ltd, Tokyo, 1995.
- 2. F. D. Petruzulla, "Industrial Electronics", McGraw Hill, Singapore, 1996.
- 3. Terry Bartelt, "Industrial Automated Systems Instrumentation and Motion Control", ISBN: 1-4354-8888-1., 2nd Edition, 2002.
- 4. G. K. Mithal, "Industrial Electronics", Khanna Publishers, Delhi, 2000.
- 5. Pengzhang, "Advanced Industrial control technology", Elsevier Inc., 1st Edition 2010.

- 1. https://books.google.com/books?isbn=1437778089
- 2. https://books.google.co.in/books?isbn=0123820375
- 3. https://books.google.co.in/books?isbn=8120349903
- 4. www.tigertek.com/servo-motor-resources/common-servo-motor-applications.html

СО-РО					~~.								~	
M	apping Outo	of Cour comes P												c
		Programme Outcomes PO's												
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3	-	2	1	-	-	-	-	2	1	2	1
CO2	3	2	3	-	2	1	-	-	-	-	2	1	2	1
CO3	3	2	3	-	2	1	-	-	-	-	2	1	2	1
CO4	3	2	3	-	2	1	-	-	-	-	2	1	2	1
CO5	3	2	3	-	2	1	-	-	-	-	2	1	2	1

- To understand the fundamental concepts of computer networking.
- To familiarize the student with the basic taxonomy and terminology of the networking.
- To introduce the student to advanced networking in computer networking.
- To make the student to gain expertise in design and maintenance of individual networks.
- To walk around the various applications of computer networks.

UNIT I COMPUTER NETWORKS

9

Evolution of data networks, Network architecture, ISO Reference model examples of networks, Application of networks, Physical layer, and communication medium characteristics-Topologies.

UNIT II MEDIUM ACCESS SUB LAYER AND DATA LINK LAYER

9

Local area networks, conventional channel allocation methods, pure-ALOHA, SALOHA, Finite population ALOHA, Controlled ALOHA, Reservation ALOHA, Design issues for packet radio networks – IEEE Standard for LAN-Ethernet: CSMA/CD LAN, Token passing ring. Data link layer design issues – Service primitives – Stop and wait Sliding window protocols – Comparison of stopand wait and sliding window protocols.

UNIT III NETWORK AND TRANSPORT LAYERS

9

IP: Internetworking-IPv4 & IPv6-Network layer design issues routing algorithm - Congestion control algorithms internetworking. Transport layer design issues - Connection management - A simple transport protocol on top of X.25-Quality of Services (QoS).

UNIT IV APPLICATION LAYER

9

Name Space – Domain Name Space – Resolution – Remote Logging – File transfer access and management, Electronic mail – Virtual terminals – Domain Name System –WWW and HTTP – Network Management and SNMP - Multimedia.

UNIT V CRYPTOGRAPHY & NETWORK SECURITY

9

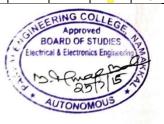
Cryptography – Network Security: Message – confidentiality, Integrity, Authentication – Digital Signature – Entity Authentication – Key Management – Security in the internet: IPsec, SSLffLs, PGP, Firewalls.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon completion of the course, the students will be able to

- Independently understand basic computer network technology.
- Understand and explain Data Communications System and its components.
- Identify the different types of network topologies and protocols.
- Enumerate the layers of the OSI model and TCP/IP. Explain the function of each layer.


• Identify the different types of network devices and their functions with-in a network.

REFERENCES

- 1. Andrew S. Tanenbaum, "Computer Networks", Prentice Hall of India, 2003.
- 2. Behrouz A. Foruzan, "Data communication and Networking", Tata McGraw-Hill, 2006.
- 3. Godbole and Kahate, "Computer Communication Networks", McGraw Hill, 2003.
- 4. William Stallings, "Data and Computer Communication", Pearson Education, 2000.

- http://www.tutorialspoint.com/data_communication_computer_network/data_communication _computer_network_tutorial.pdf
- 2. http://www.sjbit.edu.in/app/course-material/ece/vii/computer%20communication%c3%82%c2%a0network%20%5b06ec71%5d/ece-vii-computer%20communication%c3%82%c2%a0network%20%5b06ec71%5d-notes.pdf
- 3. http://iit.qau.edu.pk/books/data%20communications%20and%20networking%20by%20behrouz%20a.forouzan.pdf

СО-РО	CO-PO MAPPING:													
M	Mapping of Course Outcome (CO's) with Programme Outcomes (PO's) and Programme Specific													
	Outcomes PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak													
		Programme Outcomes PO's PS												
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3	-	2	1	-	-	-	-	2	1	3	-
CO2	3	2	3	-	2	1	-	-	-	-	2	1	3	-
CO3	3	2	3	-	2	1	-	-	-	-	2	1	3	-
CO4	3	2	3	-	2	1	-	-	-	-	2	1	3	-
CO5	3	2	3	-	2	1	-	-	-	-	2	1	3	-

- To provide the electric vehicle concepts and the different kinds of electric vehicle operating modes.
- To brief the EV configuration with motor drive techniques and analysis the system parameters.
- To make the students to gain knowledge on modeling of HEV system.
- To familiarize the concepts of various motor drives and storage devices for EV application.
- To understand the design and power management of PHEVs

UNIT I INTRODUCTION

9

Electric vehicle and the Environment - Usage patterns for electric road vehicles - Types of electric vehicle-EV Architecture: Battery Electric Vehicles - the IC engine / Electric hybrid vehicle - Fuelled EVs - EVs using Supply lines - EVs which use Flywheels or super capacitors - solar powered vehicles - vehicles using linear motors.

UNIT II EV SYSTEM

9

EV configurations: Fixed and variable gearing - single and multiple motor drives - In wheel drives. EV parameters: weight and size parameters - force parameters - energy parameters - performance parameters.

UNIT III HEV MODELING

9

Modeling for energy Analysis - vehicle level energy analysis: equation of motion - forward and backward modeling approaches - vehicle energy balance, power train components: internal combustion engine-torque converter - Gear ratios and mechanical gearbox - Electric machines- batteries.

UNIT IV ELECTRONIC PROPULSION AND ENERGY SOURCES

9

EV considerations - DC motor drives - Induction motor Drives - permanent magnet motor drives - switched reluctance motor drives. Battery - Fuel cells - Ultra capacitors.

UNIT V PLUG - IN HYBRID ELECTRIC VEHICLES

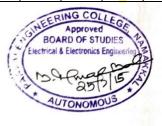
9

PHEV Architectures - Equivalent electric range of blended PHEVs - Power management of PHEVs - PHEV design and component sizing - component sizing of blended PHEV - HEV to PHEV conversions -vehicle to grid technology.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon the completion of the course, students will be able to


• understand the concept of various electric vehicle.

- analyze the working of electric vehicle system.
- modeling and analysis of HEV system.
- operation and its characteristic of various types of motor and storage devices .
- design and conversion of plug-in HEV.

- 1. James Larminie, John Lowry, "Electric Vehicle Technology", John Wiley & Sons, 2012.
- 2. C. C. Chan, K. T. Chau, "Modern Electric Vehicle Technology", Oxford University Press, 2001.
- 3. Simona Onori, Lorenzo Serrao, Giorgio Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.
- 4. Chris Mi, M. Abul Masrur, David Wenzhong Gao, "Hybrid Electric Vehicles: Principles and Applications with with Practical Perspectives", John Wiley & Sons, 2011.

- 1. https://books.google.co.in/books?id=IdPZ3NYhF68C&dq=Electric+Vehicles&source=gbs_n avlinks_s
- 2. https://www.youtube.com/watch?v=BMrA-5EDakg
- 3. http://nptel.ac.in/courses/108103009/

	MAPP													
M	apping													c
	Outcomes PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak Programme Outcomes PO's PSO's													
		Programme Outcomes PO's												
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	-	3	2	3	1	-	1	-	2	-	2	2	3
CO2	3	-	3	2	3	1	-	1	-	2	-	2	2	3
CO3	3	-	3	2	3	1	-	1	-	2	-	2	2	3
CO4	3	-	3	2	3	1	-	1	-	2	-	2	2	3
CO5	3	-	3	2	3	1	-	1	-	2	-	2	2	3

- To infer knowledge on Virtual instrumentation Architecture.
- To analyze the new concepts on Graphical programming.
- To understand the programming structure for various parameters.
- To discuss the data acquisition and instrument control.
- To use the applications of hardware and software specifications.

UNIT I INTRODUCTION

q

General Functional description of a digital instrument - Block diagram and Architecture of a Virtual Instrument - Physical quantities and Analog interfaces - Hardware and Software - User interfaces - Advantages of Virtual instruments over conventional instruments - Data flow techniques - Architecture of a Virtual instrument and its relation to the operating system.

UNIT II INSTRUMENT INTERFACE

9

Interfacing of external instruments to a PC – RS 232, RS 422, RS 485 and USB Standards – IEEE 488 standard – ISO – OSI model for series bus – Introduction to bus protocols – Interface basis: USB, PCMCIA, VXI, SCXI, PXI etc.

UNIT III PROGRAMMING TECHNIQUE

9

FOR loops, WHILE loop, CASE structure, formula node, Sequence structures – Arrays and Clusters - Array operations - Bundle - Bundle/Unbundle by name, graphs and charts - String and file I/O - High level and Low level file I/O's.

UNIT IV DATA ACQUISTION

9

Installing hardware, installing drivers - Configuring the hardware –Introduction to data acquisition on PC, Sampling fundamentals, Input/Output techniques and buses. ADC, DAC, Digital I/O, counters and timers, DMA, Software and hardware installation, Calibration, Resolution, Data acquisition interface requirements.

UNIT V APPLICATIONS

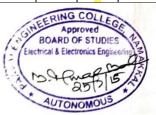
9

Motion Control: General Applications - Feedback devices, Motor Drives - Machine vision - Instrument Connectivity - GPIB, Serial Communication - General, GPIB Hardware & Software specifications - Real - Time Systems, Embedded controller, OPC, HMI, SCADA software - Development of process database management system.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon completion of the course, the student will be able to


• discuss the knowledge on virtual instrumentation architecture.

- apply the new concepts in graphical programming.
- understand the programming structure for various parameters.
- summarize the data acquisition and instrument control.
- implement the applications of hardware and software specifications

- 1. Lisa K. wells & Jeffrey Travis, LabVIEW for everyone, Prentice Hall, New Jersey, 1997.
- 2. Gary Johnson, LabVIEW Graphical Programming, Second edition, McGraw Hill, Newyork, 1997.
- 3. Kevin James, PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control, Newnes, 2000.
- 4. N.Mathivanan, PC-based Instrumentation: Concepts and Practice, Eastern Economy Edition, PHILearning private Ltd, 2007.

- 1. www.ni.com/labview/
- 2. https://www.ni.com/getting-started/set-up-hardware/
- 3. www.ni.com/pdf/manuals/370426n.pdf

СО-РО) MAPP	ING:	•				•							
Mapping of Course Outcome (CO's) with Programme Outcomes (PO's) and Programme Specific Outcomes PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak														
		Programme Outcomes PO's PSO's												
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	-	2	3	2	2	3	-	2	1	2	1
CO2	3	2	2	-	2	3	2	2	3	-	2	1	2	1
CO3	3	2	2	-	2	3	2	2	3	-	2	1	2	1
CO4	3	2	2	-	2	3	2	2	3	-	2	1	2	1
CO5	3	2	2	-	2	3	2	2	3	-	2	1	2	1

